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Symmetry-enforced band nodes in 230 space groups
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Crystallographic symmetries enforcing band touchings (BTs) in the Brillouin zone (BZ) have been utilized
to classify and predict the topological semimetals. Though the early proposed topological semimetals contain
isolated nodal points in the BZ, the proposed nodal line semimetals later could host various structures of several
nodal lines/loops: Nodal chains, nodal nets or Hopf links, etc. In this work, using compatibility relations, we
first list all possible high-symmetry lines (HSLs) that can be nodal lines itself, high-symmetry planes (HSPLs)
that can host nodal loops, and HSPLs that are nodal surfaces for all 230 space groups (SGs), with spin-orbit
coupling and time-reversal symmetry considered or not. We then show how to diagnose a nodal loop from the
band crossing in an HSL, or nodal line/surface from irreducible representation (irrep) of a high-symmetry point
(HSP), while the rest cases correspond to nodal points. Among our results, those essential cases, for which
the nodal points/lines/loops/surfaces must exist, are highlighted since they are promising for the realizations
of (nearly) ideal nodal point/line/loop/surface semimetals, as well as systems with flexible tunability owning
fixed structure of topological nodal points/lines/loops/surfaces. Based on our results, SGs allowing Hopf-link
structure with one straight nodal line threading a nodal loop, or two nesting nodal loops lying in two respective
HSPLs, are highlighted, with the predicted materials being B5Pb2IO9 in SG 34 and SrAl2Au3 in SG 62,
respectively. Our exhaustive results could serve as a useful guide for efficiently predicting and designing ma-
terials or artificial systems owning exotic geometric nodal structures of energy bands simply based on structure
symmetries.
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I. INTRODUCTION

Over the past fifteen years, topological materials in con-
densed physics have attracted broad interest due to their
novel properties related with the nontrivial band topology and
potential in device applications with low-energy consump-
tions [1–6]. Symmetry, e.g., time-reversal symmetry (TRS)
and space group (SG) symmetry, plays a vital role in the
classification, protection or prediction of various topological
phases in realistic materials [7–12]. As with TRS that protects
Z2 strong topological insulators, crystallographic symme-
try could protect topological crystalline insulators (TCIs)
with fancy degeneracies on symmetry-respected boundaries
[13,14]. The fruitful crystallographic symmetries in 230 SGs
for three dimensional (3D) systems thus give rise to vari-
ous TCIs: mirror Chern insulators [15], hourglass insulators
[16], higher-order topological insulators [17–20], TCIs with
rotation-anomaly [21], and so on.

Other than topological insulating phases, various topo-
logical semimetals (TSMs) were proposed such as: Dirac
semimetals [22–24], Weyl semimetals [25–27], nodal
line/loop semimetals [28–30], nodal surface semimetals
[31–33], nodal-link semimetals [34–38], and so on. The crys-
tallographic symmetries are also very important as in TCIs
while different from TIs/TCIs, the nontrivial band closings
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occur in the bulk Brillouin zone (BZ) for TSMs. No mat-
ter for TCIs or TSMs, the band touching (BT) or band
node in the boundary or bulk BZ can result in fascinat-
ing consequences such as chiral anomaly [39] and Klein
tunneling [40]. Hence, an exhaustive classification of BTs
based on group theory is of great importance. To our best
knowledge, the exhaustive studies of BTs based on 230 SGs
were mainly focused on nodal points [22,41–45], most of
which were on nodal points pinned at high-symmetry points
(HSPs). Furthermore, compared with nodal point semimet-
als, the experimental realizations of nodal line/loop/surface
semimetals are relatively scarce [46–48] though there have
been many first-principles predictions [49–58]. The reasons
are as follows. First, the SG symmetry protecting nodal
lines/loops/surfaces should be respected in the boundaries
to detect surface states related with bulk nodal line/surface
structures; Second, the nodal lines/loops/surfaces tend to
own finite bandwidth and coexist with other trivial bands
in the same energy window in realistic materials. However,
the nodal lines/loops/surfaces could cause interesting conse-
quences such as novel long-range Coulomb interaction [59]
and intriguing magnetotransport properties [60]. Besides, the
surface states of nodal line/loop/surface semimetals are ex-
pected to be relatively flat so that electronic interaction could
induce instabilities towards superconductivity [61].

Hence, developing a useful guide to find and design nodal
line/loop/surface semimetals could benefit realizations of
ideal nodal line/loop/surface semimetals that are suitable
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for experiments as well as providing a platform with co-
existing nontrivial band topology and prominent electron
correlation. At the same time, the nodal line/loop or sur-
face TSMs could also serve as a good starting point for
creating nodal point TSMs or TIs/TCIs by introducing non-
trivial energy gap through spin-orbit coupling (SOC) [26,27]
or appropriate external control such as strain and electric
and magnetic fields. Very recently, based on crystallographic
symmetries, thousands of topological materials by large-scale
database searches [62–67] were predicted by symmetry indi-
cators [68,69] or topological quantum chemistry [70]. In the
three topological materials databases built in Refs. [62–64],
the concrete types of BTs in the category of TSMs are still
not clarified clearly, especially for nodal lines/loops/surfaces.
To identify a nodal line/loop or surface in a realistic ma-
terial, conventionally one may firstly clarify the mechanism
of forming nodal lines/loops/surfaces and then calculate the
corresponding topological invariants such as Chern number or
Berry phase [1–6]. Besides, k · p low energy effective models
(allowed by symmetries) were usually built to verify the exis-
tence of nodal line/loop/surface [1–6]. Obviously, the former
method is not very efficient for a large-scale study while the
k · p effective models may capture band node of topological
origin other than symmetry-enforced one. However, related
with the SG symmetries, the breaking of compatibility rela-
tions (CRs) can serve as the mechanism or an indicator of BTs
in HSPs, high-symmetry lines or planes (HSLs or HSPLs),
which is very convenient and the little group of the BT may
impose symmetry constraints on the topological character
captured from explicit k · p effective model.

In this work, we list all possible SGs with con-
crete positions hosting nodal lines/loops/surfaces based
on the irreducible representations (irreps) of little group
of HSLs and HSPLs, and their CRs (hence these nodal
lines/loops/surfaces are symmetry-enforced). We focus on
four settings as (TRS,SOC) where both TRS and SOC are con-
sidered, (TRS,NSOC) where TRS is considered while SOC
is neglected, (NTRS,SOC) where TRS is not present while
SOC is considered and (NTRS,NSOC) where both TRS and
SOC are absent. We also show that from the knowledge of
band crossings in the HSL, one can diagnose a nodal loop
in a neighboring HSPL or even the configuration of several
nodal loops. Similarly, the irrep at HSP can imply a nodal
line or surface coinciding with the neighboring HSL or HSPL,
respectively. The nodal points lying in HSLs or pinned at
HSPs are also found concomitantly. Hence, our work gives
a full classification of symmetry-enforced all types of band
nodes in 230 SGs. Based on the results of nodal loops implied
by the band crossings in HSLs, we propose a practical strategy
of realizing Hopf-link semimetal with two nesting nodal loops
from an hourglass band structure. The essential cases are high-
lighted since they are guaranteed to exist by the SG symmetry
in corresponding setting in the same spirit of filling-enforced
band crossings [71–73].

This paper is organized as follows. In Sec. II, we
give a brief overview of CRs in energy bands and
sketch the strategy of finding symmetry-enforced nodal
points/lines/loops/surfaces using CRs. The main results are
also summarized. In Sec. III, we discuss single-valued and
double-valued irreps for HSPLs considering the effect of TRS

or not, where all possible positions of nodal loops are found
which lies in the HSPLs. The HSPLs with degenerate irrep
which splits in general direction are nodal surfaces and are
further shown to be essential. Then in Sec. IV, we show that
many HSLs themselves are (straight) nodal lines. Besides, the
band crossing in an HSL may indicate a nodal loop in neigh-
boring HSPL and configurations of several nodal loops in the
neighboring HSPLs are discussed. Then Sec. V deals with the
irreps at HSPs. Section VI is devoted to the essential results
mainly related with the hourglass band connectivity. We then
take SGs 34 and 62 as SG examples to demonstrate how to
apply our results to figure out all possible nodal lines/loops
and highlight two kinds of Hopf-link nodal structures in Secs.
VII A and VII B, respectively. The materials realizations of
these two kinds of Hopf-link nodal structures are predicted
by first-principles calculations in Sec. VII C. Finally Sec. VIII
contains conclusions and perspectives.

II. THE STRATEGY AND BRIEF SUMMARY
OF THE RESULTS

In this section, we first present a short overview of the
CRs for energy bands. Let us assume two associated momenta
named by k1 and k2 in the BZ, respectively. With no loss of
generality, assume that k1 has an equal or higher symmetry
than k2: for example, k1 = (0, 0, 0) and k2 = (0, 0, kz ) so that
k2 → k1 if kz → 0. Hence, energy bands originated from one
degenerate energy level at k1 may split in k2 and the cor-
responding splitting pattern can be found based on the CRs
[74,75]. Such degenerate energy level at k1 corresponds to
some irreps of little group of k1 [G(k1)], denoted by Di

k1
. Di

k1

can be written in the form of a direct sum of the irreps of little
group of k2, G(k2) with the irreps denoted by D j

k2
as follows:

Di
k1

→
Nk2⊕
j=1

d jD
j
k2
, (1)

where Nk2 is the total number of different irreps at k2 and
d j in Eq. (1) is the number of occurrences of D j

k2
in the

decomposition which must be non-negative integers. Note that
conventional symmetry analysis using operator algebra for
representation of an SG is equivalent with the abstract group
method [74]. All irreps (single-valued or double-valued) and
their CRs of 230 SGs have been listed exhaustively on the
Bilbao sever [75,76], based on which we could make an
exhaustive study on nodal points/lines/loops/surfaces for all
230 SGs. For nodal points which can be diagnosed by CRs,
it is required that away from the BT (which may be located
at HSP, or lying in an HSL), the band should split in any
direction. On the other hand, once in some direction away
from a BT, the band don’t split, higher dimensional BT (nodal
lines/loops/surfaces) could occur in this direction. Our strat-
egy for identifying the all kinds of BTs is summarized below.

Case (a). k is an HSP. If there exists a degenerate irrep of
G(k) and this irrep can decompose into more than one irrep
as Eq. (1) in all neighboring HSLs, HSPLs and in general
points (GPs), k can thus be a nodal point. Furthermore, If
all the irreps of G(k) satisfy the condition, the HSP is thus
an essential nodal point. These results are listed in Sec. I A
of Ref. [77]. When the point of the HSP contains no achiral
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TABLE I. The sections in Ref. [77] for the three types of band nodes.

nodal point nodal line nodal loop nodal surface

Secs. I A, II C Secs. II A, I B Secs. III B, II D Secs. III A, I C, II B

operations, the nodal point [44,78] would be a chiral point.
Besides, the degeneracy of the nodal points (as well as other
types of band nodes) can be easily obtained and thus given
explicitly in our results;

For the rest degenerate irreps, namely, they would not split
in some HSLs or HSPLs containing the HSP, which just imply
a nodal line (if the irreps split in neighboring HSPLs and GPs)
or surface (if the irreps split in GPs) coinciding with the HSL
or HSPL, respectively. We list these results in Secs. I B and
I C of the SM [77], respectively.

Case (b). k is an HSL. If there exists a degenerate irrep of
G(k) and this irrep can decompose into more than one irrep
as Eq. (1) in all neighboring HSPLs and in GPs, k can thus be
a nodal line (in this work, when we mention “nodal line,” the
nodal line is straight coinciding with an HSL). Furthermore,
if all the irreps of G(k) satisfy the condition, this HSL must
be straight nodal line, which means that it is essential. These
results are listed in Sec. II A of Ref. [77].

For the rest degenerate irreps, namely, they would not split
in some HSPL containing the HSL, which just imply a nodal
surface coinciding with the HSPL if the irreps split in GPs.
We list these results in Sec. II B of Ref. [77].

Furthermore, when there exist at least two different irreps
in the HSL, there could exist a band crossing comprised of
these two irreps. For this case, the band crossing could be
just a nodal point if the two different irreps are found not to
keep being two different irreps in all the neighboring HSPLs.
In this case, the nodal point can be a chiral point when the
point group of the HSL contains no achiral operations. The
results are listed in Sec. II C of Ref. [77]. Otherwise, the band
crossing would lie in a nodal loop in the neighboring HSPL,
with the results listed in Sec. II D of Ref. [77].

Case (c). k is an HSPL. The same as cases (a) and (b),
we should check whether it can own a degenerate irrep which
splits into GPs, and if so, k can be a nodal surface. Such nodal
surface just coincides with the HSPL. These results are listed
in Sec. III A of Ref. [77].

Besides, if there exist two different irreps of G(k), k can
thus host a nodal loop of which the Bloch states in the HSPL
correspond to these two different irreps of G(k). We list the
corresponding results in Sec. III B of Ref. [77].

In Table I, we show the concrete sections where the results
for specific type of band node are listed in Ref. [77]. As
applications, we propose two Hopf-link structures from our
results: one is formed by a straight nodal line threading a
nodal loop while the other is formed by two nesting nodal
loops. For the former case, all possible results are given in
Sec. IV of Ref. [77], from which, we list essential cases in
Table II in the main text. For the latter, we first list all possible
combinations of two different irreps in HSL in Sec. V of
Ref. [77], for which, two bands in the HSL with two different
irreps cross each other and the band crossing point could lie
in the nodal loop(s) within neighboring HSPL(s) (there are

two inequivalent HSPLs containing the HSL). Then if two
or more HSPLs containing the HSL could host nodal loops
originated from one band crossing in the HSL, these nodal
loops would link each other by the band crossing point. On the
contrary, if the two nodal loops in the two inequivalent HSPLs
are not linked by a point, they have a chance to form a nesting
Hopf-link structure as shown in Fig. 1(c3). For this, the band
crossing in the HSL could indicate only one nodal loop in
one HSPL while there also exists another band crossing in
this HSL indicating another nodal loop in another HSPL.
These results are listed in Sec. VI of Ref. [77]. Though such
situation may not imply a Hopf-link to exist necessarily, we
propose a strategy by which we can tune a Hopf-link to appear
easily: We can require one nodal loop in the Hopf-link to
be essential, for example, due to hourglass band connectivity
while the other nodal loop is accidental, as demonstrated in
Fig. 1(c3) by a “twisted-hourglass.” We list all possible such
“twisted hourglasses” in Table III of the main text and also
show concrete material example following the strategy.

In the following sections, we first illustrate the irreps in
HSPL for which the situation is very simple and the results
for nodal surfaces and loops can be obtained.

III. HSPL: BEING NODAL SURFACE
OR HOSTING NODAL LOOP

By definition, the little group of the HSPL must contain
two elements: identity E and mirror (or glide) M. In gen-
eral M2 = TRE where TR is a translation operator and the
translation R is the translation part of M2, parallel with the
HSPL. Concretely, for k in the HSPL, M2 → e−ik·R so that
the eigenvalue of M can be λM = ±e−ik·R/2 or λM =
±ie−ik·R/2, for single and double valued representations, re-
spectively (in other words, for negligible and significant SOC,
respectively). In fact, the little group G(k) owns two different
irreps corresponding to two opposite eigenvalues of M. Since
in the HSPL, the Bloch Hamiltonian Hk commutes with M,
each band in the HSPL can be labeled by λM or equivalently
the irrep of G(k). Note that we don’t consider TRS in the
above discussion and in this setting, HSPL thus could host
a nodal loop when two bands with inverse values of λM

cross each other. These results are listed for all 230 SGs in
Sec. III B of Ref. [77], from which we note that the results
for negligible and significant SOC are the same which can be
easily understood from above.

Furthermore, since both of the two irreps in the HSPL
without TRS are nondegenerate, the HSPL cannot become a
nodal surface. However, when considering TRS, one should
check whether there exists an SG operator, denoted by β,
whose point part being pβ , acts on k resulting in that pβk =
−k + G, where G is an arbitrary reciprocal lattice vector.
If this is true, one should check the effect of T β (T is the
time-reversal operator) on the two irreps of G(k). Then one
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FIG. 1. (a) Demonstration of diagnosing nodal loop from band structure along an HSL. Two bands plotted in different colors in HSPL C
cross each other to form a nodal loop indicated by the purple curve. Only from the HSL X ∈ C, the band structure shown in the right panel
clearly shows the band crossing by X1 and X2, we can know the existence of a nodal loop lying in C, required by the CRs. (b) The Hopf-link
nodal structure consisting of a straight nodal line (itself being an HSL, and here it’s MZ) in orange threading a nodal loop (in green) lying in
an HSPL (here, MXY) where M is the intersection point of the HSL and HSPL. (c1-c4) Consider two HSPLs, named, by L and M and the
intersection of them, the HSL G. L and M could host a nodal loop, respectively. The nodal loops can be diagnosed from the band crossing
points lying in G. Owing to the CRs, the symmetry-content of the band crossing, uniquely determine where the resulting nodal loop(s). For
(c1), all of the band crossings in G lie in two nodal loops within L and M. For (c2), some band crossing in G can lie in two nodal loops in L
and M while some can only lie in one nodal loop within L or M. These two cases correspond to nodal chain structure. For (c3) and (c4), all
the band crossings in G can only lie in one nodal loop in L or M, providing the possibility of realizing a nesting Hopf-link nodal structure. In
the inset of (c3), we display a twisted hourglass where the top is dragged downward to cross the two necks, resulting in two band crossings (in
blue) and form a nodal loop. The nodal loop possibly nests with another one formed by the essential nodal point (in orange) corresponding to
the crossing of the two necks.

could be encountered with three possible situations [74] listed
in the following: (1) each of the irreps can be related with
itself preserving the nondegeneracy; (2) each of the irreps can
be related with itself doubling the degeneracy resulting in a
two-dimensional (2D) (co-)irrep; or (3) two different irreps
are related with each other leading to a 2D (co-)irrep.

Note that in the strict manner we should use “co-irrep”
when antiunitary symmetry is considered but we still use the
term “irrep” without any ambiguity in this work. The above
three situations have been attributed to any irrep of little group
on the Bilbao server [75] by the “reality” of the irrep. In the
above first two situations, there are still two different irreps
in the HSPL while in the third, there is only one irrep. As
discussed in case (c) in Sec. II, when two different irreps exist,
namely, in the first or second situation, twofold or fourfold de-
generate BTs may occur in the HSPL, respectively. Such BTs
contain the two different irreps of the HSPL and constitute a
nodal loop. On the other hand, when 2D irrep(s) are formed
for the second and third situations, the HSPL may become
a flat nodal surface if the SG is not centrosymmetric when
SOC is included, otherwise the bands in the HSPL would not
split in any direction away from the HSPL due to Kramers
degeneracy. And when SOC is negligible, all cases in the
second and third situations are flat nodal surfaces. The results
for all nodal surfaces can be found in Sec. III A of Ref. [77],
and it is easy to conclude that they also essentially form nodal
surfaces.

IV. HSL: BEING STRAIGHT NODAL LINE OR HOSTING
BAND CROSSING LYING IN NODAL LOOP OR IMPLYING

A NODAL SURFACE

In the following, we discuss nodal lines/loops which are
related with the irreps and CRs in the HSL. Different from
HSLs, the point group of HSL may contain cn rotation with
the rotation axis along the HSL, thus more irreps would be
found. The same as the above discussion, the HSL may itself
form a nodal line. For this case, we also require that the HSL
should allow at least one degenerate irrep which splits in any
direction away from the HSL. For the effect of antiunitary
symmetry T β when TRS is considered, it may remove the
splitting and thus may turn the original straight nodal line
to lie in a nodal surface, or it may create a straight nodal
line when it pairs two irreps in the HSL together. For any
degenerate irrep in the HSL, it may imply a nodal surface if
the irrep keeps being the sole irrep in neighboring HSPL while
this irrep splits in GPs.

Besides, two bands with different irreps in the HSL may
cross each other resulting a band crossing point in the HSL.
Such a band crossing point may simply be a nodal point,
namely, the bands split in any direction away from it. Oth-
erwise it must lie in a nodal loop within some HSPL which
contains the HSL. In order to know which case to occur, we
should firstly know all possible (inequivalent) HSPLs contain-
ing the HSL (denoted by k) as shown in Fig. 1(c), denoted by
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TABLE II. The SGs allowing Hopf-link structure with essential
straight nodal line threading one essential nodal loop within an
HSPL. The first column lists the corresponding SGs. The second col-
umn contains the positions of HSPLs where the essential nodal loops
occur. The third column lists HSLs forming essential straight nodal
lines. Note that there is no result for the setting of (TRS,NSOC). Our
name convention follows exactly that adopted on the Bilbao server
[75] and the coordinates can also be found there.

SG HSPL HSL SG HSPL HSL

Time-reversal symmetry broken, neglecting SOC

52 L E 60 W H
N D 61 K A
V H M D

54 M D V H
N D 62 V H

56 K C W Q
L A 130 B Y
M D F U
N B 135 E W

57 K A 138 B Y
L A F U

60 K A 205 A ZA
M D

Time-reversal symmetry broken, considering SOC

48 K E 61 L C
L SM N B
M P W G
N DT 62 K E
V Q L C
W LD 126 B T

50 L A E LD
N B F DT
V Q 130 E LD
W Q 132 E W

52 L SM 133 E V
M P F DT
W LD F U

56 V Q 134 B T
W LD F DT

59 V Q 137 E V
W Q 201 A T

60 L E B DT
N DT 222 B DT
W G

Time-reversal symmetric, considering SOC

29 N D 61 W G
M D L C

30 L C N B
K C 62 L C

31 N D 102 B Y
M D F U

33 K C 104 B Y
M D F U

34 K C 109 A Y
N B 110 A Y
L A 118 B Y
M D F U

60 W G 122 A Y
L E 205 B Z

TABLE III. All the positions of the Hopf-link structure formed
by two perpendicular nodal loops, one of which is essential nodal
loop. The first column lists the corresponding SGs. The second col-
umn lists HSLs hosting more than one kind of irreps doublet. In the
third and fourth column it contains the positions of two HSPLs where
the nodal loops occur. The HSPLs hosting essential nodal loops are
marked in red.

SG HSL HSPL

Time-reversal symmetric, considering SOC

29 G L M
29 Q L N
31 G L M
31 Q L N
33 G L M
33 H K N
62 Q L N

Time-reversal symmetric, neglecting SOC

33 Q L N
52 P L W

Time-reversal symmetry broken, considering SOC

52 D L V
54 A M W
54 E N W
56 A M W
56 B K W
56 C N V
56 D L V
57 H K N
57 Q L N
59 C N V
59 D L V
59 E N W
59 P L W
60 A M W
60 H K N
61 A M W
61 D L V
61 H K N
62 B K W
62 D L V
62 H K N
62 Q L N
130 U B E
137 T E F
205 ZA A B

Time-reversal symmetry broken, neglecting SOC

52 P L W
57 B K W
57 P L W
60 E N W
60 G L M
61 B K W
61 C N V
61 G L M
62 C N V
62 E N W
205 Z A B
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Ka, Kb,... Assume that the band crossing in the HSL contains
two different irreps as D(k)1 and D(k)2. Then we should
subsequently check whether these two irreps can still maintain
to be two different irreps in Kj ( j = a, b, . . .) according to the
CRs, i.e.,

D(k)1 → D(Kj )
m, D(k)2 → D(Kj )

m′
, (2)

where m, m′ denote two different irreps in Kj . If the con-
dition in Eq. (2) is satisfied, there must be a nodal loop in
Kj . As shown in Fig. 1(a), two bands with different irreps
indicated by different colors in HSPL, C, cross each other
to form a nodal loop. Conventionally one need to calculate
band structures along many paths in the HSPL to identify
the existence of a nodal loop. This method is not very con-
venient especially when the nodal loop is very small in size.
However, as discussed above, one can diagnose nodal loop
from band crossing in HSL, and such identification of nodal
loop is more operable. As in Fig. 1(a), X ∈ C, is an HSL
and could host different irreps, as denoted by X1 and X2,
thus allowing robust symmetry-enforced band crossing. This
band crossing can be found quickly in the band structure
along X in Fig. 1(c). Actually the band crossing containing
X1 and X2 must lie in a nodal loop in HSPL C, from the
knowledge of CRs. We list all doublets of irreps in the HSL
exhaustively which could form a band crossing in this HSL
and preserve to be two different irreps in the neighboring
HSPL, namely resulting in a nodal loop in this HSPL, in
Sec. II D of Ref. [77]. In total, there are 466, 466, 428,
194 HSPLs, which can host nodal loops in the settings of
(NTRS,NSOC),(NTRS,SOC),(TRS,NSOC),(TRS,SOC), re-
spectively. Among these HSPLs, 440, 356, 398, 185 HSPLs
could contain at least one HSL of which the band crossing
could imply a nodal loop in the HSPL.

Next we should point out that such simple strategy could be
used to find various geometrical structures of different nodal
loops. Note that when the HSL has symmetry of cn when
n = 2, 4, 6, there would be two inequivalent HSPLs associ-
ated with one HSL. And for n = 3, 4, 6, cn could relate one
HSPL with the other 2, 1, 2 equivalent HSPLs, respectively.
For the latter case, when the band crossing in the HSL which
indicates a nodal loop exist, there would be naturally a nodal
chain structure formed by the other 2, 1, 2 nodal loops, re-
spectively. In the following, we consider the situations where
two inequivalent HSPLs exist, within which two nodal loops
have a chance to form a Hopf-link structure.

Possible configurations of nodal loops in several HSPLs

Different from isolated nodal points, nodal loops own more
kobs to tune the Fermi surface geometry and its topology. The
nodal loops can be isolated, which can be tuned to be gapped
or contract into nodal points. Interestingly, the nodal loops can
also be linked at a point or nested, allowing more fruitful evo-
lutions under external perturbations. We here proposed that,
among the two inequivalent HSPLs that contain the HSL, if
both of the two HSPLs could host a nodal loop from the band
crossings in the HSL, we can obtain possible configurations of
these nodal loops simply from CRs. For simplicity, as shown
in Figs. 1(c1)–1(c4), we show two HSPLs where there could
exist a nodal loop in respective HSPL. Generally, we could

classify the band crossing in the HSL into two types; for one
type, it lies in both nodal loops in the two HSPLs while for
the other type, it only lies in one HSPL. Obviously, the first
type requires that the two nodal loops in the two HSPLs link
each other at the band crossing point in the HSL as shown in
Fig. 1(c1), forming a nodal chain. For the second type, if all
possible band crossings in the HSL result in only one nodal
loop in the respective HSPL, the nodal loops must not be
linked with each other as shown in Figs. 1(c3) and 1(c4): For
Fig. 1(c3), the two nodal loops constitute a Hopf-link nodal
structure [79]. Note that for Fig. 1(c2), both of the two types of
band crossings in the HSL exist, and it shows another possible
configurations forming a nodal chain structure.

Note the inset of Fig. 1(c3). There we show a “twisted
hourglass” where the top band of the hourglass is sketched
to intersect with the two necking bands, and these two band
crossings (in blue) are accidental (while the band crossing (in
orange) from the two necks is essential due to the hourglass-
band connectivity). When these two accidental band crossings
form a nodal loop (in blue) in one HSPL (M), this nodal loop
would possibly nest with another nodal loop (in orange, which
is originated from the hourglass essential band crossing) in
another HSPL (L).

V. HSP: NODAL POINTS OR IMPLYING NODAL
LINES/SURFACES

Lastly, we consider the HSPs. Note that different from HSL
or HSPL, even though two energy bands at the HSP with two
different irreps are tuned to be accidentally degenerate, such
BT is easy to be gapped even with small perturbations. In
order to own a band node related with the HSP, the HSP must
own a degenerate irrep. To guarantee the irrep to constitute a
nodal point, it is required that the irrep should split in any di-
rection away from the HSP. And since the HSP owns a higher
symmetry than any neighborhood, it is natural to think that
the irrep should be split naively. However, this is not always
true. If the irrep cannot split to the neighboring HSL, the irrep
can be used as the indicator of a nodal line (simply being the
HSL), when it is further found that the irrep in the HSL splits
in all neighboring HSPLs. Besides, when the irrep in the HSP
is found to become one irrep in a neighboring HSPL, it then
indicates the nodal surface (simply being the HSPL), when the
irrep could split in GPs. Note that the discussions above are
all based on CRs, not replying on any k · p models [22,41–
43,45], thus the type of band nodes diagnosed from the HSP
is not dependent on the cutoff of the k · p expansion.

VI. ESSENTIAL CASES

So far we are mainly concerned with the possible posi-
tions in the BZ where the nodal points/lines/loops/surfaces
could appear. The identification for them may need further
calculations of irreps. However, some of them are found to
be essential, which means that they must exist as long as
the material belongs to the required SGs in suitable setting
even without checking the electronic band structures. We have
pointed out that the nodal surfaces as listed in Sec. III A of
Ref. [77] are all essential and thus we only discuss essen-
tial nodal points/lines (loops) in the following. The essential
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cases are of important significance since they are promising
to help in predicting ideal semimetals which host band nodes
nearly around the Fermi level.

For essential nodal point pinned at HSPs or straight nodal
line that coincides with an HSL, it is required that all possible
irreps in the HSP/HSL should be degenerate and furthermore,
they all split in the neighborhood. The results are printed in
red as shown in Secs. I A and II A of SM [77]. For essential
nodal points/loops lying in HSLs/HSPLs, we restrict our
discussions to those guaranteed by hourglass band connec-
tivity. As discussed in Ref. [80], hourglass band structure
can occur in R-X-B where X is HSL or HSPL connecting
high-symmetry momenta R and B. When X is an HSPL, the
hourglass band connectivity leads to nodal loop in the HSPL,
and if the hourglass band connectivity is essential, the nodal
loop is thus essential. These results have been summarized in
Table IV of Ref. [80] for which each point in the nodal loop
corresponds to an hourglass structure. Besides, when X is an
HSL, essential hourglass band connectivity could guarantee
an band crossing in the HSL. Further analysis on splitting
patterns based on CRs (see Sec. IV) could also give rise to
essential nodal loop in the neighboring HSPL containing the
HSL or simply the essential nodal points. These results are
printed in red in Secs. II C and II D of Ref. [77].

VII. APPLICATIONS

Hereafter we focus our discussions on the formation of
nodal lines and loops. With the vast body of all possible nodal
(loops) organized as in Secs. II A and III B of Ref. [77], one
could find materials or systems by fixing the SG symmetry. As
long as the required SG symmetry is fulfilled, the system thus
has a chance to host nodal lines/loops. Furthermore, if the SG
could essentially host nodal lines/loops, the nodal structures
must exist. Given concrete types of nodal lines/loops and

their positions, we can also design target nodal structures. A
straight nodal line threads a nodal loop as shown in Fig. 1(b)
forming a Hopf-link [81], for which the essential results are
shown in Table II where all the nodal lines and loops are
essential. For two nodal loops, as described in Sec. IV A,
when two band crossings in an HSL result in two nodal loops
lying in two inequivalent HSPLs containing the HSL, there
is a chance for the two nodal loops to nest with each other
[79]. For materials realization, we propose a more feasible
strategy: we first require one nodal loop to be essential, for
example, formed by an hourglass band connectivity while the
other nodal loop is formed by an accidental band crossing
in the hourglass structure. This is schematically shown in
the inset of Fig. 1(c3) by a “twisted hourglass.” All such
hourglasses are listed in Table III. From this table, we find that
when the TRS is broken, e.g., in magnetic materials, there is
still or even a better chance of realizing the Hopf-link nodal
structure. This affords a guide of finding spin-polarized topo-
logical Hopf-link semimetals promising in spintronics. In the
following, we show two SGs: SGs 34 and 62 and analyze all
possible symmetry-enforced nodal lines/loops. Interestingly,
they could allow the two kinds of Hopf-link nodal structures
regarding nesting structures consisting of one line and one
loop or two loops.

A. SG 34: Hopf-link structure of nodal line and loop

In this section, we take SG 34 as examples to demonstrate
detailed analysis on all possible nodal lines/loops considering
TRS and SOC. In the following, we show in detail how to
obtain these results.

SG 34 is nonsymmorphic with two glide planes and the
point group of SG 34 is C2v [74], so SG 34 is noncentrosym-
metric. The BZ for SG 34 is shown in Fig. 2(a). As listed on
the Bilbao server [75], SG 34 owns 12 HSLs as

G(1/2, 0,w), H (0, 1/2,w), LD(0, 0,w), Q(1/2, 1/2,w), A(u, 0, 1/2), B(0, v, 1/2),

C(u, 1/2, 0), D(1/2, v, 0), DT (0, v, 0), E (u, 1/2, 1/2), P(1/2, v, 1/2), SM(u, 0, 0),

and the following parentheses contain the coordinates
adopting the convention in the Bilbao server [75]. Through
checking their irreps, we find that LD, Q, A, B, C, D own
only one 2D irrep, G and H own four 1D irreps while the
rest HSLs own two 1D irreps. For LD, Q, A, B, C, and D,
all of them are essential nodal lines since their sole irreps split
in neighboring HSPLs. Take the HSL C as the example, the
2D irrep is represented by C3,4 (which means that irreps C3
and C4 are paired considering TRS). HSPLs N (u,1/2,w) and
V(u,v,0) can be associated with C, while the irreps of N and V
are represented by N3, N4, and V2, respectively, all of which
are 1D [75]. Through the CRs [75]:

C3, 4 → N3 + N4,

C3, 4 → 2V2,
(3)

we know that the bands in C must split in N and V, thus C is an
essential straight nodal line. The essential nodal lines in HSLs
LD, Q, A, B, and D could also be obtained based on similar
analysis. The configuration of these nodal lines are displayed
in Fig. 2(a) by thick purple lines including S-R (Q), S-X (D),
S-Y (C), Z-U (A), Z-GM (LD), and Z-T (B).

Next, let’s consider the HSPLs of SG 34, namely, K(0,v,w),
L(1/2,v,w), M(u,0,w), N (u,1/2,w), V(u,v,0), and W(u,v,1/2).
All of these HSPLs could only host 1D irreps, and K, L,
M, N could host two 1D irreps while V and W could
only host one. Hence, all these HSPLs cannot be a nodal
surface but for K, L, M, N, they could host nodal loops.
Furthermore, all these nodal loops are essential and hour-
glass nodal loops [80]. Here we should point out that they
can be related with essential band crossings in related HSLs.
For example, the band crossings from irreps DT3 and DT4
in HSL DT must lie in the nodal loops in K, due to
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FIG. 2. (a) The BZ of SG 34 (primitive orthorhombic lattice). All possible nodal lines (in purple) are shown as �-Z, U-Z, T-Z, S-R, S-Y,
and S-X. The band crossing in T-Y (denoted by H1) lie in two nodal loops in the HSPLs ZY and ST, respectively. Besides, these nodal loops
can also be diagnosed from the band crossings E1 and DT1, within HSLs T-R and �-Y. Here we also demonstrate that the nodal loop around
T is threaded by the nodal line Z-T while the nodal loop around Y is threaded by the nodal line S-Y. Similarly, the band crossing in the HSL
U-X, denoted by G1, lie in two nodal loops within two HSPLs, ZX and XR, respectively. These two nodal loops can also be diagnosed by
the band crossings of P1 and SM1, and they are also threaded by two nodal lines. (b) The first-principles calculated electronic band structure
of B5Pb2IO9 in SG 34: All related HSLs for nodal lines/loops are chosen. Note that there is an accidental band crossing in HSL Y-T labeled
by dashed purple circle, which is further found to be a nodal point. The band structures in the nodal lines are plotted in purple. (c) The BZ
of SG 62 (the primitive orthorhombic lattice). The nodal lines are printed in purple including U-Z, U-X, U-R, T-R, and S-Y. Here we show a
complex nodal structure comprised of both types of Hopf-links and a nodal chain. The band crossings Q3 and D1 are essential which imply
two nodal loops within the HSPL RX. The accidental band crossings Q1 and Q2 imply a nodal loop in HSPL TS which is linked with the nodal
loop from D1 and nested with the nodal loop from Q3. Note that the accidental band crossing D2 also implies the nodal loop from Q3. (d) The
first-principles calculated electronic band structure of SrAl2Au3 in SG 62 where the band crossings shown in (c) are denoted. The inset shows
a twisted hourglass in the HSL R-S. The band structures in the nodal lines are plotted in purple.

that

DT3 → K3,

DT4 → K4.
(4)

As displayed in Fig. 2(a), four nodal loops lie in HSPLs
XZ (M), XR (L), YZ (K), and YR (N). From Sec. II D1
in Ref. [77], we find that, the band crossing in HSL GM-X
(SM) indicates an essential nodal loop in the HSPL XZ (M),
the band crossings in HSL U-R (P) indicates an essential
nodal loop in HSPL XR (L). Note that these band crossings
can only indicate one nodal loop. For example, though the
HSL U-R (P) lies in HSPL ZR (W), the two irreps in P both
decompose to the sole irrep in W, so it is impossible for a
robust nodal loop to exist in the HSPL W. Similarly, the band
crossing in HSL R-T (E) indicates an essential nodal loop in
the HSPL YR (N), the band crossings in HSL GM-Y (DT)
indicates an essential nodal loop in HSPL YZ (K) and these
band crossings can only indicate one nodal loop. Interestingly,
the essential band crossings in HSL U-X (G) originated by
G2 + G4 or G3 + G5, both could indicate two essential nodal
loops as in Fig. 2(a). Similarly, the essential band crossings in
HSL T-Y (H) originated by H2 + H4 or H3 + H5, both could

indicate two essential nodal loops as in Fig. 2(a). Hence, the
essential band crossings in G or H could indicate a nodal chain
structure. Here we highlight the Hopf-link structure when
including the essential straight nodal lines in S-X, Z-U, S-Y,
and Z-T which just threading the four essential nodal loops
shown in Fig. 2(a).

It is worth mentioning that other than the above essential
nodal lines/loops, the accidental band crossings in G formed
by G2 + G3 or G4 + G5 could only indicate a nodal loop in
M while the band crossings formed by G2 + G5 or G3 + G4
could only indicate a nodal loop in L. Similarly, the accidental
band crossings in H formed by H2 + H3 or H4 + H5 could
only indicate a nodal loop in N while the band crossings
formed by H2 + H5 or H3 + H4 could only indicate a nodal
loop in K.

B. SG 62: Hopf-link structure of two nodal loops

In the following, we will demonstrate that SG 62 protects
the existence of another type of Hopf-link nodal loops. The
analyses are as follows. Since SG 62 is centrosymmetric, no
symmetry-enforced nodal surface could exist. With respect to
nodal lines coinciding with HSLs, we should consider the
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HSLs for SG 62, which are the same as those for SG 34.
And HSLs A, C, E, G, and P could host only one 4D irrep
due to nonsymmorphic symmetries, B, D, and H could host
2 2D irreps, DT, LD, and SM could host only one 2D irrep
while Q could host 4 2D irreps. Thus only A, C, E, G, and
P could be straight nodal lines since the 2D irreps in other
HSLs cannot split in general point due to Kramers degeneracy.
They are actually essential straight nodal lines from the CRs
on the Bilbao server [75] and displayed in Fig. 2(c) by thick
purple lines where A is Z-U, C is S-Y, E is T-R, G is X-U, and
P is U-R.

Then investigate the HSPLs. Only HSPLs L (XR), N (YR),
and W (ZR) could host nodal loops for they can host two
2D irreps. They are all located in the BZ boundaries. First
consider W, and the band crossing formed by the two irreps in
HSL Z-T (B) could indicate the nodal loop in W, but the band
crossing is not essential. For the rest two HSPLs, namely, L
and N, the nodal loop in L is essential while the nodal loop in
N is accidental. However, these two nodal loops could form a
Hopf-link nodal loop structure as shown in Fig. 2(c). Consider
two HSLs, S-X (D) and S-R (Q) that related with L or N
and could own band crossings. The two 2D irreps in D must
form a band crossing due to the hourglass band connectivity
[80] and lie in the nodal loop in the HSPL L as shown by
the orange ring in Fig. 2(c). As a matter of fact, such orange
ring can also be indicated essentially by the band crossing in
the HSL Q, which have four different 2D irreps Q2,2, Q3,3,
Q4,4, and Q5,5. In fact, the band crossing by Q2, 2 + Q5, 5
or Q3, 3 + Q4, 4 are essential due to hourglass connectivity
[80]. From the CRs as follows:

Q2, 2 → L3, 3, Q3, 3 → L3, 3,

Q4, 4 → L4, 4, Q5, 5 → L4, 4,

Q2, 2 → N4, 4, Q3, 3 → N3, 3,

Q4, 4 → N3, 3, Q5, 5 → N4, 4,

(5)

we know that there is an essential nodal loop within the
HSPL L due to band crossing in Q due to Q2, 2 + Q5, 5 or
Q3, 3 + Q4, 4. However, such band crossing cannot result in
nodal loop in another HSPL N since both Q2,2 and Q5,5 (Q3,3
and Q4,4) decompose to the same irrep N4,4 (N3,3) in N.
If the accidental band crossings formed by Q2, 2 + Q3, 3 or
Q4, 4 + Q5, 5 as in a “twisted hourglass,” the band crossing
formed by Q2, 2 + Q3, 3 or Q4, 4 + Q5, 5 can result in only
one nodal loop that lies in the HSPL N from Eq. (5). Hence,
it is thus possible to realize a Hopf-link structure with the two
loops in L and N. Moreover, the nodal loop in the HSPL L is
essential which means the nodal loop in L must exist and we
only need to tune material parameters (keeping SG symmetry)
to make required accidental band crossing in Q, which leads
to the other nodal loop in N. It is worth mentioning that for
the band crossing by Q2, 2 + Q4, 4 or Q3, 3 + Q5, 5 which
is nonessential, it could indicate two nodal loops in the two
HSLs L and N, respectively, and result in a nodal chain struc-
ture.

C. Nodal line/loop materials

Based on the essential results shown in Secs. II A and
III B of Ref. [77] and the Inorganic Crystal Structure

Database [82], we find hundreds of promising materials with
nodal lines/loops shown in Sec. VII of Ref. [77] (see, also,
Refs. [83–88] therein) combined with first-principles calcula-
tions, where the concrete positions of the nodal lines/loops
near the Fermi level are also given. These materials are
all nonmagnetic materials, and their number of elements is
less than five. More than half of the materials are binary or
ternary compounds. Besides, these materials have relatively
band nodes near the Fermi level. It is worth pointing out
that Refs. [62–64] diagnosed topological semimetal phase
by checking breaking of CRs, not caring too much on the
concrete types and positions of the nontrivial band cross-
ings, while here we also check the electronic band structures
through detailed band plots and then identify detailed infor-
mation (shape, energetics etc.) of the nodal lines/loops around
the Fermi level. In Sec. IX of Ref. [77], we choose five
materials to show the concrete electronic band structures and
the nodal loops.

In the following, we take B5Pb2IO9 [89] crystallizing in SG
34 and SrAl2Au3 [90] crystallizing in SG 62 as two materials
examples in the main text. These two SGs could showcase
various essential nodal loops in several HSPLs with coexisting
essential straight nodal lines. Here we highlight that they
could present two kinds of Hopf-link structures as discussed
above.

Firstly we showcase B5Pb2IO9 [89] crystallizing in SG 34
with orthorhombic lattice, whose first-principles calculated
band structure is shown in Fig. 2(b), where the k-paths are
chosen to cover the theoretical predicted k,s which could be
essential nodal line or host essential band crossing imply-
ing a nodal loop, as in Sec. VII A. From the band structure
in HSLs U-X (G), U-R (P), �-X (SM), T-Y (H), T-R (E),
and �-Y (DT), we can find essential hourglass band cross-
ings label as G1, P1, SM1, H1, E1 and DT1 respectively. As
shown in the above, these band crossings could imply nodal
loops in respective HSPLs: G1 and H1 indicate two
nodal loops in two perpendicular HSPLs (thus forming
a nodal chain) while the rest band crossings only lie in one
nodal loop within corresponding HSPL. These nodal loops
from first-principles calculations are demonstrated in Fig. 2(a)
by green or orange cicles. Besides, the nodal lines that co-
incide with HSLs are plotted in purple in the BZ where the
electronic band structure is also shown by purple curves in
Fig. 2(b). Other than the nodal chain structures, the straight
nodal line threading the nodal loop also constitute a Hopf-link
structure.

Next we showcase the materials SrAl2Au3 [90] crystalliz-
ing in SG 62 with orthorhombic lattice, whose first-principles
calculated electronic band structure and fascinating nodal loop
structure are shown in Figs. 2(d) and 2(c), respectively. The
band crossings in S-X (D) and S-R (Q) that are relevant
with the nodal loops we display are denoted by orange or
green dashed circle in Fig. 2(d). These band crossings are
also named by Di, Q j (i = 1, 2, j = 1, 2, 3) labeled near the
dashed circles. Based on first-principles results, we find that
D1 and D2 contain the irreps D2, 3 + D4, 5 while Q1, Q2,
Q3 contain irreps of Q4, 4 + Q5, 5, Q2, 2 + Q4, 4, Q2, 2 +
Q5, 5, respectively. We also show these nodes in Fig. 2(c) in
the BZ, exactly corresponding to those in Fig. 2(d). Consis-
tent with the above theoretical analysis, it can be found that
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along with the band nodes of Di, Q j (i = 1, 2, j = 1, 2, 3),
there exist four nodal loops forming very intriguing structures:
The orange nodal loops from D2 and Q3 is essential (Q3

is essential while D2 is not), which is nested with the Q1,2

related nonessential nodal loops. Note that Q2 also indicates
another nodal loop in green so that the blue nodal loops
are linked with the green one. Interestingly, the green nodal
loop contains a band crossing D1 which is essential. Since
these nodal loops are not very far from the Fermi level, this
material is thus expected to be experimentally studied on
the predicted nodal loops and the related consequences in
future.

VIII. CONCLUSIONS AND PERSPECTIVES

We study exhaustively all types of band nodes based on
CRs for all 230 SGs. The single-valued and doubled irreps
are considered with respect to spin-orbit coupled and free
systems, respectively. And the TRS is also considered to affect
the irreps and CRs, which could lead to significant effects
on the formation of nodal loops and surfaces in HSPLs. The
nodal surfaces we found are all enforced by crystallographic
symmetries. For these flat nodal surfaces, TRS should be
considered otherwise the HSPL only own two nondegenerate
irreps. Besides, the SGs allowing flat nodal surfaces should
be noncentrosymmetric when SOC is also included. Also,
these nodal surfaces are found to be all essential. Furthermore,
the HSPLs which own two different irreps whether TRS is
considered or not could host a nodal loop. We also study
straight nodal lines coinciding with the HSLs, some of which
are found to be essential. The band crossing in an HSL and the
irrep at HSP can be exploited to diagnose nodal loops in a con-
venient way. The essential band crossings in HSLs indicating
nodal loops in neighboring HSPLs and these essential nodal
loops enforced by hourglass band connectivity are also given.
When the band crossing in the HSL cannot imply a nodal loop,
it is just a nodal point. The irreps at HSP can not only imply
nodal lines/surfaces, they can also be a nodal point. Finally,
we take SGs 34 and 62 as the examples to demonstrate com-
prehensive analysis on all possible nodal lines/loops based on
our results in Ref. [77]. Interestingly, these two SGs could host
two kinds of Hopf-link nodal structures formed by a nodal line
and a nodal loop, or formed by two nodal loops. B5Pb2IO9 in
SG 34 and SrAl2Au3 in SG 62 can host these two kinds of

novel Hopf-link structures, respectively. The promising SGs
for these two kinds of Hopf-link structures are listed in the
main text, respectively. These results are expected to be used
in designing artificial systems that can own such Hopf-link
structure, simply based on the crystal symmetry. They also
throw light on constructing low-energy models with Hopf
links.

It is worth mentioning that our results can be also used to
find materials realizations other than nonmagnetic electronic
systems. Besides, type-III and IV magnetic SGs are out of
our scope of study, but our strategy can be easily generalized
to these settings once their CRs are obtained. And 80 layer
groups for 2D materials or surfaces of 3D materials, though
being the subsets of 230 SGs, could bring about nontrivial
results since the high-symmetry momenta for layer groups are
much simpler than SG cases thus the HSPLs accommodating
the nodal loops in SGs may not exist in layer groups. We
expect that our tables for all types of symmetry-enforced
band nodes can be applied to the design for more new and
even ideal semimetals with targeted nodal structure in near
future.

Note added. Recently, Ref. [91] appeared, which is based
on a similar idea and discusses the superconducting nodes
pinned to any line in momentum space. However, this work
is different from Ref. [91] in terms of the formulation and the
mathematical approach adopted. We give an exhaustive search
for all types of band nodes and a scheme of the realization
of the Hopf-link structure, which affords a guide of finding
specific topological semimetals.
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