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Deconfined criticality and a gapless Z2 spin liquid in the square-lattice antiferromagnet
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The theory for the vanishing of Néel order in the spin S = 1/2 square lattice antiferromagnet has been the
focus of attention for many decades. A consensus appears to have emerged in recent numerical studies on the
antiferromagnet with first and second neighbor exchange interactions (the J1-J2 model): A gapless spin liquid is
present for a narrow window of parameters between the vanishing of the Néel order and the onset of a gapped
valence bond solid state. We propose a deconfined critical SU(2) gauge theory for a transition into a stable Z2

spin liquid with massless Dirac spinon excitations; on the other side of the critical point, the SU(2) spin liquid
(the ‘π -flux’ phase) is presumed to be unstable to confinement to the Néel phase. We identify a dangerously
irrelevant coupling in the critical SU(2) gauge theory, which contributes a logarithm-squared renormalization.
This critical theory is also not Lorentz invariant and weakly breaks the SO(5) symmetry which rotates between
the Néel and valence bond solid order parameters. We also propose a distinct deconfined critical U(1) gauge
theory for a transition into the same gapless Z2 spin liquid; on the other side of the critical point, the U(1) spin
liquid (the ‘staggered flux’ phase) is presumed to be unstable to confinement to the valence bond solid. This
critical theory has no dangerously irrelevant coupling, dynamic critical exponent z �= 1, and no SO(5) symmetry.
All of these phases and critical points are unified in a SU(2) gauge theory with Higgs fields and fermionic spinons
which can naturally realize the observed sequence of phases with increasing J2/J1: Néel, gapless Z2 spin liquid,
and valence bond solid.

DOI: 10.1103/PhysRevB.104.045110

I. INTRODUCTION

Antiferromagnetism on the square lattice became a topic
of intense study soon after the discovery of high temperature
superconductivity in the cuprates, and it continues to be a
wellspring of interesting experimental and theoretical physics.
It was established early on that the insulating antiferromagnet
with S = 1/2 spins on each site and only nearest neighbor
antiferromagnetic exchange interactions (J1) has long-range
Néel order in its ground state i.e., global SU(2) spin rota-
tion symmetry was broken with the spin expectation value
〈Si〉 = ηiN0 where Si is the spin operator on site i, ηi = ±1
on the two checkerboard sublattices, and N0 is the antifer-
romagnetic moment. Much attention has since been lavished
on the insulating J1-J2 antiferromagnet [1–6], which also has
a second-neighbor antiferromagnetic exchange interaction J2.
The key questions are the nature of the quantum phases of the
model, and of the quantum phase transitions between them, as
a function of increasing J2/J1 after the Néel order vanishes at
a critical value of J2/J1. These questions are also the focus of
our attention here.

An early proposal [5,6,12,13] was that there was a direct
transition from the Néel state to a valence bond solid (VBS)
(see Fig. 1) which restores spin rotation symmetry but breaks
lattice symmetries (followed by a first order transition at larger
J2/J1 to a ‘columnar’ state which breaks spin rotation sym-

metry and which we do not address in the present paper).
A theory of ‘deconfined criticality’ was developed [14–16]
showing that a continuous Néel-VBS transition was possible,
even though it was not allowed in the Landau-Ginzburg-
Wilson framework because distinct symmetries were broken
in the two phases. Evidence has since accumulated for the
presence of a VBS phase in the J1-J2 model, but the nature
of the Néel-VBS transition in this model has remained a
question of significant debate. However, in the past year, a
consensus appears to have emerged [11] among the groups
investigating this question by different numerical methods
[7–10] and is summarized in Fig. 1: There is a narrow win-
dow with a gapless spin liquid phase between the Néel and
VBS states. This gapless phase has been identified [8,17–
20] as a Z2 spin liquid [5,6,21,22] with gapless, fermionic,
S = 1/2 spinon excitations with a Dirac-like dispersion
[18,23–26], labeled Z2Azz13 in Wen’s classification [24].

The starting point of our analysis is the fermionic spinon
dual [27–30] of the bosonic spinon CP1 model used ear-
lier [12,13,15,16] to describe the Néel-VBS transition. This
fermionic dual is a relativistic SU(2) gauge theory of two
flavors of two-component, massless Dirac fermions carrying
fundamental gauge charges: This formulation is preferred
over the bosonic spinons because the massless Dirac fermions
connect naturally to the gapless fermionic spinons in the Z2

spin liquid. Recent studies [31–34] have indicated that the
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FIG. 1. Phases of the S = 1/2 J1-J2 antiferromagnet on the
square lattice, from the numerical results of Refs. [7–10], all of which
agree that the spin liquid is gapless. Each ellipse in the valence bond
solid (VBS) represents a singlet pair of electrons. Lower part of
figure adapted from Ref. [11].

two fermion flavor SU(2) gauge theory does not ultimately
describe a conformal field theory needed for Néel-VBS
criticality but exhibits a ‘pseudocriticality’ associated with
a proximate fixed point at complex coupling [27,35–37].
Reference [28] used connections to bosonic spinon theories
to argue that the two fermion flavor SU(2) gauge theory was
ultimately unstable to confinement and symmetry breaking
leading to the appearance of Néel order. We assume this is the
case, and we can then describe the transition to the Z2 spin
liquid by the condensation of Higgs fields which break the
SU(2) gauge symmetry down to Z2: see Fig. 2. The Néel-Z2

spin liquid transition is a confinement-Higgs transition, and
the critical theory is proposed to be a two-flavor SU(2) gauge
theory with critical Higgs fields [28]. We note that a similar
critical theory was proposed in Ref. [38] for a continuous
transition from the Néel state to a different gapless state with a
Z2 gauge field (the ‘orthogonal semimetal’), and this scenario
was supported there by quantum Monte Carlo simulations.
Evidently, it is possible that critical Higgs fields can stabilize
a scale-invariant critical point of the two-flavor SU(2) gauge
theory at the boundary of a Higgs phase where the SU(2)
gauge symmetry is broken down to Z2.

As we will see below, an important difference between our
critical Higgs SU(2) gauge theory and that of Ref. [38] is that
our theory does not preserve Lorentz invariance. The Lorentz
symmetry is broken by the Yukawa couplings between the
Higgs fields and fermions. The Yukawa couplings also do not
preserve the SO(5) flavor symmetry of the SU(2) gauge theory
with only fermionic matter; this symmetry rotates between
the Néel and VBS states. Both these features have important

FIG. 2. Mean field phase diagram of our low energy theory ob-
tained by minimization of the Higgs potential in Eq. (3.26). Dashed
(solid red) lines indicate second (first) order transitions in mean field
theory. We assume the SU(2) π -flux gauge theory confines to a Néel
state, the U(1) staggered flux gauge theory confines to a VBS state,
except at their deconfined critical boundaries to Wen’s stable, gapless
Z2 spin liquid Z2Azz13. The dotted blue line indicates a possible
trajectory of the square lattice antiferromagnet with increasing J2/J1.
However, as we discuss in Sec. VI, we cannot rule out interchanging
the assignments of the confining states between the SU(2) and U(1)
spin liquids, in which case the orientation of the blue arrow would
be reversed. The critical SU(2) gauge theory has a dangerously
irrelevant coupling, but the critical U(1) gauge theory does not.
The mean-field analysis was performed with w = u = 1, v = −1,
ũ = 0.75, and v4 = 0.5 in Eq. (3.26). We use the ansatz �a

1 = c1δax ,
�a

2 = c1δay, and �a
3 = c2δaz, so the terms in V (�) proportional to

v1, v3 are automatically zero.

consequences for the Néel-Z2 spin liquid critical point and
lead to predictions described below which can be tested by
numerical studies.

In earlier work, Ran and Wen [39,40] had considered the
two-flavor SU(2) gauge theory as the description of an ex-
tended gapless phase on the square lattice—also called the
π -flux phase [41]. They proposed a theory for a transition
from the π -flux phase to the Z2Azz13 spin liquid by the con-
densation of a pair of adjoint Higgs fields, which we denote
��1,2 (the vector symbol implies gauge SU(2) adjoint index).
In light of our arguments above on the confining instabil-
ity of the π -flux phase to the Néel state, the critical Higgs
theory of Ran and Wen [39,40] can serve as the deconfined
critical theory for the Néel to Z2Azz13 spin liquid transition.
However, as we shall see in Sec. IV, additional ‘dangerously
irrelevant’ terms are needed to fully define the critical theory
in a 1/Nf expansion, and these contribute a logarithm-squared
renormalization.

The mean-field phase diagram of the SU(2) gauge theory
with adjoint Higgs fields describing the π flux to Z2Azz13
transition turns out to naturally acquire an additional phase,
as explained in Sec. III D—this is the U(1) staggered flux spin
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liquid [41]. We show that the adjoint Higgs field

��3 ∼ ��1 × ��2 (1.1)

[see Eq. (3.30)] is precisely that required to go from the SU(2)
π -flux phase to the U(1) staggered flux phase. Specifically,
starting from the π -flux phase, if both ��1,2 condense with
〈 ��1〉 × 〈 ��2〉 �= 0, we obtain the gapless Z2 spin liquid (the
simultaneous condensation of ��1 and ��2 does not require fine
tuning because of symmetry constraints that we will describe).
On the other hand, Eq. (1.1) implies that if only the composite
field ��1 × ��2 condenses, but the individual fields ��1,2 do not,
then the π -flux phase turns into the U(1) staggered flux phase.
Speaking imprecisely, starting from the parent π -flux phase,
the Higgs condensate for the gapless Z2 spin liquid is the
‘square root’ of the Higgs condensate for the staggered flux
phase. (Let us also note that Song et al. [29] proposed that a
trivial monopole would drive the staggered flux state into the
π -flux state: so the Higgs field ��3 can be viewed as a ‘dual’
description of the trivial monopole and induces a transition
in the opposite direction. Four-fermion terms have also been
proposed as a route to reducing the emergent symmetry of the
staggered flux state to that of the π -flux state [42].) The phase
diagram of the Higgs fields ��1,2,3 is computed in Sec. III D
and shown in Fig. 2. We propose here that the transition from
the gapless Z2 spin liquid to the VBS state is described by
the deconfined critical theory appearing at the onset of the
U(1) spin liquid. Other works [25,29,30] have discussed the
possible instability of this U(1) spin liquid to either Néel
or VBS order via monopole proliferation. The critical U(1)
gauge theory is described briefly in Sec. V, where we show
that it does not contain the dangerously irrelevant terms found
in the critical SU(2) theory.

We will review the derivation of the Ran-Wen theory and
discuss its symmetry properties in some detail in Sec. II and
Appendix A. A continuum SU(2) gauge theory coupled to
three adjoint Higgs fields and gapless Majorana fermions will
be obtained in Sec. III. The critical SU(2) gauge theory for
the onset of the gapless Z2 spin liquid phase from the π -flux
phase will be presented in Sec. IV, along with an analysis of
its properties in a 1/Nf expansion. The critical U(1) gauge
theory for the onset of the same gapless Z2 spin liquid from
the staggered flux phase appears in Sec. V.

II. GAPLESS Z2 SPIN LIQUID GAPLESS Z2 SPIN LIQUID

The fermionic spinon theory of Z2 spin liquids proceeds
by re-expressing the spin operators in terms of spinons fiα ,
α =↑,↓ at site i = (ix, iy) of the square lattice using

Si = 1

2

∑
α,β

f †
iασαβ fiβ. (2.1)

We write down a Bogoliubov Hamiltonian for the fiα to obtain
a Z2 spin liquid. Following Wen’s notation [24], we introduce
the Nambu spinor

ψi =
(

fi↑
f †
i↓

)
, (2.2)

resulting in the Bogoliubov Hamiltonian

H = −
∑

i j

ψ
†
i ui jψ j . (2.3)

Here,

ui j = iu0
i j + ux

i jτ
x + uy

i jτ
y + uz

i jτ
z, (2.4)

with τ a Pauli matrices acting on the Nambu indices of ψi.
Invariance under global SU(2)s spin rotation requires that the
uμ

i j are all real numbers obeying

u0
ji = −u0

i j, ux
ji = ux

i j, uy
ji = uy

i j, uz
ji = uz

i j . (2.5)

This fermionic spinon representation has a SU(2)g gauge sym-
metry, under which

SU(2)g : ψi → Ug,iψi (2.6)

and a corresponding transformation for ui j .
We will provide three different ansatzes for the ui j in the

Z2Azz13 spin liquid, each suited for different purposes. The
three ansatzes are, of course, related to each other by SU(2)g

gauge transformations. Wen’s ansatz for the Z2Azz13 spin
liquid is given in Appendix A, where the continuum La-
grangian describing the different spin liquid phases is deduced
from symmetry fractionalization considerations. In the main
text, we obtain the continuum theory directly from the lattice
model, for which the ansatz given in Eq. (2.11) will be most
useful. To derive this ansatz, we first describe the Z2Azz13
spin liquid by starting from the familiar staggered flux phase
with U(1) gauge symmetry [41] and perturbing it with dxy

pairing. Explicitly, the ansatz is

ũi,i+x̂ =
(

te−iφ 0
0 −teiφ

)
, ix + iy even

ũi,i+x̂ =
(

teiφ 0
0 −te−iφ

)
, ix + iy odd

ũi,i+ŷ =
(−teiφ 0

0 te−iφ

)
, ix + iy even

ũi,i+ŷ =
(−te−iφ 0

0 teiφ

)
, ix + iy odd

ũi,i+x̂+ŷ =
(

0 −(γ1 − iγ2)
−(γ1 + iγ2) 0

)
ũi,i−x̂+ŷ =

(
0 (γ1 − iγ2)

(γ1 + iγ2) 0

)
. (2.7)

The first four terms in (2.7) represent the fermion hopping,
which is sketched in Fig. 3, and the last two terms are the dxy

pairing. With this ansatz, three distinct spin liquids may be
described depending on the choice of parameters. These spin
liquids are shown in Fig. 2, and we list them below:

(i) The π -flux phase with SU(2) gauge symmetry corre-
sponds to φ = π/4, and no fermion pairing γ1,2 = 0.

(ii) The ‘staggered flux’ U(1) spin liquid is obtained for
general φ, and no fermion pairing γ1,2 = 0. The U(1) gauge
field corresponds to a nearly spatially uniform modulation in
the phases of the fermion hopping terms.

(iii) The Z2Azz13 spin liquid is obtained when the dxy

pairing γ1 + iγ2 is present and breaks the U(1) down to Z2.
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FIG. 3. Nearest-neighbor fermionic spinon hopping showing the
A (ix + iy even) and B (ix + iy odd) sublattices.

Note that we have dxy pairing in the Z2 spin liquid only,
with opposite signs on the two sublattices.

In momentum space, we choose the A and B checkerboard
sublattices as the basis sites (shown in Fig. 3), and the Hamil-
tonian acting on ( fA,k↑, fB,k↑, f †

A,−k,↓, f †
B,−k,↓)T in the gauge

of Eq. (2.7) is

H =

⎛⎜⎜⎝
0 Ck Dk 0

C∗
k 0 0 Dk

D∗
k 0 0 −C∗

k

0 D∗
k −Ck 0

⎞⎟⎟⎠ (2.8)

where

Ck = −2t (e−iφ cos(kx ) − eiφ cos(ky)),

Dk = 4(γ1 − iγ2) sin(kx ) sin(ky). (2.9)

The eigenvalues of (2.8) are

εk = ±(
[Re(Ck)]2 + [Im(Ck) ± |Dk|]2

)1/2
(2.10)

and these coincide with those obtained in Wen’s gauge in
(A3). Note that the dispersion depends only on |γ1 + iγ2| and
not on γ1,2 separately. This is natural in the staggered flux
gauge, where U(1) the gauge transformation acts simply as
fiα → fiαeiφi , and so the dxy pairing acts like a charge 2 Higgs
field: A simple identification of the charge 2 Higgs field is
the advantage of the present gauge. This dispersion is plotted
in Fig. 4. The staggered flux phase has Dirac nodal points
at (±π/2,±π/2). Introducing dxy pairing does not gap these
nodal points but moves them away from these high symmetry
points. Although the dispersion does not have full square
lattice symmetry, all gauge-invariant observables do, and this
is verified by the analysis in Appendix A.

A. Majorana gauge

For the remainder of the analysis in the body of the paper we map (2.7) onto the gauge used by Wang et al. [27] for the π -flux
phase, which is convenient for eventual representation in Majorana fermions and making the gauge and spin rotation symmetries
manifest. In this gauge, the ansatz of the Z2Azz13 spin liquid [which is gauge equivalent to Eq. (2.7)] is

ūi,i+x̂ =
(

ite−4iφ 0
0 ite4iφ

)
, ix + iy even

ūi,i+x̂ =
(

ite4iφ 0
0 ite−4iφ

)
, ix + iy odd

ūi,i+ŷ = (−1)ix

(
te2iφ 0

0 −te−2iφ

)
, ix + iy odd

ūi,i+ŷ = (−1)ix

(−te−2iφ 0
0 te2iφ

)
, ix + iy even

ūi,i+x̂+ŷ = ūi,i−x̂+ŷ =
(

0 (γ1 − iγ2)e−2iφ

(γ1 + iγ2)e2iφ 0

)
, ix + iy even

ūi,i+x̂+ŷ = ūi,i−x̂+ŷ =
(

0 (−γ1 + iγ2)e4iφ

(−γ1 − iγ2)e−4iφ 0

)
, ix + iy odd. (2.11)

As in the previous gauge, the π -flux phase is obtained when φ = π/4 while the staggered-flux phase corresponds to general φ.

III. CONTINUUM THEORY FOR HIGGS TRANSITION
FROM SU(2) TO Z2

A. π-flux state with SO(5) symmetry

We begin by working out the continuum SU(2) gauge
theory with the two-flavor massless Dirac fermion from the
mean-field ansatz for the π -flux phase, using the Majorana
gauge given in Eq. (2.11). In this gauge, we replace the Nambu

spinor in Eq. (2.2) by the matrix operator

Xi =
(

fi↑ − f †
i↓

fi↓ f †
i↑

)
. (3.1)

The spinon SU(2) gauge symmetry of Eq. (2.6) now acts on
Xi as

SU(2)g : Xi → XiU
†
g,i. (3.2)
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kx

ky

εk

FIG. 4. Plot of the dispersion, εk, of the fermionic spinons of the
Z2 spin liquid Z2Azz13. The eigenvalues of the spinon Hamiltonian
are ±εk. All gauge invariant observables are invariant under the
square lattice space group, although the spinon dispersion is not. The
plot is of Eq. (2.10) for t = 1.118, φ = 0.464, γ1 = 0.5, γ2 = 0.

The physical spin symmetry acts on Xi on the left:

SU(2)s : Xi → UsXi. (3.3)

We write the Bogoliubov Hamiltonian Eq. (2.3) as

HMF =
∑
〈i j〉

[iαi jTr(X †
i X j ) + βa

i jTr(σ aX †
i X j )

+ iγi jTr(σ aX †
i σ aX j )]. (3.4)

The correspondence with the notation in Eq. (2.3) is

ui j = iαi jτ
0 + βa

i jτ
a. (3.5)

The additional γi j hoppings involve projective realizations
of the spin rotation symmetry and will not be relevant. The
degrees of freedom in this Hamiltonian can be represented by
four Majorana fermions,

Xi = 1√
2

(χ0 + iχaσ
a). (3.6)

The SU(2)-invariant π -flux state comes from the hoppings
βa = 0 and

αi j = −α ji αi+x̂,i = 2t αi+ŷ,i = (−1)ix 2t . (3.7)

The low-energy behavior of this mean-field ansatz is de-
scribed by an SU(2) gauge theory with an emergent SO(5)
symmetry. To work out the dispersion relation of this Hamil-
tonian, we increase our unit cell by one lattice site in the
x direction and so χ acquires an additional sublattice index
m = A, B. Note that this unit cell differs slightly from the one
used in the staggered flux gauge. In momentum space, we then
have

H =
∑

k

χT
−kH (k)χk,

H (k) = −2t[sin(ky)ρz + sin(kx )ρx]. (3.8)

ρ i are Pauli operators acting on the sublattice space, m = A, B.
This Hamiltonian is diagonal in the 0, a indices in Eq. (3.6),
and the gauge was chosen to have this feature. The Hamil-
tonian in Eq. (3.8) has Dirac points at ky = 0, π , kx = 0.
Labelling these Dirac points by another index v = 1, 2 and
expanding around these two points, we decompose our Majo-
rana operator as

χm,i ∼ ρxχm,v=1(x) + (−1)iyχm,v=2(x). (3.9)

With this, the Hamiltonian reduces to

H ≈ 2it
∑
v=1,2

χT
v (ρx∂x − ρz∂y)χv, (3.10)

with the sublattice and 0, a indices implicit. This gives the
continuum Lagrangian

LMF = 2it χ̄vγ
μ∂μχv (3.11)

where γ 0 = ρy, γ x = iρz, γ y = iρx, and χ̄ ≡ χT γ 0. Here
we have chosen to express LMF in the Minkowski metric
(+,−,−); we ultimately move to the Euclidean metric below
to perform calculations.

We now define the 4 × 2 matrix operator

Xα,v;β = 1√
2

(
χ0,vδαβ + iχa,vσ

a
αβ

)
(3.12)

and X̄ = X †γ 0, where the sublattice/Dirac index m is left
implicit. This lets us write our Lagrangian as

LMF = iTr(X̄γ μ∂μX ), (3.13)

where we set t = 1/2 from now on. In this form, the Hamil-
tonian describes eight massless Majorana fermions (these are
two-component ‘relativistic’ Majorana fermions with an ad-
ditional sublattice index). The SU(2) gauge symmetry acts on
the right index [β in Eq. (3.12)] of X , and the gradient in LMF

must be replaced by the appropriate covariant gradient when
the gauge field is included. Global spin rotations act of the
left index [α in Eq. (3.12)] of X , and global valley rotations
act of the v index. These global rotations combine to yield an

A B

A B

FIG. 5. Shown are the leading-order perturbations that away
from the SU(2) π -flux state, in the Majorana gauge given by
Eq. (2.11). Note that the unit cell, with sublattice sites A and B,
differs from the gauge illustrated in Fig. 3. (Left) The perturbation
that shifts the π -flux state to the staggered flux state, with hoppings
proportional to τ z. Thickness of the line denotes strength (weaker
in the y direction) and solid/dashed indicates positive/negative sign.
(Right) The dxy pairing that breaks the U(1) gauge symmetry to Z2,
with pairing γ1τ

y − γ2τ
x on solid lines and γ1τ

x + γ2τ
y on dashed

lines.
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emergent, low energy Sp(4)/Z2 ≡ SO(5) global symmetry in
the π -flux phase [27,39].

In the following subsections, we derive the continuum form
of the perturbations given in Eq. (2.11), which break the
π -flux state down to either the staggered flux state or the
Z2Azz13 spin liquid. We do so by rewriting these perturba-
tions in terms of the low-energy modes given in Eq. (3.9) and
keeping only the lowest order gradient terms. These perturba-
tions are coupled to adjoint Higgs fields, and the transition of
the π -flux state to either the staggered flux state or Z2Azz13
spin liquid is obtained by condensing the corresponding Higgs
fields. An alternative derivation of these continuum pertur-
bations based on symmetry fractionalization is provided in
Appendix A and agrees with the following analysis.

B. From π flux to staggered flux

We obtain the continuum version of the perturbations to
the staggered flux phase by expanding the mean field param-

eters ūi j defined in Eq. (2.11) in powers of φ = π/4 + δφ.
We subsequently employ Eq. (3.5), which in turn yields
additional hopping parameters to the Hamiltonian of the
form

βz
i,i+x̂ = −4δφ(−1)ix+iy , βz

i,i+ŷ = 2δφ(−1)iy . (3.14)

These terms are illustrated in Fig. 5. If we look at the com-
ponents of the Majorana fermions [as defined in Eq. (3.6),
with (0, a), a = x, y, z], we see that these new terms introduce
hopping between the 0 ↔ z and x ↔ y Majorana fermions.
For simplicity, we focus on the 0 ↔ z hoppings, as the x ↔ y
hoppings will be identical. We start with the hoppings in
the x direction, expand our Majorana operators in terms of
low-energy modes, and keep only the lowest-order gradient
terms. As in Eq. (3.12), the two indices on χ correspond to
(0, x, y, z) and valley, respectively, with the sublattice index
implicit.

δH = −4δφ
∑

i

[
χT

0,1(xi )ρ
x + (−1)iyχT

0,2(xi )
]
(−1)iyρx[ρxχz,1(xi) + (−1)iyχz,2(xi )]

+ 2δφ
∑

i

[
χT

0,1(xi )ρ
x + (−1)iyχT

0,2(xi )
]
(−1)iy (ρx − iρy)[ρxχz,1(xi+x̂) + (−1)iyχz,2(xi+x̂)]

+ 2δφ
∑

i

[
χT

0,1(xi )ρ
x + (−1)iyχT

0,2(xi )
]
(−1)iy (ρx + iρy)[ρxχz,1(xi−x̂) + (−1)iyχz,2(xi−x̂)]

≈ 2δφ

∫
d2x

[
χT

0,1ρ
z∂xχz,2 − χT

0,2ρ
z∂xχz,1

]
⇒ δL = −2iδφTr(σ zX̄μyγ y∂xX ) (3.15)

In our final term, we have reintroduced the x ↔ y hoppings. For the hoppings in the y direction,

δH = 2δφ
∑

i

[
χT

0,1(xi)ρ
x + (−1)iyχT

0,2(xi )
]
(−1)iy [ρxχz,1(xi+ŷ) − (−1)iyχz,2(xi+ŷ)]

− 2δφ
∑

i

[
χT

0,1(xi )ρ
x + (−1)iyχT

0,2(xi)
]
(−1)iy [ρxχz,1(xi−ŷ) − (−1)iyχz,2(xi−ŷ)]

≈ −2δφ

∫
d2x

[
χT

0,1ρ
x∂yχz,2 − χT

0,2ρ
x∂yχz,1

]
⇒ δL = −2iδφTr(σ zX̄μyγ x∂yX ). (3.16)

Note that here and in Eq. (3.15) the Pauli matrix σ z is acted on by the SU(2) gauge symmetry of the π -flux phase. Gauge
invariance requires there exist nearly identical continuum model bilinears containing instead σ x and σ y Pauli matrices. It is
therefore useful to express the perturbation in a gauge independent fashion using an adjoint Higgs field �a

3, where a = x, y, z is
a SU(2) gauge index:

δL = �a
3Tr[σ aX̄μy(γ yi∂x + γ xi∂y)X ]. (3.17)

(Our choice of subscript “3” will be clear shortly.) This Higgs field mediates the onset of the staggered flux phase, and in this
present gauge we have the identification

�z
3 ∼ δφ. (3.18)

Condensing the Higgs field with 〈�a
3〉 leads to a transition from the SU(2) π -flux state to the U(1) staggered flux state. For

concreteness, we continue to work in the gauge where �a
3 condenses in the z direction, as implied by Eqs. (3.15) and (3.16).
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C. From π flux to Z2Azz13

We now evaluate the effects of a nonzero γ1,2 in the π -flux phase, using the Majorana gauge as given in Eq. (2.11). We first
consider turning on the perturbation

ūi,i+x̂+ŷ = ūi,i−x̂+ŷ = γ1τ
y − γ2τ

x, ix + iy even. (3.19)

Recall that in the Majorana basis, terms proportional to τ x (τ y) correspond to hoppings between the 0 ↔ x(y) and z ↔ y(x)
Majorana fermions. Focusing on the γ1 term, we expand in low-energy modes

δH = γ1

∑
i

[
χT

0,1(xi )ρ
x + (−1)iyχT

0,2(xi )
]
[ρx + (−1)iyρy][ρxχy,1(xi+x̂+ŷ) − (−1)iyχy,2(xi+x̂+ŷ)]

≈ γ1

∑
i

χT
0,1(xi )ρ

xχy,1(xi ) − χT
0,2(xi )ρ

xχy,2(xi ) + χT
0,1(xi )ρ

zχy,2(xi) + χT
0,2(xi )ρ

zχy,1(xi)

⇒ δL = γ1Tr[σ yX̄ (μzγ x + μxγ y)X ]. (3.20)

The perturbation is identical for the γ2 term but with
σ y ⇒ −σ x.

As in the previous section, the addition of the hopping pa-
rameters of Eq. (3.19) can be formulated in a gauge-invariant
fashion by coupling the bilinear above to an adjoint Higgs
field �a

1̄
, a = x, y, z (the bar on the “1” will be apparent be-

low). In particular, when a term �a
1̄Tr[σ aX̄ (μzγ x + μxγ y)X ]

is added to the Lagrangian, we reproduce the continuum ver-
sion of Eq. (3.19) we just derived when �a

1̄ condenses as〈
�x

1̄

〉 ∼ γ2,
〈
�

y
1̄

〉 ∼ γ1. (3.21)

We perform the same analysis for the second term propor-
tional to γ1,2:

ui,i+x̂+ŷ = ui,i−x̂+ŷ = γ1τ
x + γ2τ

y, ix + iy odd. (3.22)

The continuum derivation of this is essentially identical to as
before, yielding

δL = Tr[(γ1σ
x + γ2σ

y)X̄ (μzγ x − μxγ y)X ], (3.23)

prompting us to introduce �a
2̄Tr[σ aX̄ (μzγ x − μxγ y)X ]. The

continuum version of Eq. (3.19) is obtained through the con-
densation �a

2̄ such that 〈�a
2̄〉 = γ1δax + γ2δay.

D. Majorana-Higgs Lagrangian

We now combine the results of Secs. III A, III B, and III C
to obtain the low energy Lagrangian for the Majorana field X ,
and three real, adjoint Higgs scalars, which we now identify
as �a

1, �a
2, �a

3 (�a
1,2 are rotations of �a

1̄,2̄
in the 1,2 plane). We

do not explicitly write out the coupling to the SU(2) gauge
field in this subsection, which can be included by the usual
requirements of minimal coupling.

The Lagrangian is

L = iTr(X̄γ μ∂μX )+�a
1Tr(σ aX̄μzγ xX )+�a

2Tr(σ aX̄μxγ yX )

+ �a
3Tr(σ aX̄μy(γ yi∂x + γ xi∂y)X ) + V (�). (3.24)

The staggered flux state is obtained when 〈�3〉 ∝ (0, 0, δφ).
The Z2Azz13 state follows from 〈�1〉 ∝ (γ1 − γ2, γ1 + γ2, 0)
and 〈�2〉 ∝ (−γ1 − γ2, γ1 − γ2, 0).

The Higgs potential V (�) arises from integrating out the
high energy spinon degrees of freedom. We deduce its form by
carefully considering the symmetry properties of the theory,
which are described in some detail in Appendix A. Here, we

note that the theory should respect time reversal and the lattice
symmetries,

Tx : (ix, iy) �→ (ix + 1, iy), Ty : (ix, iy) �→ (ix, iy + 1),

Px : (ix, iy) �→ (−ix, iy), Py : (ix, iy) �→ (ix,−iy),

Rπ/2 : (ix, iy) �→ (−iy, ix ), (3.25)

and we summarize the transformations of the Higgs fields
here:

Tx Ty Px Py T Rπ/2

�a
1 − + − − − −�a

2

�a
2 + − − − − −�a

1

�a
3 − − + + + −

From this, we can deduce that the following gauge-
invariant terms are allowed to quartic order in the Higgs
potential

V (�) = s
(
�a

1�
a
1 + �a

2�
a
2

) + s̃ �a
3�

a
3 + w εabc �a

1�
b
2�

c
3

+ u
(
�a

1�
a
1 + �a

2�
a
2

)2 + ũ
(
�a

3�
a
3

)2 + v1
(
�a

1�
a
2

)2

+ v2(�a
1�

a
1)

(
�b

2�
b
2

) + v3
[(

�a
1�

a
3

)2 + (
�a

2�
a
3

)2]
+ v4

(
�a

1�
a
1 + �a

2�
a
2

)(
�b

3�
b
3

)
, (3.26)

where εabc is the antisymmetric unit tensor.
An important feature of V (�) is the cubic term propor-

tional to w. This term implies that if any two of the Higgs
fields are condensed, then so must the third. It also shows that
even if we were only considering the transition from the SU(2)
π -flux phase to the gapless Z2 spin liquid by the condensation
of �a

1,2, we would be forced to include �a
3 in our theory and

hence the additional possibility of a U(1) staggered flux phase.
The symmetry transformations show that �a

3 is the unique
adjoint Higgs field that can be made from the tensor product of
the Higgs fields needed to describe the gapless Z2 spin liquid,
�a

1 and �a
2: so the staggered flux phase is a natural partner of

this gapless Z2 spin liquid and the π -flux phase.
We can perform a mean-field minimization of Eq. (3.26),

and typical results are shown in Fig. 2. There are three phases

045110-7



SHACKLETON, THOMSON, AND SACHDEV PHYSICAL REVIEW B 104, 045110 (2021)

as a function of the tuning parameters s and s̃, which corre-
spond to exactly those obtained in the lattice mean-field theory
described in Sec. II. The presence of the w term implies that
there is a first order transition line near the point where the
three phases meet [43], as shown in Fig. 2. We summarize and
re-express the lattice theory results in terms of the continuum
model parameters below.

1. SU(2) π-flux phase

Here, there is no Higgs condensate 〈�a
1,2〉 = 0, 〈�a

3〉 = 0,
and the system lies in the red region on the top right of Fig. 2:
the SU(2) π -flux phase. The continuum model possesses an
SU(2) gauge symmetry, along with the corresponding gauge
bosons. The theory is believed to confine to the Néel or VBS
phase—as discussed in Secs. I and VI, we view the Néel phase
to be more likely.

2. U(1) Staggered flux phase

This state as 〈�a
3〉 nonzero, while 〈�a

1,2〉 = 0, resulting in
the U(1) staggered flux phase represented on the top left of
Fig. 2. Making contact with the lattice ansatz, we have〈

�a
3

〉 ∝ (0, 0, φ − π/4) �= 0. (3.27)

Again, the theory has a continuous unbroken gauge degree of
freedom, now with only a U(1) symmetry. There is a single
gauge boson, which we nevertheless assume triggers confine-
ment. As argued, the most likely fate of the theory is the VBS
state, but we cannot preclude the Néel phase.

3. Z2 spin liquid Z2Azz13

The Z2 spin liquid Z2Azz13 corresponds to a Higgs con-
densate satisfying 〈�a

1,2〉 �= 0; it is shown in the lower half of
the phase diagram of Fig. 2. The symmetry transformations
imply that �a

1 and �a
2 have the same mass, so only a single

tuning parameter s is required to make them condense from
the SU(2) π -flux phase. From the symmetry transformations,
we also see that the absence of a broken symmetry requires
that the gauge-invariant bilinears obey〈

�a
1�

a
1

〉 = 〈
�a

2�
a
2

〉
> 0,

〈
�a

1�
a
2

〉 = 0. (3.28)

Such saddle points are obtained from the Higgs potential for a
range of v1 positive and v2 negative. Moreover, such a saddle
point is indeed present in the lattice ansatz of the previous
section where

〈�1a〉 ∝ (−γ1−γ2, γ1−γ2, 0),

〈�2a〉 ∝ (γ1 − γ2, γ1+γ2, 0). (3.29)

We note that this implies 〈�1〉 ⊥ 〈�2〉 and |〈�1〉| = |〈�2〉|,
where we use a vector shorthand for the indices a = x, y, z
of the Higgs fields. By minimizing the potential V (�) in
Eq. (3.26), we see that this Z2 spin liquid also implies the
condensation of the remaining Higgs field:〈

�a
3

〉 ∝ w εabc
〈
�b

1

〉〈
�c

2

〉
. (3.30)

It follows that s̃ can change sign within this phase without any
phase transition.

E. Visons

The Z2 spin liquid is obtained from the theory in
Eq. (3.24) + SU(2) gauge fields [which is Eq. (4.2) below]
by condensing �a

1,2. This spin liquid has gapless fermionic
spinon excitations, whose low energy dispersion can also be
determined from the continuum theory. However, as in all Z2

spin liquids, there must also be vison excitations, which are
mutual semions with respect to the spinons. In the theory
in Eq. (4.2), the vison is a finite energy excitation associ-
ated with vortexlike saddle point in which the Higgs fields
�a

1,2 undergo a topologically nontrivial SO(3) rotation, asso-
ciated with π1(SO(3))= Z2, around the core of the vortex:
see Ref. [44] for an explicit solution in a theory without the
fermionic spinons. Given that the vison appears in a lattice
model with a background spinon density of one spinon per
site, we expect the vison transforms projectively under transla-
tional symmetries with TxTy = −TyTx, where Tα is translation
by one lattice spacing in the α direction [23,45–48]. For the
case of gapped spinons, this fact now has a modern interpreta-
tion in the theory of symmetry fractionalization in topological
phases [49–53]. We expect that a similar result applies in the
present gapless spinon case, but this has not been explicitly
established. For the case of gapped spinons, the vison projec-
tive transformation can be derived from a parent U(1) gauge
theory (which is Higgsed down to Z2) in which the monopoles
carry Berry phases [45,46,48]. Such monopole Berry phases
are in turn related to a SO(5) Wess-Zumino-Witten term in an
effective theory the Néel and VBS order parameters [54,55].
Notably, this SO(5) WZW term is also linked to an anomaly
of the Majorana theory in Eq. (4.2) [27]. It would therefore be
interesting to establish TxTy = −TyTx for gapped visons in the
presence of gapless spinons starting directly from Eq. (4.2)
and condensing the Higgs fields: We leave such an analysis
for future work.

IV. RENORMALIZED PERTURBATION EXPANSION
FOR THE CRITICAL SU(2) GAUGE THEORY

This section will present an analysis of the transition ob-
tained by tuning the Higgs ‘mass’ s in Eq. (3.26) across
a quantum critical point at s = sc, for s̃ > 0 in Fig. 2, be-
tween the SU(2) and Z2 spin liquids. We have 〈�a

1,2,3〉 = 0
for s > sc, yielding the π -flux spin liquid. For s < sc, we
have 〈�a

1,2〉 �= 0 yielding the Z2 spin liquid Z2Azz13. As we
noted below Eq. (3.29), 〈�a

3〉 will also be nonzero once both
〈�a

1,2〉 are nonzero. However, as 〈�a
3〉 is quadratic in 〈�a

1,2〉
[see Eq. (3.30)], it is not a primary order parameter for the
transition. So we can entirely neglect �a

3 in the analysis of the
criticality in the present section.

It is also convenient to write the theory in terms of two
flavors of complex Dirac fermions which also carry a funda-
mental SU(2) gauge charge, ψα,v; here α is the SU(2) gauge
index, v = 1, 2 is the valley index, and the Dirac/sublattice
index is suppressed. The global SU(2) spin symmetry is not
manifest in this formalism, unlike in the earlier Majorana for-
malism. Since the Lagrangian in Eq. (3.24) does not contain
terms that act on the physical SU(2) spin, our Lagrangian nev-
ertheless has a simple form in terms of these Dirac fermions,
although a more careful analysis will be required to calculate
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the behavior of the Néel order parameter, which does involve
the physical SU(2) spin. Explicitly, the relationship between
the Dirac and Majorana fermions is

ψα,v = iσ y
α,βX1,v;β . (4.1)

Applying this change of variables to Eq. (3.24), and including
the SU(2) gauge field Aa

μ, we obtain the Lagrangian for ψ and
the �a

1,2 Higgs fields

L = Lψ + L� + L�ψ

Lψ = i
∑

v

ψ̄vγ
μ
(
∂μ − iAa

μσ a
)
ψv.

L�

Nf
= K

2

[(
∂x�

a
1 − 2εabcAb

x�
c
1

)2 + (
∂y�

a
2 − 2εabcAb

y�
c
2

)2]
+ s

2

(
�a

1�
a
1 + �a

2�
a
2

) + u
(
�a

1�
a
1 + �a

2�
a
2

)2

+ v1
(
�a

1�
a
2

)2 + v2
(
�a

1�
a
1

)(
�b

2�
b
2

)
L�ψ = λ

(
�a

1 ψ̄μzγ xσ aψ + �a
2 ψ̄μxγ yσ aψ

)
. (4.2)

We will henceforth work in Euclidean signature, with (γ μ)2 =
1 for all μ. This Lagrangian includes an important new term
not present in Eq. (3.24): a bare spatial gradient term for the
Higgs field proportional to the coupling K (we will define Nf

shortly). This coupling is allowed by symmetry and will turn
out to be ‘dangerously irrelevant,’ i.e., under renormalization,
K flows to zero, but it cannot be set to zero at the outset be-
cause of some singular effects that we will describe below. In
contrast, the quartic couplings u, v1,2 are genuinely irrelevant
at the critical point and will not be considered further.

The theory L is invariant under SU(2) gauge, SU(2) spin
rotation, time-reversal, and space group transformations, as
it must be, because these are symmetries of the underly-
ing Hamiltonian and its parton representation. However, the
Yukawa coupling λ breaks both the emergent Lorentz and
SO(5) symmetries of the fermion kinetic term. As we will
show below, λ is not an irrelevant perturbation, and so the
absence of these emergent symmetries will be apparent in the
critical correlation functions.

We will analyze the critical properties of Eq. (4.2) by the
1/Nf expansion used in earlier treatments of Dirac fermions
coupled to scalar fields by Yukawa couplings which break
relativistic invariance [56]. For this purpose, we will endow

k

k + p

p

Φa
1 Φb

1

k

k + p

p

Aμ Aν

FIG. 6. The leading order effective propagators for the Higgs
(left) and gauge field (right) are generated by the one-loop contri-
butions from N fermions.

the fermions with an additional flavor index (not shown ex-
plicitly) which ranges over Nf values. Combined with the
v index, there are a total of 2Nf flavors and two colors of
two-component Dirac fermions. The physical case of interest
to us is Nf = 1.

As in Ref. [56], we will compute the renormalization
constants of the theory L in a 1/Nf expansion. The most
important of these will be the renormalization of the Fermi
velocity, which has been implicitly set to unity above: This is
nonzero because of the lack of the Lorentz invariance in the
Yukawa coupling. The renormalization of the Fermi velocity
in turn defines a dynamic critical exponent z: We will compute
z to order 1/Nf and find it to be a universal number at this
order. Next, we shall examine the renormalization of the field
scales. As in Ref. [56], a convenient choice, as we explain
below, is to renormalize the boson field scale � so that the
Yukawa coupling λ = 1; we will assume λ = 1 below. As
usual, the renormalization of the fermion field Zψ is deter-
mined from the fermion self energy, which then determines
a fermion anomalous dimension ηψ . Here we will find an
unusual phenomenon, which is one of our main results: The
value of ηψ is not universal at order 1/Nf but has a logarithmic
dependence upon the irrelevant coupling K . Finally, we will
also compute the renormalization of the fermion bilinears
associated with the Néel and VBS order parameters: These
are not equal to each other because the SO(5) symmetry is
explicitly broken.

A. Boson propagators

The first step in the large Nf expansion is to integrate out
the large number of fermions ψ , which allows us to determine
the propagators of the bosons: the Higgs fields and the gauge
fields. To leading order in 1/Nf , we have to evaluate the
diagrams in Fig. 6, and this leads to an effective quadratic
action of the following form

Sb

Nf
=

∫
k

1

2

(
s + Kk2

x + �1(k)
)
�a

1(k)�a
1(−k) + 1

2

(
s + Kk2

y + �2(k)
)
�a

2(k)�a
2(−k) + �A(k)

2

(
δμν − kμkν

k2

)
Aa

μ(k)Aa
ν (−k).

We work in the Euclidean time signature, and k is a 3-momentum.
We first calculate the one-loop corrections to the Higgs propagators. The correction to the �1 propagator is shown in the first

diagram in Fig. 6 and is

�1(k)δab = λ2Tr
∫

d3 p

(2π )3
[μzγ xσ a]

[
/p

p2

][
μzγ xσ b

][ /p + /k

(k + p)2

]

= −8λ2δab

∫
d3 p

(2π )3

p0(p0 + k0) − px(px + kx ) + py(py + ky)

p2(k + p)2
= λ2δab

4

(
k2

0 + k2
y

)
√

k2
· (4.3)
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k

ψ ψ̄

k

ψ ψ̄

FIG. 7. The two leading order contributions to the fermion self-
energy, arising from Higgs (left) and gauge boson (right) couplings.
To leading order in 1/Nf , both the Higgs and gauge boson propaga-
tors are generated by the fermions.

We have omitted a constant term, which will be tuned to zero
at the critical point.

The correction to the �2 propagator is identical to the �1

correction, with kx ↔ ky.

�2(k) = λ2

4

(
k2

0 + k2
x

)
√

k2
(4.4)

The reader should now notice some key features. As in
Ref. [56], the overall scaling in momentum is �1,2 ∼ |k|.
So, this fermion-induced contribution to the � propagators
is more important at low momenta than the k2 terms which
would be present in the bare theory. In general, the bare boson
k2 terms are irrelevant, and this is why we choose to set the
field scale of � with the renormalization condition λ = 1.
However, unlike Ref. [56], we will see below in some detail
that we cannot entirely ignore the bare k2 term. The expression
for �1 (�2) is not an increasing function of kx (ky) when it
is larger than the other momentum components, and this will
lead to infrared singularities at first order in 1/Nf . Specifically,
the integral over the propagator 1/�1 (1/�2) has an infrared
divergence in the k0, ky (k0, kx) plane. Consequently, we do
need to include the dangerously irrelevant Kk2

x (Kk2
y ) term

in the bare action for �a
1 (�a

2), as we have anticipated in
Eqs. (4.2) and (4.3).

The O(Nf ) propagator for the gauge field is obtained from

�A(k)(k2δμδν − kμkν )

= −Tr
∫

d3 p

(2π )3
γ μ

[
/p

p2

]
γ ν

[
(/k + /p)

(k + p)2

]
= 1

4
√

k2
(k2δμδν − kμkν ) + O(k2). (4.5)

This is relativistically invariant, as expected.

B. Fermion self-energy

We first calculate the one-loop corrections to the fermion
self-energy, which will determine the anomalous dimension
of the fermion operators as well as the dynamical critical
exponent z. Although the anomalous dimension of the fermion
is not a gauge-invariant observable, it will be needed to calcu-
late the critical behavior of the gauge-invariant SO(5) order
parameter. The three contributions to the fermion self-energy,
as shown in Fig. 7, come from the two Higgs bosons and the
gauge field, � = �1 + �2 + �A.

�1(k) = 3

Nf

∫
d3 p

(2π )3
γ x

[
/p + /k

(p + k)2

]
γ x 1

�1(p) + K p2
x

(4.6)

�2(k) = 3

Nf

∫
d3 p

(2π )3
γ y

[
/p + /k

(p + k)2

]
γ y 1

�2(p) + K p2
y

(4.7)

�A(k) = 3

Nf

∫
d3 p

(2π )3
γ μ

[
/p + /k

(p + k)2

]
γ ν

ημν − (1 − ξ ) pμ pν

p2

�A(p)p2

(4.8)

We have introduced ξ as a gauge-fixing parameter to obtain
the gauge boson propagator.

Focusing on the Higgs corrections [Eqs. (4.6) and (4.7)],
we analyze the behavior at small external momenta ki. Note
that the self-energy integrals are fully regulated by the pres-
ence of K and a nonzero external momenta. Since �1 (�2) is
invariant under ky ↔ k0 (kx ↔ k0), and the two transform into
each other under a 90 degree spatial rotation, there are two
distinct types of contributions for small external momenta.
The first is proportional to kxγ

x for �1, and kyγ
y for �2. The

second type includes all other possible choices of momenta,
such as k0γ

0.
As we shall justify below and in Appendix B, we can focus

on the regime |px| � |p0|, |py| for graphs with a �1 propa-
gator. In this limit, we can approximate the �1 propagator
as

4|px|
p2

0 + p2
y + 4K|px|3 . (4.9)

At K = 0, this propagator has an infrared divergence when
integrated over the p0,y plane, so K is needed an infrared regu-
lator. With this, we extract the γ x correction to the self-energy
from the �1 propagator by considering the k0 = ky = 0
limit:

γ x�1(kx ) = 12

Nf

∫ � d3 p

(2π )3

(px + kx )

(px + kx )2 + p2
0 + p2

y

× |px|
p2

0 + p2
y + 4K|px|3 · (4.10)

We have indicated a cutoff � to regulate the theory at large
momenta, and this is needed in conformal gauge theories in
2+1 dimensions. However, with our inclusion of the irrelevant
K to control the infrared singularity, we find that the integrand
vanishes faster at large momenta. It is not difficult to see that
for K �= 0 Eq. (4.10) is finite as � → ∞, and we will take
this limit in the present section. The theory with a finite �

will be examined in Appendix B in a renormalization group
computation.

We will now show that Eq. (4.10) has a leading kx ln2(kx )
contribution. One factor of ln(kx ) is the usual one: It follows
from the fact that at K = 0 the integrand divided by kx is
a homogeneous function of momenta of dimension −3. The
other comes from the infrared divergence regulated by K
noted below Eq. (4.9).

Extracting the coefficient of the kx ln2(kx ) contribution re-
quires a number of approximations. To understand the values
of p that dominate the integral in Eq. (4.10), it is useful to
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perform the integral over p0 and py:

γ x�1(kx )= 12

Nf

∫
dpx

8π2

|px|(px+kx ) ln[(px + kx )2/(4K|px|3)]

(px+kx )2−4K|px|3 .

(4.11)

By examining the form of the integrals in Eqs. (4.10) and
(4.11), one can verify that the dominant term at small kx and K
is proportional to kx ln2(Kkx ) and arises from the integration
regime

[K|px|3]1/2 � [
p2

0 + p2
y

]1/2 � |px| � 1

K
. (4.12)

The scale K appears both as an ultraviolet cutoff and in defin-
ing the infrared bound. For future calculations, this integration
regime will prove to be the relevant one in isolating similar
log2 contributions in other diagrams, although in principle one
must still carry out an explicit calculation like in Eq. (4.11)
to verify that no other integration regimes give comparable
contributions. We provide these calculations in Appendix C
in addition to numerical evaluations of the one-loop integrals
which confirm the validity of our approximations and simply
evaluate the one-loop integrals in the Eq. (4.12) limit in the
main text.

We can extract the coefficient of this log2 term by perform-
ing the integral in this regime,

γ x�1(kx ) ≈ 12

Nf

∫ 1/K

−1/K

dpx

2π

|px|
(px + kx )

×
∫ |px |

(K|px |3 )1/2

dpydp0

4π2

1

p2
0 + p2

y

≈ 12

Nf

∫ 1/K

−1/K

dpx

2π

|px|
(px + kx )

1

4π
ln(1/(K|px|))

≈ − 12

Nf

kx

8π2
[ln(Kkx )]2. (4.13)

Another discussion of the origin of the kx ln2(kx ) is presented
in Appendix B using a renormalization group analysis.

We now calculate the form of the second type of cor-
rections using the limits in Eq. (4.12), evaluating the �1

contribution to the self-energy with external momentum k0 for
concreteness.

γ 0�1(k0) ≈ −12k0

Nf

∫ 1/K

−1/K

dpx

2π

1

|px|
∫ |px |

(K|px |3 )1/2

dpydp0

(2π )2

1

p2
0 + p2

y

≈ −12k0

Nf

∫ 1/K

−1/K

dpx

2π

1

|px|
1

4π
ln (1/(K|px|))

≈ − 12

Nf

k0

8π2
[ln (Kk0)]2 (4.14)

Combining the corrections from both Higgs propagators, we
obtain the full expression for the self-energy for small external
momenta at log2 order,

�(k) ≈ − 3

π2Nf
[k0 ln2(Kk0)γ 0 + kx ln2(Kkx )γ x

+ ky ln2(Kky)γ y]. (4.15)

In principle, the dependence on external momenta inside the
logarithms could be more complicated for general k, i.e.,

�(k)γ 0 ∼ k0 ln2(K f (k0, kx, ky)), but since we have verified
that f (k0, 0, 0) = k0, corrections to this are subleading.

These divergent corrections are absorbed into the renor-
malization of the fermion field, ψ = √

ZψψR, with

Zψ = 1 − 3

π2Nf
ln2(Kμ), (4.16)

where we have renormalized the theory at some momentum
scale μ. This counterterm only cures the divergence at log2

order, since the renormalized self-energy at some other mo-
mentum scale k will scale as

ln2(Kμ) − ln2(Kk) = ln(μ/k) ln(K2kμ). (4.17)

This, along with the RG analysis in Appendix B, indicates that
the subleading single-logarithm corrections will generically
give nonuniversal behavior. However, these log2 corrections
to the self-energy are Lorentz invariant and do not affect
the renormalization of the dynamical critical exponent z.
Therefore, the subleading single-logarithm correction to the
velocity anisotropy will lead to a universal correction to the
dynamical critical exponent. To extract the subleading correc-
tion to z using K and the external momenta as a regulator, we
start with the expression

∂�

∂k0
γ 0 − ∂�

∂kx
γ x

= − 12

Nf

∫
d3 p

(2π )3

2(py + ky)2

(p + k)4

|p|
4K p2

y|p| + p2
0 + p2

y

.

(4.18)

To leading order in k, we set k = 0 inside the integrand and
simply use it as an IR cutoff, which gives

∂�

∂k0
γ 0 − ∂�

∂kx
γ x ≈ 6

Nf π2
ln(Kk). (4.19)

This result can be obtained analytically by approximating the
integration region k � |px| � 1/K and can be verified by a
numerical evaluation of Eq. (4.18). This implies a renormal-
ization of the Fermi velocity, vF = ZvvF,R

Zv = 1 + 6

π2Nf
ln (Kμ). (4.20)

The logarithmic derivative with respect to 1/K determines the
renormalization of the dynamical critical exponent,

z = 1 + 6

π2Nf
. (4.21)

The one-loop calculation defined in Eq. (4.18) is actually well
defined when K = 0 and can be regulated via more standard
approaches, such as dimensional regularization, as shown in
Appendix D. The same value of z is also obtained in a renor-
malization group computation in Appendix B.

C. SO(5) order parameter

In the absence of the Higgs fields, our theory possesses
an emergent SO(5) symmetry corresponding to rotations be-
tween Néel and VBS order parameters. This SO(5) symmetry
is broken by the critical Higgs fields, and as a result, the scal-
ing behavior of Néel and VBS order parameters will differ. In
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J

ψ

ψ̄

J

ψ

ψ̄

FIG. 8. The O(N−1
f ) vertex corrections which contribute to the

renormalization of the SO(5) order parameter. The order parameter
receives corrections at one-loop order from the Higgs fields (left)
and the gauge boson (center), although only the former gives a log2

correction. An additional two-loop O(N−1
f ) contribution (right) is

possible; we show in Appendix F that it does not contain any log2

divergences.

terms of Dirac fermions, the fermion bilinears corresponding
to the two-component VBS order parameter—determined by
the action of the square lattice symmetries on the bilinears—
may be written as

V i = ψ̄�iψ, �i = {μx, μz}. (4.22)

The three-component Néel order parameter has a less concise
expression in terms of Dirac fermions; this is due to the fact
that the Dirac fermion representation obfuscates the action
of the physical SU(2) spin rotation symmetry. In terms of
the Majorana field X , the order parameter is Tr(X̄μyσ aX ),
a = x, y, z. In order to calculate corrections to the Néel order
parameter, we focus on the σ z component, which happens to
be simply expressible in terms of a Dirac fermion bilinear:

Nz = ψ̄μyψ. (4.23)

Because the Higgs couplings preserve the physical SU(2)
spin rotation symmetry, the other components must have the
same corrections, and this has been confirmed by an explicit
calculation in terms of the Majorana fermions. To compute the
corrections to the scaling dimensions of these composite op-
erators, we couple the fermion bilinear ni = ψ̄μiψ to a source
field Ji and compute the O(N−1

f ) vertex corrections in Fig. 8.
Aside from the corrections coming from the renormalization
of the fermion self-energy, the O(N−1

f ) corrections that we
will be interested in come from one-loop corrections of the
Higgs fields with external momenta k1,2

μzσ aμiσ aμz

Nf

∫
d3 p

(2π )3
γ x /p − /k1

(p − k1)2

/p − /k2

(p − k2)2
γ x 1

�1(p)+K p2
x

+μxσ aμiσ aμx

Nf

∫
d3 p

(2π )3
γ y /p− /k1

(p − k1)2

/p − /k2

(p − k2)2
γ y 1

�2(p) + K p2
y

,

(4.24)
where the first and second terms arise from interactions with �a

1 and �a
2, respectively. The gauge field correction does not

break SO(5) symmetry and does not contribute to the renormalization at log2 order, so we will focus on the Higgs corrections.
Additionally, there is a possible two-loop diagram shown in Fig. 8 that contributes at O(N−1

f ), but we show explicitly in

Appendix F that these corrections also do not contribute to the renormalization at log2 order. At zero external momenta, the
log2 Higgs corrections to the VBS order parameter (μi = μx, μz) drops out entirely, leaving only Higgs corrections coming
from the fermion renormalization.

We focus on vertex corrections to the Néel order parameter (μi = μy). As is the case in the fermion self-energy, the spatial
anisotropy in the Higgs propagators gives rise to log2 divergences in their corrections to the SO(5) vertex. We isolate log2

divergences in the Higgs correction to the SO(5) order parameter by including an external momenta 2kx to the order parameter,
which is distributed symmetrically between the two fermion fields. We calculate this for the �1 propagator—approximating
the Higgs propagator as 4|px|/(p2

0 + p2
y + 4K|px|3) as in the previous section and taking the limit in Eq. (4.12), the one-loop

correction is
μzσ aμyσ aμz

Nf

∫
d3 p

(2π )3

p2
x − k2

x + p2
y + p2

0[
(px + kx )2 + p2

y + p2
0

][
(px − kx )2 + p2

y + p2
0

] 4|px|
p2

0 + p2
y + 4K|px|3

≈ −12μy

Nf

∫ 1/K

−1/K

dpx

2π

(
p2

x − k2
x

)|px|
(px + kx )2(px − kx )2

∫ |px |

(K|px |3 )1/2

dpydp0

4π2

1

p2
0 + p2

y

≈ −12μy

Nf

∫ 1/K

1/K

dpx

8π2

(
p2

x − k2
x

)|px|
(px + kx )2(px − kx )2

ln (1/(K|px|)) ≈ − 3μy

2Nf π2
ln2 (Kkx ). (4.25)

The �2 propagator gives an identical correction. Since the
external momenta only play the role of an IR cutoff to leading
order, we generalize this result to an arbitrary external mo-
mentum and obtain the composite operator renormalizations
[57]

ZVBS = 1 ZNéel = 1 + 3

Nf π2
ln2(Kμ). (4.26)

We can state these results in terms of the perturbative
corrections to the two-point correlator of the order parameters,
〈ψ̄�iψ (k)ψ̄� jψ (−k)〉, i.e., the corresponding susceptibili-

ties χVBS and χNéel; these combine the consequences of the
composite operator renormalizations in Eq. (4.26), and Zψ in
Eq. (4.16), to yield

χVBS(k) ∼ −|k|
(

Zψ

ZVBS

)2

= −|k|
[

1 − 6

Nf π2
ln2(K|k|)

]

χNéel(k) ∼ −|k|
(

Zψ

ZNéel

)2

= −|k|
[

1 − 12

Nf π2
ln2(K|k|)

]
.

(4.27)
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After a Fourier transform to real space, these correlators are

χVBS(r) ∼ 1

|r|4
[

1 − 6

Nf π2
ln2(|r|/K )

]
χNéel(r) ∼ 1

|r|4
[

1 − 12

Nf π2
ln2(|r|/K )

]
. (4.28)

The renormalization group analysis in Appendix B shows how
the above results may be renormalized to large r; we find

χVBS(r) ∼ 1

|r|a exp

(
− 6

Nf π2
ln2(|r|/K )

)
χNéel(r) ∼ 1

|r|b exp

(
− 12

Nf π2
ln2(|r|/K )

)
, (4.29)

where the exponents of the prefactors, a and b, are nonuniver-
sal numbers.

Leading logarithm-squared corrections have appeared ear-
lier in a few other problems in quantum many-body theory.
They appear in the theory of weakly disordered two-
dimensional metals with Coulomb interactions [58–60]. More
recently, log2 terms have also been found in computations of
the density of states of clean bilayer graphene with Coulomb
interactions [61,62]. Renormalization group analyses of these
cases [59,62] also yield an exponentiation similar to that in
Eq. (4.29).

As an aside, we note that the one-loop vertex corrections
to the bilinear ψ̄ψ , whose symmetry properties identify it as
the scalar spin chirality [63], have the same magnitude and
opposite sign as the Néel order parameter. Because of this, the
log2 divergence is in fact canceled by the fermion self-energy.
As shown in Appendix F, the two-loop corrections coming
from the Higgs fields vanish, meaning that correlations of the
scalar spin chirality should have power law decay at O(N−1

f ).
Since this power law decay is slower than the Néel and
VBS correlations, this may indicate proximity to a chiral spin
liquid.

V. TRANSITION FROM U(1) STAGGERED FLUX
TO GAPLESS Z2 SPIN LIQUID

This section discusses the critical U(1) gauge theory for
the transition between the U(1) staggered flux spin liquid and
the gapless Z2 spin liquid Z2Azz13 in Fig. 2. A similar theory
has been considered earlier [25] for the Néel-Z2 spin liquid
transition.

Both phases have the Higgs field 〈�a
3〉 �= 0. So let us fix

�a
3 = δaz�, with � a nonzero constant, which will turn into

a coupling constant in the low energy theory below. In this
situation, the SU(2) gauge symmetry is broken down to U(1),
and we need only consider a U(1) gauge theory with the U(1)
gauge field Aμ ≡ Az

μ. Also important is the consequence of
the w term in the Higgs potential Eq. (3.26):

V (�) = . . . + w �
(
�x

1�
y
2 − �

y
1�

x
2

) + . . . . (5.1)

Choosing a gauge with w � < 0, and diagonalizing the
quadratic form of the Higgs potential for �

x,y
1,2, we deduce that

we need only focus on a single low energy complex Higgs
field near the critical point

H = 1
2

(
�x

1 + �
y
2 + i

(
�

y
1 − �x

2

))
. (5.2)

It can now be checked that H transforms as a charge 2 Higgs
field under the unbroken U(1) gauge symmetry. Other linear
combinations of �

x,y
1,2 can be ignored for the critical theory.

We can now obtain the critical theory for the fermions ψ ,
the complex Higgs field H, and the U(1) gauge field Aμ from
Eq. (3.24):

Lsf = Lψ + LH + LHψ

Lψ = i
∑

v

ψ̄vγ
μDμψv + �ψ̄μyσ z(γ yDx + γ xDy)ψ.

LH
Nf

= s|H|2 + u|H|4

LHψ = λ(Hψ̄ (μzγ x + iμxγ y)σ−ψ

+ H∗ψ̄ (μzγ x − iμxγ y)σ+ψ ). (5.3)

We define the covariant derivative Dμ = ∂μ − iAμσ z and
operators σ± = (σ x ± iσ y)/2. Note that � is a marginal cou-
pling constant here, not a fluctuating field. A crucial feature
of Lsf is that it does not contain the K gradient terms: These
terms are now truly irrelevant. This can be seen in the large Nf

expansion: Upon integrating the fermions, we obtain, in place
of Eq. (4.3),

Sb

Nf
=

∫
k

(
s + �1(k) + �2(k)

2

)
|H(k)|2

+ �A(k)

2

(
δμν − kμkν

k2

)
Aμ(k)Aν (−k), (5.4)

where �1,2(k) are specified in Eqs. (4.3) and (4.4) for � = 0.
In general, the sum �1(k) + �2(k) has the rotational symme-
try of the square lattice, and its inverse does not contain the
infrared singularities we encountered earlier. Consequently,
there is no logarithmic violation of scaling by a dangerously
irrelevant K here, and the 1/Nf expansion of Lsf should pro-
ceed along more conventional lines.

The 1/Nf expansion of the theory Lψ was presented in
Refs. [63,64]: They found a stable Lorentz invariant fixed
point with � = 0 at the fixed point. In our case, for Lsf we
expect a critical theory with dynamic scaling with an expo-
nent z �= 1, SO(5) symmetry broken by LHψ , and a spatial
anisotropy in the fermion velocities at the Dirac nodes deter-
mined by the fixed point value of �. Note that even for � = 0
we do not expect Lorentz invariance with z = 1, because the
relevant Yukawa couplings in LHψ are not Lorentz invariant,
and consequently �1(k) + �2(k) is not Lorentz invariant.

VI. CONCLUSIONS

Building upon the results of recent numerical studies
[7–10], we have proposed resolutions of long-standing con-
troversies connected to theories of the cuprates: the phases
of the frustrated square lattice spin S = 1/2 antiferromagnets
and the nature of deconfined criticality in such models. De-
confined criticality expresses the low energy physics in terms
of fractionalized degrees of freedom and emergent gauge
fields, which can enter various confining states with possi-
ble broken symmetries on either or both sides of the critical
point. Although there are several well-established examples,
the transition between Néel and VBS states in square lattice
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antiferromagnets [5,6,12,13] has been of particular interest.
One formulation of this deconfined critical point is a ver-
sion of QCD3, quantum chromodynamics in 2+1 dimensions:
a SU(2) gauge theory with two flavors of two-component
massless Dirac fermions, each carrying a fundamental color
charge. This theory is dual to a SO(5) nonlinear sigma
model with a Wess-Zumino-Witten term [27,54,55]. There
is now significant numerical evidence that such a conformal
field theory (CFT) does not exist, although there is likely a
nearby ‘complex’ CFT [31–37]. This leaves open the fate
of a physical model with a Hermitian Hamiltonian, such as
the J1-J2 antiferromagnet on the square lattice, between the
Néel and VBS states. Here we have presented a theory in
which the putative QCD3 CFT is resolved into an intermediate
stable gapless phase with Z2 topological order and gapless
Dirac fermions [23,24,26]. The intermediate Z2 spin liquid
is flanked by two proposed deconfined critical points, neither
of which is a CFT, or even invariant under Lorentz transfor-
mations. The absence of Lorentz symmetry permits several
novel phenomena, including the appearance of dangerously
irrelevant couplings and logarithm-squared renormalizations,
which can be tested in numerical studies. All of these phases
and critical points are described by extending QCD3 with
three real adjoint Higgs fields. The couplings of these Higgs
fields are tightly constrained by the transformations of QCD3
under the symmetries of the underlying square lattice anti-
ferromagnet, and an analysis of these symmetries occupy a
significant portion of this paper.

Our main results can be summarized in the context of
the mean-field phase diagram in Fig. 2 obtained from the
SU(2) gauge theory with three adjoint Higgs field �a

1,2,3 in
Eq. (3.24). This mean field theory yields three spin liquids,
with deconfined SU(2), U(1), and Z2 gauge fields. We assume
that the spin liquids with continuous gauge symmetries con-
fine, except at possible deconfined critical transitions to the
Z2 spin liquid. This phase diagram maps onto the J1-J2 model
along the trajectory of the dotted blue line, and our proposed
deconfined critical theories are at the boundaries between the
mean field SU(2) and Z2 spin liquids, and the U(1) and Z2

spin liquids.
The numerical evidence for the confinement of the SU(2)

π -flux spin liquid was reviewed in Sec. I. This confining state
should have either Néel or VBS order [27], and Ref. [28]
argued by comparing to bosonic spinon theories that it should
be the Néel state. The structure of the critical theory from such
a confining state to the gapless Z2 spin liquid was presented in
Sec. IV, and we found some unusual log2 corrections to both
the Néel and VBS critical correlators. From the geometry of
the mean field phase diagrams in Fig. 2, and the numerical
studies on the square lattice antiferromagnet noted in Fig. 1,
it is then natural to propose that the U(1) staggered flux spin
liquid confines to the VBS state. The critical U(1) gauge the-
ory for the boundary between the U(1) and Z2 spin liquid was
presented in Sec. V, and this has no log2 terms. We also note
that the log2 correlators in Eqs. (4.28) and (4.29) show a faster
decay of the Néel order than the VBS order, which might
be evidence that the SU(2) critical theory is proximate to the
VBS state rather than the Néel state, which would reverse the
direction of the arrow in Fig. 2.

Irrespective of the assignment of the Néel or VBS confin-
ing states to the SU(2) or U(1) spin liquids in Fig. 2, we expect
any direct phase boundary between the Néel and VBS states
to be a first order transition. This follows from the numerical
studies [31,32,34] noted in Sec. I.

Our critical SU(2) gauge theory for the S = 1/2 square
lattice antiferromagnet has massless two-component Dirac
fermions with two flavors and two colors, and real critical
Higgs fields with two flavors and three colors, and is shown
in Eq. (4.2). This derives from a theory for the π -flux to
gapless Z2 spin liquid transition proposed by Ran and Wen
[39,40] and includes an additional ‘dangerously irrelevant’
coupling K , which is the coefficient of a spatial gradient term
in the Higgs fields. We analyzed this theory along the lines of
the 1/Nf expansion of Ref. [56] (the case of interest to us
here is Nf = 1). We found that the theory with K = 0 has
infrared divergencies that arise from the highly anisotropic
spatial structure of the Higgs correlations, which is in turn a
consequence of the non-Lorentz invariant Yukawa couplings
between the Higgs fields and the fermions. So even though
the coupling K is formally irrelevant, it must be included
to understand the long-distance and long-time behavior of
the theory, i.e., the coupling K is dangerously irrelevant. We
found that the coupling K leads to leading logarithm-squared
corrections to various correlators, such as those in Eqs. (4.27)
and (4.28) for the correlations of the Néel and VBS order
parameters; Appendix B showed how these corrections are
exponentiated in a renormalization group analysis, leading to
Eq. (4.29). We also note that the logarithm-squared term was
absent in the contributions to the dynamic critical exponent
z, and we computed a non-Lorentz-invariant value for z in
Eq. (4.21).

The critical U(1) gauge theory for the S = 1/2 square lat-
tice antiferromagnet was discussed in Sec. V. It has massless
two-component Dirac fermions with four flavors and ±1 U(1)
gauge charges, and a single complex critical Higgs fields with
±2 U(1) gauge charge. We found that K was not dangerously
irrelevant in this theory. The critical theory is not Lorentz
invariant and so has dynamic critical exponent z �= 1. The
critical theory also does not have the SO(5) symmetry be-
tween the Néel and VBS order parameters. A full analysis of
this theory requires a study of the role of anisotropies in the
Dirac fermion velocities [associated with the coupling � in
Eq. (5.3)], and we leave this for future work.

It would be useful to examine numerical studies of the
square lattice antiferromagnet for logarithmic violations of
scaling, Lorentz invariance, and SO(5) symmetry and com-
pare to our predictions. In particular, we note the violations of
scaling observed in Ref. [65], although for a different square
lattice antiferromagnet. Finally, we note that gapless Z2 spin
liquid studied is an attractive candidate for the ancilla model
of doped antiferromagnets [66–68], as it can realize a stable
state in the second ancilla layer for the pseudogap state.

Recently, we became aware of some related work:
(i) Superconductivity has been observed [69,70] in the

doped J1-J2 model; doping the gapless Z2 spin liquid is a
known to be a natural route to d-wave superconductivity
[18,25].

(ii) Yang et al. [71] have detected a gapless spin liquid
phase next to the Néel phase on the Shastry-Sutherland model,
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which is obtained from the J1-J2 model by removing 3/4 of
the J2 bonds.
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APPENDIX A: PROJECTIVE SYMMETRY ANALYSIS

This Appendix will present a detailed analysis of the pro-
jective symmetry group (PSG) of the Z2Azz13 spin liquid and
its neighboring phases. Here, we will employ the gauge used
by Wen [24]. Wen described the Z2Azz13 spin liquid by the
Bogoliubov Hamiltonian in Eq. (2.3) with the ansatz

ui,i+x̂ = χ τ x − η τ y

ui,i+ŷ = χ τ x + η τ y

ui,i+x̂+ŷ = −γ1 τ x

ui,i−x̂+ŷ = γ1 τ x. (A1)

In terms of the spinons fiα , this can be written as

H = −
∑

k

[2χ (cos(kx ) + cos(ky)) − i2η(cos(kx ) − cos(ky))

+ 4γ1 sin(kx ) sin(ky)] f−k↓ fk,↑ + H.c. (A2)

So in this gauge, the Z2Azz13 spin liquid has both dx2−y2 + is
and dxy pairing and no hopping, and the fermion dispersion
relation is

ε2
k = [2χ (cos(kx ) + cos(ky)) + 4γ1 sin(kx ) sin(ky)]2

+ [2η(cos(kx ) − cos(ky))]2. (A3)

In the ansatz in Eq. (A1), the three spin liquids are
(i) The π -flux phase with SU(2) gauge symmetry corre-

sponds to χ = η �= 0, γ1 = 0.
(ii) The ‘staggered flux’ U(1) spin liquid is obtained for

χ �= 0, γ1 = 0, η �= 0 with χ �= η.
(iii) The Z2Azz13 spin liquid is obtained when the dxy

pairing γ1 breaks the U(1) down to Z2.
For our purposes, and in general, a complex Higgs field

is needed to break U(1) down to Z2. We have characterized
the dxy pairing above by a real parameter γ1, and we need to
generalize this to a complex parameter. From the analysis in
Sec. II, we deduce that this is obtained by taking a complex
dxy order parameter which has opposite phases on the two
sublattices, i.e.,

ui,i+x̂+ŷ =
(

0 −(γ1 − iγ2)
−(γ1 + iγ2) 0

)
, ix + iy even

ui,i+x̂+ŷ =
(

0 −(γ1 + iγ2)
−(γ1 − iγ2) 0

)
, ix + iy odd

ui,i−x̂+ŷ =
(

0 (γ1 − iγ2)
(γ1 + iγ2) 0

)
, ix + iy even

ui,i−x̂+ŷ =
(

0 (γ1 + iγ2)
(γ1 − iγ2) 0

)
, ix + iy odd. (A4)

1. Lattice PSGs

We first recall the spin liquid classification scheme of
Ref. [24]. If ui j is the mean field ansatz for a spin liquid
symmetric under the group action G, it transforms as

PG : ui j → W †
g (i)uG(i),G( j)W ( j), (A5)

where WG(i) is a gauge transform. In addition to the symme-
tries, these gauge transformations characterize the spin liquid,
yielding the projective symmetry group (PSG) [24].

Using the notation from Ref. [24], the spin liquid Z2Azz13
is defined by the PSG

Wtx(i) = τ 0, Wpx(i) = (−)ix+iy iτ z, Wpxy(i) = iτ x,

Wty(i) = τ 0, Wpy(i) = (−1)ix+iy iτ z, Wt (i) = iτ z (A6)

while the PSG of U1Cn01n (the staggered flux phase) is

Wtx(i) = g3(θx )iτ x, Wpx(i) = (−)ix g3(θx )iτ x,

Wpxy(i) = g3(θpxy)iτ x,

Wty(i) = g3(θy)iτ x, Wpy(i) = (−)iy g3(θy),

Wt (i) = (−)ix+iy g3(θt ), (A7)

where g3(θ ) = eiθτ z
. From these PSGs we can extract the

symmetry fractionalization through the group relations given
in the Appendix of Ref. [28] [Eq. (B8)]. These are provided
in Table I. Note that instead of Pxy : (ix, iy) → (iy, ix ), we
consider the 90◦ rotation Rπ/2 = PxyPy. Similarly, Px is related
to the other symmetries through Rπ/2PyR−1

π/2.

2. Identification of staggered flux in continuum model

The staggered flux state (U1Cn01n) can be obtained by
coupling a Higgs field to the bilinear

Oa
3 = tr(σ aX̄μy(γ xi∂y + γ yi∂x )X ) (A8)

giving something like

L = tr(X̄γ μi∂μX ) + �a
3tr(σ aX̄MX ). (A9)

The U(1) spin liquid U1Cn01n is then obtained upon con-
densing one component of �3. This was determined by
considering the symmetry fractionalization of the U(1) spin
liquid obtained by condensing the z component of �3: 〈�z

3〉 �=
0. Based on the symmetry transformations outlined in Table II,
this condensate has a corresponding continuum PSG

Vtx = g3(φx )iσ x, Vpx = g3(φpx ), Vr = g3(φr )iσ x,

Vty = g3(φy)iσ x, Vpy = g3(φpy), Vt = g3(φt ), (A10)

where g3(φ) = eiφσ z
is an arbitrary gauge transformation. Im-

portantly, in the U(1) spin liquid, the phases φ can take any
value. When these phases are rewritten in terms of the U(1)
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TABLE I. Symmetry fractionalization. In keeping with the conventions of Ref. [28], the gauge is chosen such that group relation 7 is fixed
to equal −1 for the Z2 spin liquid.

Group relations Z2Azz13 U1Cn01n lattice U1Cn01n cont

1 T −1
y TxTyT −1

x 1 e−2i(θx−θy )τ z −e−2i(φx−φy )σ z

2 P−1
y TxPyT −1

x −1 e−2iθpyτ
z

e2iφpyσ
z

3 P−1
y TyPyTy −1 e−2iθpyτ

z
e2iφpyσ

z

4 P2
y −1 e2iθpyτ

z
e−2iφpyσ

z

5 P−1
y Rπ/2PyRπ/2 1 −e−2iθpyτ

z −e2iφpyσ
z

6 R4
π/2 1 1 1

7 R−1
π/2TxRπ/2Ty −1 ei(2[θpxy+θpy]−[θx+θy])τ z

ei(2φr−φx−φy )σ z

8 R−1
π/2TxRπ/2T −1

x −1 ei(2[θpxy+θpy]−[θx+θy])τ z
ei(2φr−φx−φy )σ z

9 T −1R−1
π/2T Rπ/2 −1 e−2iθt τ

z
e−2iφt σ

z

10 T −1P−1
y T Py 1 1 1

11 T −1T −1
x T Tx 1 −e−2iθt τ

z −e−2iφt σ
z

12 T −1T −1
y T Ty 1 −e−2iθt τ

z −e−2iφt σ
z

13 T 2 −1 e2iθt σ
z

e2iφt σ
z

phases from Eq. (A7), θG, according to

(φx, φy, φpy, φt , φr )=
(

θx + π

4
, θy − π

4
, −θy, θt , θpxy + θpy

)
(A11)

the symmetry fractionalizations given in columns 4 and 5 of
Table I are identical. It is possible that two distinct spin liquids
(as defined by having distinct PSGs) could nevertheless have
identical symmetry fractionalization. This seems unlikely in
this situation and is, moreover, proven false by the explicit
derivation of the continuum action from the lattice model.

3. Identification of Z2Azz13 in continuum model

The spin liquid Z2Azz13 is proximate to U1Cn01n in that
the PSG of Eq. (A6) may be obtained through gauge transfor-
mations and judicious choices of the angles θG in Eq. (A7).
It is, however, simpler to determine the U(1) transformations
(i.e., the angles φμ) that map the symmetry fractionalization
of U1Cn01n to the symmetry fractionalization of Z2Azz13.
That is, we find that the assignment

(φx, φy, φpy, φt , φr )

=
(

θ + π

4
, θ − π

4
+ nyπ, (2npy + 1)

π

2
, (2nt + 1)

π

2
, θ

+ (2nr + ny + 1)
π

2

)
, nμ ∈ Z (A12)

transforms the fifth column of Table I into a set of ±1s that
match the third column. Inserting these φμs into the PSG

defined in Eq. (A10) and selecting nμ = 0, μ = y, py, t, r and
θ = π/4, we obtain the Z2 continuum PSG [72]

Vtx = −iσ y, Vpx = ±iσ z

Vr = − i√
2

(σ x − σ y)

Vty = −iσ x, Vpy = −iσ z, Vt = iσ z. (A13)

We can now ask what form of operator needs to couple to a
new Higgs field in order to realize this PSG and hence the
Z2 spin liquid Z2Azz13. Firstly, it’s clear that the σ x or σ y

components of the Higgs field must condense—condensing
in the σ z channel, ∼〈�̃z〉tr(σ zX̄ M̃X ), would not break the
U(1) symmetry. However, in considering condensates in x or
y, we see that the gauge transformations corresponding to the
translations Tx and Ty are different and, further, the rotation
Rπ/2 exchanges σ x and σ y, meaning that both must be present
in a symmetric spin liquid.

Based on the symmetry relations documented in Ref. [28],
we find that the operators O1,2,

Oa
1 = tr(σ aX̄μzγ xX ), Oa

2 = tr(σ aX̄μxγ yX ), (A14)

induce the PSG of Eq. (A13) provided they couple to Higgs
fields that condense in perpendicular directions. The symme-
try transformation properties of Oa

1,2 are given in Table II.
That is, given a Lagrangian:

L′ = tr(X̄γ μi∂μX ) + �a
1tr(σ aX̄μzγ xX ) + �a

2tr(σ aX̄μxγ yX )

+�a
3tr(σ aX̄μy(γ xi∂y + γ yi∂x )X ), (A15)

TABLE II. Symmetry transformations of the three fermion bilinears which must be coupled to SU(2) adjoint Higgs fields in order to realize
the PSG of the Z2 spin liquid Z2Azz13. The symmetry transformations of these bilinears were previously worked out in Ref. [28].

Operators T Px Py Tx Ty Rπ/2

Oa
1 tr(σ aX̄μzγ xX ) − − − − + −Oa

2

Oa
2 tr(σ aX̄μxγ yX ) − − − + − −Oa

1

Oa
3 tr(σ aX̄μy(γ xi∂y + γ yi∂x )X ) + + + − − −
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the PSG in Eq. (A13) is obtained when 〈�1〉 = (α, 0, 0),
〈�2〉 = (0, α, 0), and 〈�3〉 = (0, 0, β ), for α, β ∈ R. This
agrees with conclusions reached in Sec. III D.

APPENDIX B: RENORMALIZATION GROUP ANALYSIS
OF THE SU(2) GAUGE THEORY

In this Appendix, we describe the origin of the log2 terms
in the critical SU(2) gauge theory in a renormalization group
(RG) framework. Integrating the RG equations will lead to an
exponentiated prediction for the correlators.

We start with the expression in Eq. (4.10), keep the full
Higgs propagator as in Eq. (4.6), and perform a standard
momentum shell RG in the window � − d� < (p2

0 + p2
x +

p2
y )1/2 < �

δγ x�1(kx ) = 12

Nf

∫ �

�−d�

d3 p

(2π )3

(px + kx )

(px + kx )2 + p2
0 + p2

y

× |p|
p2

0 + p2
y + 4K|p|p2

x

. (B1)

Expanding to linear order in kx, using spherical coordinates
with

(p0, py, px ) = �(sin θ cos φ, sin θ sin φ, cos θ ), (B2)

and setting μ = cos θ , we obtain

δγ x�1(kx ) = 6kx

Nf π2

d�

�

∫ 1

0
dμ(1 − 2μ2)

1

1 − μ2 + 4K�μ2
.

(B3)

Under normal circumstances, the μ integral would be a finite
numerical constant, and the coefficient of d�/� with the
usual RG log which would then contribute (in this case) to
the exponent ηψ . However, that is not the case here, because
of the logarithmic divergence of the μ integral near μ = 1.
Evaluating the μ integral, we obtain

δγ x�1(kx ) = − 3kx

Nf π2

d�

�

[
ln

(
1

K�

)
− 4 + O(K�)

]
.

(B4)
In a similar manner, we obtain for the frequency depen-

dence of the self energy

δγ 0�1(k0) = − 12

Nf

∫ �

�−d�

d3 p

(2π )3

(p0 + k0)

(p0 + k0)2 + p2
x + p2

y

|p|
p2

0 + p2
y + 4K|p|p2

x

. (B5)

In spherical coordinates this simplifies to

δγ 0�1(k0) = − 6k0

Nf π2

d�

�

∫ 1

0
dμ(1 − (1 − μ2))

× 1

1 − μ2 + 4K�μ2

= − 3k0

Nf π2

d�

�

[
ln

(
1

K�

)
− 2 + O(K�)

]
. (B6)

The expression for δγ y�1(ky) is the same as δγ 0�1(k0), after
mapping k0 ⇒ ky.

We can also examine the vertex correction for the SO(5)
order parameter in a similar manner. From Eq. (4.25) at zero
external momentum, we note that the vertex correction needs
the integral

δV = 1

Nf

∫ �

�−d�

d3 p

(2π )3

1

p2
x + p2

y + p2
0

4|p|
p2

0 + p2
y + 4K|p|p2

x

= 1

2Nf π2

d�

�

∫ 1

0
dμ

4

1 − μ2 + 4K�μ2

= 1

Nf π2

d�

�

[
ln

(
1

K�

)
+ O(K�)

]
. (B7)

We now proceed as usual to obtain the RG equations from
the momentum shell results under the rescaling

x′ = xe−�y′ = ye−�τ ′ = τ exp

(
−

∫ �

0
d�′z(�′)

)
. (B8)

Importantly, we note the flow of the irrelevant coupling K
under this transformation

dK

d�
= −K. (B9)

For the fermion field we define

ψ ′ = ψ exp

(∫ �

0
d�′ 1 + z(�′) + ηψ (�′)

2

)
. (B10)
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FIG. 9. Denoting the integrands of the two types of self-energy
contributions in Eqs. (4.10) and (C1) with K = 1 as fA(kx ) and
fB(k0 ), we plot a numerical evaluation of 8π 2 fi(k)/(k ln3(k)) vs
1/(ln(k)). The form of this expression is designed to isolate the
log2 contribution at small momenta, and agreement with our ana-
lytic predictions should give a straight line with a slope of 1. The
approximation of the Higgs propagator as Eq. (4.9) allows for greater
numerical precision, as the dimensionality of the integral can be
reduced by performing portions of the integral analytically. These
numerical evaluations give good agreement with analytic predictions
as well as calculations using the full form of the Higgs propagator.

045110-17



SHACKLETON, THOMSON, AND SACHDEV PHYSICAL REVIEW B 104, 045110 (2021)

The field ψ is not gauge invariant, and neither is its anoma-
lous dimension ηψ . However, the leading log2 term we shall
find shortly is gauge invariant. In the presence of the log2

term, we will also see that the usual logarithm terms have a
nonuniversal coefficient. So we ignore the gauge field con-
tributions here (the gauge field induced renormalizations have
been computed in Refs. [39,40]), because they only contribute
logarithm terms which become part of overall terms which are
nonuniversal.

Matching Eqs. (B4) and (B6) to Eqs. (B8) and (B10) we
obtain

η(�) = 6

Nf π2

[
ln

(
1

K (�)�

)
− 3

]
z(�) = 1 + 6

Nf π2
. (B11)

Assuming a bare value K (0) = K0, integrating Eq. (B9) to ob-
tain K (�) = K0e−�, and then integrating Eq. (B11) we obtain

∫ �

0
η(�′)d�′ = 6

Nf π2

[
�2

2
− (ln(K0�) + 3)�

]
. (B12)

We can now obtain the momentum dependence of physical
observables by evaluating them at a scale � = �∗ = ln(�/|p|).
Note that the coefficient of �∗ involves the bare value of K0,
and hence the coefficient of the logarithm term is nonuni-
versal, as claimed earlier. The leading term is log2, and its
coefficient is universal and agrees with that in Eq. (4.16); sim-
ilarly, Eq. (B7) agrees with Eq. (4.26). Inserting the integral
Eq. (B12) into Eq. (B10), we obtain results of the form in
Eq. (4.29).

APPENDIX C: ISOLATION OF LOGARITHM-SQUARED
DIVERGENCES IN ONE-LOOP CORRECTIONS

We state in the main text that logarithm-squared diver-
gences in the critical SU(2) gauge theory arise in the one-loop
diagrams in a certain parameter regime, given by Eq. (4.12).
This is shown in the main text for the simplest one-loop
calculation, which is the �1 (�2) contribution to the fermion
self-energy with external momenta kx (ky). Here, we provide
more general calculations for other cases.

We first analyze the �1 contribution to the fermion self-energy with external momenta k0. This is equivalent to the ky external
momenta, as well as the �2 contribution with external momenta k0, kx.

γ 0�(k0) ≈ − 12

Nf

∫
d3 p

(2π )3

p0 + k0

(p0 + k0)2 + p2
x + p2

y

|px|
p2

0 + p2
y + 4K|px|3

= − 12

Nf

∫
dpx

8π2

|px|
(
p2

x − 4K|px|3 − k2
0

)
k0

√
−(4K )2|px|6 + 8K|px|3

(
p2

x − k2
0

) − (
p2

x + k2
0

)2

×
[

tan−1

⎛⎝ −p2
x + 4K|px|3 − k2

0√
−4K2|px|6 + 8K|px|3

(
p2

x − k2
0

) − (
p2

x + k2
0

)2

⎞⎠
+ tan−1

⎛⎝ −p2
x + 4K|px|3 + k2

0√
−(4K )2|px|6 + 8K|px|3

(
p2

x − k2
0

) − (
p2

x + k2
0

)2

⎞⎠]
− 12

Nf

∫
dpx

8π2

|px|
2k0

ln

(
p2

x

4K|px|3
)

. (C1)

We see that the dominant term is proportional to k0 log2(Kk0), arising in the same limit as in Eq. (4.12). This log2 dependence
comes from the inverse tangents, since 2 tan−1(x) = i log( 1+ix

1−ix ). Assuming K|px|3 � p2
x, the expression in the denominator

of the inverse tangent argument is ≈ip2
x, so our integrand ≈i tan−1(i(1 + 4K|px|)). If we further assume K|px| � 1, we get

an integrand that scales like k0/px ln(K px ), and hence the full expression scales as k0 log2(Kk0). These log2 contributions are
verified by numerically evaluating Eqs. (4.10) and (C1) and analyzing the behavior at small k, as shown in Fig. 9.

For the Higgs vertex correction to the SO(5) order parameter, we can also isolate a log2 divergence. Calculating the �1

correction to the vertex, we regulate the integral by including an external momenta 2kx evenly distributed between the two
outgoing fermions. The vertex correction is

μzσ a�iσ aμz

Nf

∫
d3 p

(2π )3

p2
x − k2

x + p2
y + p2

0[
(px + kx )2 + p2

y + p2
0

][
(px − kx )2 + p2

y + p2
0

] 4|px|
p2

0 + p2
y + 4K|px|3

= μzσ a�iσ aμz

Nf

∫
rdrdpx

(2π )2

p2
x − k2

x + r2

[(px + kx )2 + r2][(px − kx )2 + r2]

4|px|
r2 + 4K|px|2

= μzσ a�iσ aμzK

Nf

∫
dpx

4π2

|px|
kx px[(px − xx )2 − 4K|px|2][(px + kx )2 − 4K|px|2]

×
[((

p2
x − k2

x

)|px|2 + (px + kx )2(px − kx )2

4K

)
ln

(
(px + kx )2

(px − kx )2

)
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+ (px + kx )2

[
|px|3 ln

(
4K|px|3

(px + kx )2

)
+

(
k2

x − p2
x

)
4K

ln

(
4K|px|3

(px − kx )2

)]

− (px − kx )2

[
|px|3 ln

(
4K|px|3

(px − kx )2

)
+

(
k2

x − p2
x

)
4K

ln

(
4K|px|3

(px + kx )2

)]]
. (C2)

We can obtain a log2 from the second logarithm in the brackets in the limit given by Eq. (4.12).

APPENDIX D: ALTERNATE COMPUTATION OF Z IN THE SU(2) GAUGE THEORY

In the main text we emphasize that although irrelevant terms in the Higgs propagator turn out to strongly influence the
renormalization of the critical theory, these effects cancel in the dynamical critical exponent, and its value can be computed
through more standard methods. In this section, we compute z via dimensional regularization after explicitly setting the irrelevant
Higgs terms to zero and show that it gives the same answer for z as in the main text. For the calculation of z, we are interested in
the counterterms generated by

γ 0 ∂�

∂k0

∣∣∣
k=0

− γ x ∂�

∂kx

∣∣∣
k=0

= − 6

Nf

∫
d3 p

(2π )3

[
p2

y

p4�1(p)
− p2

0 − p2
x

p4�2(p)

]
. (D1)

This integrand is well behaved for p2 �= 0,∞, and one can see that the second term in brackets vanishes, since the �2 propagator
is invariant under px ↔ p0.

The integrals over p0, py can be performed exactly in radial coordinates, which gives

− 3

π2Nf

∫ ∞

−∞
dpx

1

|px| = − 6

π2Nf

∫ ∞

0

dpx

px
. (D2)

Continuing the px integral to 1 − ε dimensions and imposing a UV cutoff � yields

− 6

π2Nf
με

∫ �

0

dp0

p1+ε
0

= − 6

π2Nf ε
με�−ε = − 6

π2Nf

(
1

ε
+ ln

( μ

�

)
+ O(ε)

)
, (D3)

which gives the same answer for z as when the irrelevant Higgs terms were used to regulate the divergences in the self-energy.

APPENDIX E: HIGGS FIELD RENORMALIZATION IN THE SU(2) GAUGE THEORY

For completeness, we compute the log2 corrections in the critical SU(2) gauge theory to the Yukawa couplings at one-loop
level, since these determine the renormalization of the Higgs fields. The calculations are nearly identical to those of the SO(5)
order parameter.

The correction to the �1 Yukawa coupling is given by the integral

(μzσ b)(μzσ a)(μzσ b)

Nf

∫
d3 p

(2π )3
γ x /p − /k1

(p − k1)2
γ x /p − /k2

(p − k2)2
γ x 1

�1(p) + K p2
x

+ (μxσ b)(μzσ a)(μxσ b)

Nf

∫
d3 p

(2π )3
γ y /p − /k1

(p − k1)2
γ x /p − /k2

(p − k2)2
γ y 1

�2(p) + K p2
y

. (E1)

Evaluating the first term in the limit in Eq. (4.12), we set the
external momenta to zero and use it as an IR cutoff k, which
gives to log2 order

(μzσ b)(μzσ a)(μzσ b)

2π2Nf
ln2(Kk). (E2)

This coefficient is identical to the SO(5) correction, as the two
integrals are the same to leading order in k. The contribution
is the same for the second term in Eq. (E1), giving the final
Yukawa correction

− μzσ
a

π2Nf
ln2(Kk). (E3)

The correction to the �2 Yukawa term is identical, as the two
are related by a spatial rotation.

We now renormalize the �1,2 fields so that the Yukawa
coupling remains invariant, as in Ref. [56]. Hence, the Higgs
fields are renormalized at log2 order, �i = √

Z��i,R, with
corrections from Zψ and (E3)

Z� = 1 + 6

π2Nf
ln2(Kμ) + 2

π2Nf
ln2(Kμ)

= 1 + 8

π2Nf
ln2(Kμ). (E4)

APPENDIX F: EVALUATION OF TWO-LOOP SO(5) ORDER
PARAMETER CORRECTIONS

In this Appendix, we evaluate the O(N−1
f ) two-loop cor-

rection to the SO(5) order parameter, shown in the main text
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p

p + q

p

q

Φb
1

q

Φc
2

−qJ

ψ

ψ̄

FIG. 10. The O(N−1
f ) two-loop correction to the SO(5) order

parameter. We set all external momenta to zero. Shown is one of
four possible diagrams; the other three can be obtained by either
exchanging �1 ↔ �2, crossing the lines of the Higgs propagators,
or both. All give the same contribution at zero external momenta.

and displayed here in Fig. 10 with internal momenta labeled.
The diagram shown is one of four possible contributions -

additional diagrams can be generated by either exchanging
�1 ↔ �2 or crossing the propagators of the Higgs bosons,
but all give the same correction for zero external momenta.
The main conclusion of this Appendix is that this contribu-
tion is well behaved upon setting the dangerously irrelevant
operators to zero and only contributes standard logarithm di-
vergences, which we argue in the main text and in Appendix B
give nonuniversal corrections to the order parameter scaling.
Intuitively, this may be thought of as related to the fact that
these two-loop diagrams require both types of Higgs �1,2,
as they vanish trivially when both Higgs propagators are of
the same type. As the log2 divergences are connected to the
rotational symmetry breaking in the O(Nf ) effective action for
the Higgs propagators, it is natural—although still a nontrivial
fact—that these two-loop diagrams which respect rotational
symmetry only contribute single logarithm divergences.

This two-loop correction vanishes for the VBS order pa-
rameter, so we focus on the Néel order parameter, where the
source vertex contributes a factor of μyσ a. We first evaluate
the fermion loop integral,

(−1)Nf Trσ bσ cμyμxμz
∫

d3 p

(2π )3

/p

p2
γ x /p + /q

(p + q)2
γ y /p

p2

= −4Nf δbcTr[γ μγ xγ νγ yγ σ ]
∫

d3 p

(2π )3

pμ(p + q)ν pσ

p4(p + q)2

= −8iNf δbc(δμxεyνσ + δνyεxσμ + δσyεxνμ − δνσ δμ0)
∫

d3 p

(2π )3

pμ(p + q)ν pσ

p4(p + q)2
. (F1)

The integral over p yields ∫
d3 p

(2π )3

pμ(p + q)ν pσ

p4(p + q)2
= 1

128

1

|q|
[

3δμσ qν − δσνqμ − δμνqσ + qμqνqσ

q2

]
(F2)

and contracting with the tensors in Eq. (F1) gives the final contribution of the fermion loop

iNf

2

q0

|q|δbc. (F3)

We combine this with the remaining loop integral, setting the coefficient K of the irrelevant operators to zero, to give

i

2Nf
δbcμ

zμxσ bσ c
∫

d3q

(2π )3

q0

|q|γ
x (−/q)

q2
γ y 16q2(

q2
0 + q2

x

)(
q2

0 + q2
y

) = −16μyσ a

Nf

∫
d3q

(2π )3

q2
0

|q|
1(

q2
0 + q2

x

)(
q2

0 + q2
y

) . (F4)

Focusing on the integrand, we can compute this by converting to radial coordinates,∫
dzdθrdr

(2π )3

z2

√
z2 + r2

1

(z2 + r2 cos2 θ )(z2 + r2 sin2 θ )
= 1

2π2

∫
dzdr

|z|r
(z2 + r2)(2z2 + r2)

= ln 2

4π2

∫
dz

1

|z| . (F5)

Hence, this two-loop contribution only contributes a stan-
dard logarithm divergence and is subleading in comparison to
the one-loop Higgs corrections.

We also analyze the two-loop corrections to the ψ̄ψ bi-
linear, whose symmetry properties correspond to the scalar
spin chirality. This is motivated by the fact that log2 terms in
the O(1/Nf ) one-loop corrections exactly cancel the log2 self-
energy terms. Hence, if two-loop corrections only contributed
standard logarithm divergences, then the scalar spin chiral-
ity would have a power law decay at O(1/Nf ). In fact, the

two-loop corrections involving two Higgs propagators vanish
exactly. If the Higgs propagators are different, as was the case
for the Néel corrections, then the trace over μ in the fermion
loop vanishes. If the Higgs propagators are the same, then the
trace over γ vanishes, since

Tr[γ μγ xγ νγ xγ σ ]pμ(p + q)ν pσ

= Tr[γ μγ yγ νγ yγ σ ]pμ(p + q)ν pσ = 0. (F6)
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