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Plateau transitions of a spin pump and bulk-edge correspondence
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Sequential plateau transitions of quantum spin chains (S = 1, 3/2, 2, and 3) are demonstrated by a spin pump
using dimerization and a staggered magnetic field as synthetic dimensions. The bulk is characterized by the
Chern number associated with the boundary twist and the pump protocol as the time. It counts the number
of critical points in the loop that is specified by the Z2 Berry phases. With an open boundary condition, the
discontinuity of the spin weighted center of mass due to emergent effective edge spins also characterizes the
pump as the bulk-edge correspondence. It requires extra level crossings in the pump as a superselection rule that
is consistent with the valence bond solid picture.
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I. INTRODUCTION

Integer S spin systems have been extensively studied after
Haldane proposed an exotic proposal for the uniform Heisen-
berg chains, which states the ground state is gapped if the spin
is an integer [1]. Various numerical studies support this con-
jecture positively [2–6]. This Haldane conjecture is proved for
the valence bond solid (VBS) states of the Affleck-Kennedy-
Lieb-Tasaki (AKLT) model [7–9]. With open boundaries for
the S = 1 case, there appears an extra low-energy level struc-
ture within the Haldane gap which is described by emergent
effective S = 1/2 spins at both ends of the chain [2]. This is
also consistent with the VBS picture [7–9]. The edge states
were also experimentally observed [10]. According to the
bulk-edge correspondence, these effective degrees of freedom
are due to the nontrivial bulk [11].

This Haldane spin chain is an example of symmetry pro-
tected topological (SPT) phases [12–14]. It is robust against
disorder or deformations as far as the symmetry is preserved.
The SPT phase of the integer S = 1, 2 dimerized spin chain
has been characterized by Z2 Berry phases and is consistently
understood by the VBS picture [15–19].

Recently, the topological charge pump (TCP) [20] has once
again become a hot topic in the condensed matter commu-
nity since recent artificial quantum systems have realized it
experimentally [21–26]. The bulk-edge correspondence of the
TCP has been also studied recently [27,28], although its bulk
description is old. A recent field theoretical study has also
discussed the generalized Berry phases related to the TCP
[29]. The TCP of fermionic/bosonic systems [30–36] and the
spin pump for S = 1/2 have been discussed [37,38], which is
characterized by the Chern number [39]. Still, the nature of the
spin pump for S � 1, especially bulk-edge correspondence,
remains unclear.

In this paper, we clarify the presence of a nontrivial topo-
logical spin pump in a dimerized Heisenberg model with
generic S (S = 1, 3/2, 2, and 3). Without using a dimensional
reduction from the historical ancestor, that is, a quantum Hall

system in two dimensions (2D) [24], we are proposing a
nontrivial topological pump connecting two SPT phases with
different edge states. We have demonstrated this spin pump
by calculating the Chern number of the bulk and also dis-
cussed the low-energy spectrum of the SPT phases with small
symmetry breaking parameters, that determines the behavior
of the edge states during the pump. This is reflected by a
series of discontinuities of the spin weighted center of mass
(sCoM). Using the numerical data, we have demonstrated the
bulk-edge correspondence of the generic spin chains and its
relation to the VBS picture has been clarified. It suggests
the inevitable existence of low-energy boundary degrees of
freedom in the infinite system.

II. MODEL

In this paper, we consider a dimerized Heisenberg model
with generic S [16,40], HDH = ∑L−1

j=0 Jj �S j · �S j+1, S2
j = S(S +

1), where �S j = (Sx
j , Sy

j , Sz
j ) and Jj is dimerized, Jj∈even = J1

and Jj∈odd = J2 [41]. The phase diagrams for S = 1/2 and 3/2
[42–44] and integer cases (S = 1 and 2) [16,17] have been
discussed before. There are sequences of gapped SPT phases
denoted by SPT1, SPT2, . . ., that appear by changing the ratio
J1/J2. The schematic phase diagrams for S = 1, 3/2, and 2
are shown in Fig. 1. All of the SPT phases of the HDH are
protected by one of D2, time-reversal, and bond-centered in-
version symmetries [12,14,45]. The state of the SPT phases in
HDH with generic S is discussed by Z2 Berry phases protected
by the symmetry [16].

The SPT phases of the bulk are characterized by the Berry
phase by a local twist [46–50], J2

2 (eiθ S+
0 S−

L−1 + e−iθ S−
0 S+

L−1)
(eiθ ∈ S1, θ ∈ (π, π ]). Here, we assume the sites are la-
beled by i = 0, . . . , L − 1. The Berry phase is given by iγ =∫

S1 Aθ (θ )dθ , where Aθ (θ ) = 〈G(θ )|∂θG(θ )〉 and |G(θ )〉 is the
ground state of HDH(θ ). The SPT phases for S = 1, 2 are
discussed and characterized by the quantized value of γ =
0, π ∈ Z2 that is consistently understood by the VBS picture
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FIG. 1. (a) Schematic figures for the S = 1 SPT phase diagram, VBS pictures with a left open boundary, and a pump protocol in the φ-�
plane. The SPT phase colored in light blue (red) has a 0 (π ) Berry phase for the J2 link. Here, φ = 0 is not a transition point. In the VBS picture,
the red triangle represents spin 1/2. The bottom panel is the plateau transition. (b) Schematic figure for the S = 3/2 SPT phase diagram, the
VBS pictures, and a pump protocol in the φ-� plane. The bottom panel is the plateau transition. (c) Schematic figure for the S = 2 SPT phase
diagram, and the VBS pictures. The blue loop represents the pump protocol L35 = L15 − L13, which gives C35 = C15 − C13 = 2. The bottom
panel is the plateau transition.

by assigning π for the valence bond (VB) [16,17]. Note that
the gap of a finite system remains open for a system with a
periodic boundary condition even near the transition points.
With a twisted boundary condition, however, the gap vanishes
mostly at θ = π . It is due to the topological charge of the two
bulks characterized by different Z2 Berry phases. It suggests
that extending a system by adding a U (1) ∈ S1 twist as an
associated dimension is useful for the topological transition
for finite systems. This S1 is small in the sense that the effects
are infinitesimal in infinite systems [51,52]. In this sense, the
transition points of the S1-enlarged system are the same as
those of the original one. Symmetry sometimes requires a
gap closing for the S1-enlarged system. The gap necessarily
closes for a translationally invariant half-integer spin chain as
an analog of the Lieb-Schultz-Mattis theorem for the extended
system [15].

For each SPT phase in Figs. 1(a), 1(c) and 2(e), the value
of γ is consistently understood by the VBS picture. Since the
Berry phase has modulo 2π ambiguity, the number of bonds is
specified in modulo 2. The VBS picture actually works more
than that as shown later. In the topological spin pump we pro-
pose, we have observed emergent edge states predicted by the
VBS picture. According to the bulk-edge correspondence, this
is specified by the Chern number in the extended parameter
space (see below). In the phase diagrams in Figs. 1(a), 1(c)
and 1(e), all critical transition points on � = 0 are gapless for
an infinite system. Even in a finite system, the gap closes as
an S1-enlarged system.

III. TOPOLOGICAL PLATEAU TRANSITION OF A PUMP
FOR A GENERIC SPIN

To characterize the ground state of HDH, let us introduce
a symmetry breaking term, HSB = �(t )

∑
j (−1) j+1Sz

j , and
consider an extended Hamiltonian H = HDH + HSB where
�(t ) is a periodic dynamical parameter with a period T ,
which breaks all symmetries protecting the SPT phases.
The Hamiltonian H preserves U (1) symmetry of the sub-
group of SU (2), which implies conservation of total Sz.
Here, a pump protocol is specified by a periodic modu-
lation of the parameters. To be specific, we take J1(t ) =
sin φ(t ), J2(t ) = cos φ(t ) with φ(t ) = φm[1 − cos(2πt/T )]/2
and �(t ) = sin(2πt/T ). The amplitude of the modulation
φm is chosen so that the ground state of H (t ) at t = 0, T/2

(where HSB = 0) belongs to the different SPT phases as
[J1(t ), J2(t )] = (0, 1), (sin φm, cos φm), � = 0 for t = 0 and
T/2, respectively. Note that the gap always remains open and
the ground state is unique in the pump as for a periodic system
[28].

The pump protocol is characterized by the (spin) Chern
number [53] of the periodic system with a local bound-
ary twist eiθ , C = 1

2π i

∫ T
0 dt

∫ 2π

0 dθB, where B = ∂θAt − ∂t Aθ ,

FIG. 2. (a) �ES for the S = 1 case. We set L = 36. The labels
“R” and “L” represent right and left edge states. The upward and
downward arrows represent the direction when the edge states cross
the blue dashed line. (b) �ES for the S = 3/2 case. We set L = 32.
(c) �ES for the S = 2 case. We set L = 24. The numbers at level
crossings indicate the number of the degeneracy of �ES .
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Aα = 〈g|∂αg〉, α = θ, t , where |g〉 is a gapped and unique
ground state of H . The Berry phase defined at t = 0 and T/2,
|G〉 = |g〉|�=0, is quantized [37].

This Chern number coincides with the total pumped spin of
the bulk [27,28] [see also Sec. I in the Supplemental Material
(SM) [54]]. Here, let us define a Chern number, C1k , for the
protocol specified by the loop L1k starting from the SPT1 and
passing through the other kth SPT (SPTk) phases as shown in
Figs. 1(a), 1(c) and 1(e). We have used the formula [55] by
diagonalizing the system [56] with an even number of spins
within the total Sz ≡ ∑L−1

j=0 Sz
j = 0 sector since the ground

state is unique. The Berry phase at t = 0 is 2πS since the
dimers are decoupled and the twist is gauged out [16]. Let us
define a path Lkk′ starting from the SPTk and passing through
the SPTk′ and the corresponding Chern number Ckk′ [see the
blue loop in Fig. 1(e) as an example]. Since the path can be
deformed into the two paths L1k and L1k′ as Lkk′ = L1k′ − L1k

without a gap closing, the Chern numbers satisfy the relation
Ckk′ = Ck′ − Ck .

The results of C1k for the S = 1, 3/2, and 2 cases are
plotted in Figs. 1(b), 1(d) and 1(f) [57]. By changing the
width of modulation of the dimerization φm, the Chern number
changes step by step, and it is an analog of the quantum Hall
plateau transitions [58–62]. The maximum Chern number for
each case is C = 2S, that corresponds to the total number
of possible dimerization transitions. The case for S = 3 is
similar (see Sec. II in the SM [54]). The Chern number of
the bulk for the pump protocol is specified by the topology of
the two SPT phases where the pumps are passing through.
This is clear considering a system with edges as discussed
later. The gap closing points of the SPT phases on the � = 0
line are a topological obstruction for the loop specified by the
pump protocol on the φ-� plane (strictly speaking, the ob-
struction is for the S1-enlarged system.) Therefore only when
the loop passes through these points, is the Chern number
allowed to change. The Chern number of a generic pump is
given by a sum of the Chern numbers of the critical points
inside the protocol loop [63]. The plateau transition of the
pump in 2D is induced by the SPT transition of the 1D spin
chain [64].

IV. SPIN CENTER OF MASS WITH AN OPEN BOUNDARY

Let us investigate the topological spin pump with an open
boundary, especially the properties of edge states. To this end,
we employ the density matrix renormalization group method
in the TeNPy package [65]. We consider the sCoM [27] given
by P(t ) = ∑L−1

j=0 〈g(t )|x jS
z
j |g(t )〉, where j0 = (L − 1)/2, x j =

( j − j0)/L ∈ (−1/2, 1/2). This sCoM gives a spin current
J = ∂t P. Note that the sCoM is only well defined for a system
with boundaries and is not well defined for a system with
a periodic boundary condition. Since the pump is periodic
in time, so is the sCoM, P(t ). It implies 0 = ∫ T

0 dt ∂t P =∑
i

∫ ti
ti−1

dt ∂t P + P(t )|ti+0
ti−0, where P is piecewise continuous

and has discontinuities at t = ti (i = 1, 2, . . .) (periodicity in
time is assumed for the summation) [27]. Then, for any path
passing through SPTk and SPTk′ in the parameter space,
the pumped spin Qe

kk′ in the cycle by the bulk for a system
with an open boundary condition is related to the sum of the

discontinuities

Qe
kk′ =

∑
i

∫ ti

ti−1

dt ∂t P = Ikk′ , (1)

where Ikk′ ≡ −∑
i P(t )|ti+0

ti−0.
In the spin model in this paper, each discontinuity is ±1

which is induced by exchanging the left and right edge states
[27]. It is due to the symmetry of the system. In a generic
situation, single annihilation (creation) of the edge state is
allowed as P(t )|ti+0

ti−0 = +1/2 at the left (right) boundary and
−1/2 at the right (left).

We also calculate an excitation energy [38] defined by
�ES (MS, t ) = ES (MS + 1, t ) − ES (MS, t ) for each MS sector
where ES (MS, t ) is the ground state energy of H within a
subspace total Sz = MS . Let us discuss �ES (MS, t ) at MS =
0,±1, . . .. We choose the same parameters as shown in the
bulk calculation of Fig. 1 where the pumped spin C1k = 1.
The amplitude of the modulation φm is set to connect the
SPT1 to the midpoint of the SPT2 phase (φm = π/4, 3π/16,
and π/8 for S = 1, 3/2, and 3, respectively). The results for
S = 1, 3/2, and 2 are shown in Figs. 2(a)–2(c). Numerically
calculated excitation gaps become very small at t = 0 and
t = T/2. These extremely small gaps are due to the inter-
action between the edge states localized near both ends of
the system as emergent degrees of freedom associated with
the nontrivial bulk [66]. It is an extension of the well-known
effective S = 1/2 boundary degrees of the S = 1 case at t =
T/2, that makes fourfold degeneracy in the infinite system
[2]. The symmetry breaking term HSB makes the degeneracy
to the level crossings observed in Fig. 2. The degeneracies
at t = 0 are trivial and are given by the addition of the bare
spin S at the boundaries (S ⊗ S = 2S ⊕ · · · ⊕ 0). They are
(2S + 1)2-fold in total and �ES (MS, 0) = 0 for 4S different
MS sectors MS = −2S, . . . , 2S − 1. Then the discontinuity at
t = 0 is −∑

i P(t )|+0
−0 = 2S.

Although the degeneracy at t = T/2 is nontrivial, it is con-
sistently explained by the VBS picture [15–17]. See Figs. 1(a),
1(c) and 1(e). Based on the VBS picture, in the SPT2 phase,
a single valence bond (VB) connected to the neighboring spin
reduces the spin by 1/2 at the boundary spins. It implies the
effective free spins at the boundaries are Seff = S − 1/2. For
the S = 1 case at t = T/2, it implies a total degeneracy of
(2Seff + 1)2 = 4 and �ES (MS, T/2) = 0 for 4Seff = 2 differ-
ent MS sectors. The same can be true for the SPTk phase
of the spin S model where the bulk is pictorially given by
the alternating Nk

B = 2S − (k − 1) VB on the J2 link and
Nk

B + (k − 1) VB on the J1 link. The open boundary condition
corresponds to cutting Nk

B VB (J2 link), which induces effec-
tive Sk

eff = Nk
B/2 spins at both ends. Then the gap closings

by �ES (MS, T/2) = 0 are for 4Sk
eff = 2Nk

B = 4S − 2(k − 1)
different MS sectors [67]. It implies that the discontinuity
at t = T/2 is −∑

i P(t )|T/2+0
T/2−0 = −2Sk

eff = −Nk
B (the sign is

determined by the way of exchange of the left and right
edge states). It contributes to the entanglement entropy by
log(2Seff + 1) [17]. Since this effective spin is spherical due
to the symmetrization according to the VBS picture.

This scenario is consistently confirmed by numerical calcu-
lations. See Figs. 2(a)–2(c). For S = 1, 3/2, and 2 at t = T/2,
the degeneracies specified by �ES are two-, four-, and sixfold,
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FIG. 3. (a) Behavior of the sCoM with the Sz = 0 sector. For
the S = 1 case, we set L = 80, and for S = 3/2 and 2, L = 60.
(b) System size dependence of the total discontinuity of the sCoM. It
converges to an integer I12 = limL→∞[−∑

i P(t )|ti+δt
ti−δt ]. In the numer-

ical calculation of the discontinuity at t = T/2 in the S = 1, 3/2, and
2 cases, we set δt = 0.5 × 10−2T , 0.5 × 10−3T , and 0.5 × 10−3T .

respectively. Further, for the S = 2 system at t = T/2, the
level structure due to the spherical nature of the effective spin
is discussed in detail (see Sec. IV in the SM [54]). Then the to-
tal discontinuity of the pump protocol starting from SPTk and
passing through SPTk′ is given by Ikk′ = Nk

B − Nk′
B = k′ − k.

This is also consistently confirmed by numerical calculations.
See Fig. 3(a), where the behaviors of sCoM of the pump for
the same parameters [68] in Figs. 2(a)–2(c) are shown. For
the S = 1, 3/2, and 2 cases, the discontinuities of P(t = T/2)
numerically obtained are very close to 1,2,3 (= Nk=2

B ). The
total discontinuity of the pump protocol starting from SPT1
(k = 1) and passing through SPT2 (k′ = 2) is given by 1
(= k′ − k). The numerical exploration to the infinite size is
shown in Fig. 3(b) [69]. It implies the total discontinuity of
the sCoM approaches 1 for L → ∞, that is, I12 = 1.

V. BULK-EDGE CORRESPONDENCE, VBS,
AND BERRY PHASES

The sCoM, P(t ), is a piecewise continuous function that is
continuous except for several discontinuities at t = ti due to
the appearance of effective boundary spins. This pumped spin
by the continuous part is given by the bulk and is given by the
Chern number as [27] (see also Sec. I in the SM [54]) Qe

kk′ =
1

2π

∫ 2π

0 dθ Q̄b
kk′ (θ ) = Ckk′ , where Q̄b

kk′ = i
∫ T

0 dt ∂t Ā
(t )
θ (θ ) and

Ā(t )
θ is the Berry connection of the periodic system in the tem-

poral gauge Ā(t )
t = 0 where the twist θ is distributed uniformly

for all links. This uniform twist is transformed to the local
boundary twist in the Chern number by the large gauge trans-
formation, which makes the Chern number invariant [27,54].

Equation (1) and the representation of Qe
kk′ imply the bulk-

edge correspondence for the generic quantum spins as

Ckk′ = Ikk′ = k′ − k.

It also imposes a constraint for the Berry phases γ k −
γ k′ ≡ πCkk′ , mod 2π . Here, we have established the bulk-
edge correspondence and discussed the numerical results
based on the VBS picture. Reversely, the topological stability
of the Chern number implies the (fractionalized) effective
Seff = S/2 free spins at both ends are topologically stable.
These effective edge spins are emergent and are topologi-
cally protected by the bulk gap. This results in an inevitable
level crossing of the pump with the open boundary con-
dition as an emergent superselection rule of the infinite
system.

Details of the topological pump and the bulk-edge cor-
respondence are given in Ref. [27] and in Sec. I in
the SM [54]. The large gauge transformation associated
with the local U (1) gauge transformation is fundamentally
important.

VI. CONCLUSION

We have clarified the presence of plateau transitions and
a nontrivial topological spin pump in dimerized Heisenberg
models (S = 1, 3/2, 2, 3) with the symmetry breaking term
as a synthetic dimension. The model can be feasible for a
recent cold atom system [70]. The critical points between
the various SPT phases are topological obstructions for the
spin pump. These obstructions protect the quantization of the
Chern number as the total pumped spin. Due to the bulk-edge
correspondence which we have demonstrated, quantization
of the Chern number implies emergent boundary degrees of
freedom for the spin chains, which is consistent with the VBS
picture of the dimerized Heisenberg model.

Some high-dimensional systems related to our spin pump,
such as a 2D topological charge pump [72], were simulated
in a recent experiment [73]. The high-dimensional extension
of our spin pump is a future interesting topic. Also, an ex-
tension to the SU (N ) spin chains (see Refs. [50,74]) can be
straightforward.

ACKNOWLEDGMENTS

The authors thank T. Yoshida for valuable discussions.
The work is supported by JSPS KAKEN-HI Grant No.
JP17H06138.

[1] F. D. M. Haldane, Rev. Mod. Phys. 89, 040502 (2017).
[2] T. Kennedy, J. Phys.: Condens. Matter 2, 5737 (1990).
[3] Y. Hatsugai, J. Phys. Soc. Jpn. 61, 3856 (1992).
[4] S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).
[5] H. Nakano and A. Terai, J. Phys. Soc. Jpn. 78, 014003 (2009).
[6] H. Nakano and T. Sakai, J. Phys. Soc. Jpn. 87, 105002 (2018).
[7] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev.

Lett. 59, 799 (1987).

[8] I. Affleck, T. Kennedy, E. Lieb, and H. Tasaki, Commun. Math.
Phys. 115, 477 (1988).

[9] I. Affleck, J. Phys.: Condens. Matter 1, 3047 (1989).
[10] M. Hagiwara, K. Katsumata, I. Affleck, B. I. Halperin, and J. P.

Renard, Phys. Rev. Lett. 65, 3181 (1990).
[11] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[12] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, Phys.

Rev. B 81, 064439 (2010).

045113-4

https://doi.org/10.1103/RevModPhys.89.040502
https://doi.org/10.1088/0953-8984/2/26/010
https://doi.org/10.1143/JPSJ.61.3856
https://doi.org/10.1103/PhysRevB.48.3844
https://doi.org/10.1143/JPSJ.78.014003
https://doi.org/10.7566/JPSJ.87.105002
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1007/BF01218021
https://doi.org/10.1088/0953-8984/1/19/001
https://doi.org/10.1103/PhysRevLett.65.3181
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevB.81.064439


PLATEAU TRANSITIONS OF A SPIN PUMP AND … PHYSICAL REVIEW B 104, 045113 (2021)

[13] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 84, 235128
(2011).

[14] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys.
Rev. B 85, 075125 (2012).

[15] T. Hirano, H. Katsura, and Y. Hatsugai, Phys. Rev. B 78, 054431
(2008).

[16] T. Hirano, H. Katsura, and Y. Hatsugai, Phys. Rev. B 77, 094431
(2008).

[17] H. Katsura, T. Hirano, and Y. Hatsugai, Phys. Rev. B 76, 012401
(2007).

[18] N. Chepiga, F. Michaud, and F. Mila, Phys. Rev. B 88, 184418
(2013).

[19] S. Fubasami, T. Mizoguchi, and Y. Hatsugai, Phys. Rev. B 100,
014438 (2019).

[20] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[21] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, and I.

Bloch, Nat. Phys. 12, 350 (2016).
[22] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L.

Wang, M. Troyer, and Y. Takahashi, Nat. Phys. 12, 296 (2016).
[23] C. Schweizer, M. Lohse, R. Citro, and I. Bloch, Phys. Rev. Lett.

117, 170405 (2016).
[24] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,

Phys. Rev. Lett. 109, 106402 (2012).
[25] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,

M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I.
Carusotto, Rev. Mod. Phys. 91, 015006 (2019).

[26] N. R. Cooper, J. Dalibard, and I. B. Spielman, Rev. Mod. Phys.
91, 015005 (2019).

[27] Y. Hatsugai and T. Fukui, Phys. Rev. B 94, 041102(R) (2016).
[28] Y. Kuno and Y. Hatsugai, Phys. Rev. Research 2, 042024(R)

(2020).
[29] P. S. Hsin, A. Kapustin, and R. Thorngren, Phys. Rev. B 102,

245113 (2020).
[30] L. Wang, M. Troyer, and X. Dai, Phys. Rev. Lett. 111, 026802

(2013).
[31] R. Li and M. Fleischhauer, Phys. Rev. B 96, 085444 (2017).
[32] Y. Ke, X. Qin, Y. S. Kivshar, and C. Lee, Phys. Rev. A 95,

063630 (2017).
[33] Y. Kuno, K. Shimizu, and I. Ichinose, New J. Phys. 19, 123025

(2017).
[34] M. Nakagawa, T. Yoshida, R. Peters, and N. Kawakami, Phys.

Rev. B 98, 115147 (2018).
[35] A. Hayward, C. Schweizer, M. Lohse, M. Aidelsburger, and F.

Heidrich-Meisner, Phys. Rev. B 98, 245148 (2018).
[36] S. Greschner, S. Mondal, and T. Mishra, Phys. Rev. A 101,

053630 (2020).
[37] R. Shindou, J. Phys. Soc. Jpn. 74, 1214 (2005).
[38] H. Hu, C. Cheng, Z. Xu, H. G. Luo, and S. Chen, Phys. Rev. B

90, 035150 (2014).
[39] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den

Nijs, Phys. Rev. Lett. 49, 405 (1982).
[40] M. Nakamura and S. Todo, Phys. Rev. Lett. 89, 077204 (2002).
[41] The model is related to the bilinear-biquadratic S = 1 chains,

the experimental construction method of which has been pro-
posed: A. Imambekov, M. Lukin, and E. Demler, Phys. Rev. A
68, 063602 (2003); J. J. Garcia-Ripoll, M. A. Martin-Delgado,
and J. I. Cirac, Phys. Rev. Lett. 93, 250405 (2004); G. K.
Brennen, A. Micheli, and P. Zoller, New J. Phys. 9, 138 (2007).

[42] M. Yajima and M. Takahashi, J. Phys. Soc. Jpn. 65, 39
(1996).

[43] S. Yamamoto, Phys. Rev. B 55, 3603 (1997).
[44] A. Kitazawa and K. Nomura, J. Phys. Soc. Jpn. 66, 3944 (1997).
[45] D2 transformation means Z2 × Z2 spin rotation, that is,

spin π rotation with respect to any two of spin x, y, z
axis. Time-reversal transformation means �Sj → −�Sj . Bond-
centered-inversion transformation means �Sj → �SL− j−1 (L is a
system size).

[46] Y. Hatsugai and I. Maruyama, Europhys. Lett. 95, 20003
(2011).

[47] Y. Hatsugai, J. Phys. Soc. Jpn. 74, 1374 (2005).
[48] Y. Hatsugai, J. Phys. Soc. Jpn. 75, 123601 (2006).
[49] Y. Hatsugai, J. Phys.: Condens. Matter 19, 145209 (2007).
[50] T. Kariyado, T. Morimoto, and Y. Hatsugai, Phys. Rev. Lett.

120, 247202 (2018).
[51] K. Kudo, H. Watanabe, T. Kariyado, and Y. Hatsugai, Phys. Rev.

Lett. 122, 146601 (2019).
[52] Q. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372

(1985).
[53] F. D. M. Haldane and D. P. Arovas, Phys. Rev. B 52, 4223

(1995).
[54] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.104.045113 for (I) meaning of Chern num-
ber and bulk-edge correspondence of the spin pump, (II) S = 3
plateau transition, (III) quantization and plateau transition of
Chern number from SPT transition line picture, and (IV) hy-
bridization of edge states and S = 3/2 edge state picture.

[55] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674
(2005).

[56] We employed the QUSPIN solver: P. Weinberg and M. Bukov,
SciPost Phys. 7, 20 (2019); 2, 003 (2017).

[57] All of the results are for a system size L = 10. There is no
significant system size dependence.

[58] S. Kivelson, D.-H. Lee, and S.-C. Zhang, Phys. Rev. B 46, 2223
(1992).

[59] Y. Hatsugai, K. Ishibashi, and Y. Morita, Phys. Rev. Lett. 83,
2246 (1999).

[60] V. Kagalovsky, B. Horovitz, Y. Avishai, and J. T. Chalker, Phys.
Rev. Lett. 82, 3516 (1999).

[61] T. Kawarabayashi, Y. Hatsugai, and H. Aoki, Phys. Rev. Lett.
103, 156804 (2009).

[62] Y. Morita and Y. Hatsugai, Phys. Rev. B 62, 99 (2000).
[63] It is justified since one can deform the protocol loop to a sum

of small loops around the critical points without a gap closing.
Here, the Chern number of the critical point is given by the
Chern number of the small pump around the point.

[64] When one extends the parameter space, by 1, respecting the
symmetry of the SPT, these gapless points become phase
boundary lines [28] (for details, see Sec. III in the SM [54]).

[65] J. Hauschild and F. Pollmann, SciPost Phys. Lect. Notes 5
(2018).

[66] The left and right edge states are identified by the distribution
of the local z-component magnetization 〈g(t )|Sz

j |g(t )〉.
[67] For the S = 1 case in Fig. 2(a), at t = 0 (SPT1 phase),

Seff = 1 (N1
B = 2) spins appear at the edges. For 4S1

eff = 4,
different MS sectors appear. The total degeneracy (2Seff + 1) =
(2 + 1)2-fold degenerate states.

[68] The numerical calculation of P(t ) is set in the Sz = 0 sector
without the twist θ .

[69] At t = 0, the model is in the dimerized limit, J1 = 0. Therefore,
the discontinuity of the sCoM for S = 1, 3/2, and 2 around

045113-5

https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.78.054431
https://doi.org/10.1103/PhysRevB.77.094431
https://doi.org/10.1103/PhysRevB.76.012401
https://doi.org/10.1103/PhysRevB.88.184418
https://doi.org/10.1103/PhysRevB.100.014438
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1038/nphys3584
https://doi.org/10.1038/nphys3622
https://doi.org/10.1103/PhysRevLett.117.170405
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/PhysRevB.94.041102
https://doi.org/10.1103/PhysRevResearch.2.042024
https://doi.org/10.1103/PhysRevB.102.245113
https://doi.org/10.1103/PhysRevLett.111.026802
https://doi.org/10.1103/PhysRevB.96.085444
https://doi.org/10.1103/PhysRevA.95.063630
https://doi.org/10.1088/1367-2630/aa99d0
https://doi.org/10.1103/PhysRevB.98.115147
https://doi.org/10.1103/PhysRevB.98.245148
https://doi.org/10.1103/PhysRevA.101.053630
https://doi.org/10.1143/JPSJ.74.1214
https://doi.org/10.1103/PhysRevB.90.035150
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.89.077204
https://doi.org/10.1103/PhysRevA.68.063602
https://doi.org/10.1103/PhysRevLett.93.250405
https://doi.org/10.1088/1367-2630/9/5/138
https://doi.org/10.1143/JPSJ.65.39
https://doi.org/10.1103/PhysRevB.55.3603
https://doi.org/10.1143/JPSJ.66.3944
https://doi.org/10.1209/0295-5075/95/20003
https://doi.org/10.1143/JPSJ.74.1374
https://doi.org/10.1143/JPSJ.75.123601
https://doi.org/10.1088/0953-8984/19/14/145209
https://doi.org/10.1103/PhysRevLett.120.247202
https://doi.org/10.1103/PhysRevLett.122.146601
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1103/PhysRevB.52.4223
http://link.aps.org/supplemental/10.1103/PhysRevB.104.045113
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.21468/SciPostPhys.7.2.020
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.1103/PhysRevB.46.2223
https://doi.org/10.1103/PhysRevLett.83.2246
https://doi.org/10.1103/PhysRevLett.82.3516
https://doi.org/10.1103/PhysRevLett.103.156804
https://doi.org/10.1103/PhysRevB.62.99
https://doi.org/10.21468/SciPostPhysLectNotes.5


YOSHIHITO KUNO AND YASUHIRO HATSUGAI PHYSICAL REVIEW B 104, 045113 (2021)

t = 0 with the Sz = 0 sector exactly becomes −2, −3, and −4,
respectively.

[70] Very recently, a ladder optical lattice has realized the SPT
phase [71] that can be effectively an S = 1 Haldane chain. The
observed SPT phase is related to the one of our spin models
described in this paper. It implies that our target spin Hamil-
tonian H and spin pump can be directly implemented and
simulated by employing such a ladder optical lattice system
with suitable fine tuning.

[71] P. Sompet, S. Hirthe, D. Bourgund, T. Chalopin, J. Bibo, J.
Koepsell, P. Bojovic, R. Verresen, F. Pollmann, G. Salomon,
C. Gross, T. A. Hilker, and I. Bloch, arXiv:2103.10421.

[72] H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto,
and N. Goldman, Phys. Rev. Lett. 115, 195303
(2015).

[73] M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, and I.
Bloch, Nature (London) 553, 55 (2018).

[74] I. Affleck, Phys. Rev. Lett. 54, 966 (1985).

045113-6

http://arxiv.org/abs/arXiv:2103.10421
https://doi.org/10.1103/PhysRevLett.115.195303
https://doi.org/10.1038/nature25000
https://doi.org/10.1103/PhysRevLett.54.966

