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The modulation is analyzed from the analytical properties of zeros of the free fermionic partition function
on the complex plane of wave numbers. It is shown how these properties are related to the oscillations of
correlation functions. This approach can be used for analysis of phase transitions with local or nonlocal order
parameters, as well as for the disorder lines. We find an infinite cascade of disorder lines at finite temperature in
the quantum XY chain (equivalent to free fermions). The well-known ground-state factorization on the disorder
line, and consequently disentanglement, is shown to follow directly from analytical properties of this model on
the complex plane. From the quantum-classical correspondence the results for the chain are used to detect the
disorder lines in several frustrated two-dimensional Ising models. The present formalism can be applied to other
fermionic models in two and three spatial dimensions. In particular, we find the temperature-dependent Fermi
wave vector of oscillations in the degenerate gas of three-dimensional fermions, which naturally leads in the
limit T → 0 to the definition of the Fermi energy as the surface of quantum criticality. The modulation is a very
common phenomenon, and it occurs in a large variety of models. The important point is that all these modulation
transitions can be related to the complex zeros of partition functions, as done in the present study.
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I. INTRODUCTION

The fundamental notions of the Landau paradigm are the
local order parameter and the symmetry it breaks sponta-
neously [1]. There has been a huge recent effort to understand
whether various low-dimensional fermionic or spin systems
as quantum spin liquids, frustrated magnetics, topological and
Mott insulators, etc. [2–5], which lack conventional long-
ranged order even at zero temperature, can be dealt within the
Landau framework, or a new paradigm of topological order
[6] needs to be used instead.

The Landau paradigm, although extended to incorporate
nonlocal string order [7] and hidden symmetry breaking [8],
remains instrumental even for nonconventional orders [9–11].
The local and nonlocal string order parameters in the extended
formalism are related by duality, and probing a phase transi-
tion and relevant order becomes a matter of appropriate choice
of variables [9–16].

Probably the most fundamental rigorous approach in the
theory of phase transitions, applicable whatever is the nature
of order parameter or symmetry breaking, was pioneered by
Yang and Lee [17]. They related transitions to the zeros of
a model’s partition function, which in the zero-temperature
limit becomes the requirement of gap closure. The original
analysis of Yang and Lee of the ferromagnetic Ising model
was further extended for other models and the cases out of
equilibrium. For a short list of references, see, e.g. [18–22],
and more references in there.

In 1970 Stephenson [23–25] found a new type of weak
transitions in classical Ising models which he dubbed

“disorder lines” (DLs). The transition consists in changing
the behavior of the correlation functions from monotonic
exponential decay to the exponential decay modulated by
incommensurate oscillations. The weakness of such transition
is manifested in the behavior of the correlation length, which
demonstrates only a cusp at the disorder line point. A sim-
ilar transition was later found in the XY quantum chain by
Barouch and McCoy [26]. Disorder lines or, more broadly,
modulation transitions are quite general phenomena occurring
in a large variety of models [27–29], including the recently
reported pattern formation in QCD [30].

An important conclusion of our earlier work on the clas-
sical Ising chain [31] is that the disorder lines found by
Stephenson, and, moreover, the infinite cascades of disorder
lines found in [31], are zeros of the partition function in the
range of complex magnetic field. Similarly, the appearance of
modulations in the ground state of the quantum XY chain [26]
is related to zeros of the model’s spectrum on the complex
plane of wave vectors k ∈ C [32].

In this work we propose a unifying framework based on
the analysis of the roots for zeros of the partition function
on the complex plane of wave numbers. These roots combine
all possible solutions corresponding to the continuous phase
transitions, as well as to disorder lines where the modulation
sets in. From the analytical properties of the two-point Majo-
rana correlation functions on the complex plane, we relate the
appearance of oscillations in those functions on the disorder
lines to the analytical properties of the complex roots of the
partition function. We mainly discuss our results in the context
of the simple quantum XY chain in the transverse field which
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is dually equivalent to free fermions. Since the transfer matri-
ces of several two-dimensional (2D) Ising models commute
with the Hamiltonian of the quantum spin chain at some
special points [33–38], we extend our analysis on the disorder
lines in the 2D Ising models. The present formalism can be
straightforwardly applied for tight-binding lattice fermions or
a Fermi gas in two and three spatial dimensions. In particular,
we show that the complex roots for the zeros of the partition
function of the three-dimensional (3D) nonrelativistic degen-
erate gas of fermions naturally lead to the definition of the
temperature-dependent Fermi wave vector. The latter defines
the gapless Fermi surface of quantum criticality in the limit
T → 0.

The rest of the paper is organized as follows: In Sec. II
we present some general results for an arbitrary model of
noninteracting 1D lattice fermions to possess disorder lines.
In Sec. III we take XY quantum chain in transverse field as
an example to present our main results on zeros of partition
functions, modulation and cascades of disorder lines at finite
temperatures, factorization of the ground state and disentan-
glement. Sec. IV presents the results for disorder lines in
several 2D Ising model based on the equivalence between
quantum and classical models. In Sec. V we extend our anal-
ysis for the complex zeros of the partition function of the
degenerate 3D Fermi gas with a Fermi surface. The results
are summarized in the concluding Sec. VI.

II. DISORDER LINES IN QUANTUM CHAINS:
GENERAL ANALYSIS

We consider noninteracting spinless fermions cn defined on
the sites of a chain. The model is assumed to be periodic with
the period of one lattice spacing, and in the reciprocal space
its generic Hamiltonian can be written as [39]

H = 1

2

∑
k

ψ
†
k Ĥ(k)ψk , (1)

where the fermions are unified in the spinor

ψ
†
k = (c†(k), c(−k)) , (2)

with the wave numbers restricted to the Brillouin zone k ∈
[−π, π ], and we set the lattice spacing a = 1. We choose the
2 × 2 Hamiltonian matrix in the general form [39]

Ĥ(k) =
(

A B
B∗ −A

)
, (3)

with A(k) ∈ R and B(k) = |B|eiϕ . We diagonalize (1) by the
unitary Bogoliubov transformation

ÛĤÛ † = ε(k)σ̂ z (4)

with

Û =
(

cos ϑ − sin ϑeiϕ

sin ϑ cos ϑeiϕ

)
. (5)

The Bogoliubov angle ϑ is defined by the following equation:

tan ϑ =
√

ε − A

ε + A
= |B|

ε + A
, (6)

where ε(k) =
√

A2 + |B|2 is the spectrum of the Hamiltonian.

The new fermionic operators in the diagonalized represen-
tation are related to the original fermions as(

η(k)
η†(−k)

)
= Ûψk . (7)

In this noninteracting model all correlation functions can
be expressed via two-point average of Majorana operators
[32,39]

Gr = 〈iblal+r〉 =
∫ π

−π

dk

2π
eikrG(k), (8)

where

G(k) = 〈ib(−k)a(k)〉. (9)

The original lattice fermion is represented via two self-adjoint
(Majorana) operators as

an + ibn ≡ 2c†
n . (10)

In terms of the Fourier transforms:

a(k) = c(k) + c†(−k),
(11)

ib(k) = c(k) − c†(−k),

with

a†(k) = a(−k), b†(k) = b(−k) . (12)

From the above equations one readily finds the Fourier trans-
form of the Majorana correlation function as

G(k) = D(k)[〈η†(k)η(k)〉 − 〈η(−k)η†(−k)〉]
= D(k) tanh

ε(k)

2T
, (13)

where the generating function D(k) is found from the compo-
nents of the unitary Bogoliubov matrix:

D(k) = (U11 − U12)(U ∗
11 + U ∗

12) = A − (B − B∗)/2√
A2 + |B|2

. (14)

Introducing the complex variable

z = eik (15)

we can unify the above results in a single expression for
the Majorana correlation function as a loop integral on the
complex plane z:

Gr =
∮

|z|=1

dz

2π i
zr−1D(z) tanh

ε(z)

2T
. (16)

When r > 1 the contributions to Gr in Eq. (16) come from
nonanalytic properties of G(z) inside the unit circle. Except
for a few particular limits to be discussed later, the analytical
continuation of the generating function on the complex plane
D(z) has branch cuts, while tanh ε(z)

2T has poles at

ε(z) = iωn, ωn ≡ πT (2n + 1) (17)

(we set h̄ = kB = 1). As shown below, the appearance of the
poles (17) inside the unit circle signals the onset the incom-
mensurate (IC) oscillations in Gr , i.e, the disorder line as
defined by Stephenson [23,25].

A very fundamental point is that Eq. (17) defines zeros of
the partition function of a free-fermionic system [40]. When
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the magnetic field is analytically continued on the complex
plane, such zeros are called the Lee-Yang zeros [17], while
in the case of complex temperature they are called the Fisher
zeros [18]. Disorder lines are zeros of the partition function in
the complex range of parameters, as we have shown in earlier
work on the classical Ising and quantum fermionic chains
[10,31]. In the present work we systematically identify and
analyze the disorder lines as zeros of the partition function in
the range of complex wave numbers.

Denoting the roots of the partition function by 
α (n), one
can write Eq. (17) as

ε2(z) + ω2
n = A

m∏
α=1

(z − 
α (n)) . (18)

Using it in the expansion

tanh
ε

2T
= 4T

∞∑
n=0

ε

ε2 + ω2
n

(19)

for the Majorana correlation function in Eq. (16) yields

Gr =
∮

|z|=1

dz

2π i
zr−1D(z)ε(z)

∞∑
n=0

4T

A

m∏
α=1

(z − 
α (n))−1 .

(20)

Any complex pole of Eq. (20) inside the unit circle 
α (n) =
eiqn−κn gives the contribution

δG(n)
r+1 ∝ e−κnreiqnr (21)

of an oscillating decaying mode into Gr . Since there exists
an infinite set of the oscillating modes (21) with different
n, the leading asymptotic behavior r 
 1 (whether qn = 0
or qn �= 0) is determined by the minimal κn which thus de-
termines the inverse correlation length. For instance, for the
case of the XY chain discussed below, the minimal κn occurs
at n = 0, but we do not have a general proof that in some
models it cannot happen for another n > 0. These oscillations
manifests themselves in the behavior of other correlation func-
tions: The latter are expressed via determinants of the Toeplitz
matrices where Gr are the elements of those matrices [39],
resulting so to leading order to the exponentially decaying
oscillations [26].

There is also a more pictorial way to analyze general
properties of the disorder line solutions of Eq. (17) without
choosing a particular model. We can rewrite Eq. (17) as a
couple of equations for the real and imaginary parts of ε:

ε′(z, v) = 0, (22)

ε′′(z, v) = (2n + 1)πT , (23)

where v stands as a shorthand for the Hamiltonian’s param-
eters not shown explicitly. The solutions of Eq. (22) can be
depicted as some contours CR(v) on the complex plane. Sim-
ilarly, the solutions of Eq. (23) define another set of contours
denoted as CI (v). The oscillations of Gr discussed above occur
when within a certain range of parameters v◦ ∈ v two contours
CR(v) and CI (v) intersect inside a unit circle on the complex
plane z. If such intersections are impossible, the model does

FIG. 1. Contours CR(v) = CR(h, γ , k) (solid lines) for the XY
chain at ζ ≡ h/(1 − γ 2 ) = 0.5, 1 (open) and ζ = 3, 4, 5 (closed)
plotted on the complex plane z. The radius of the outer circle is
0.3. The contours CI (h, γ , k), n = 0 (dotted lines), are shown for
three qualitatively different cases: (1) green, ζ = 3 (γ = 0.5, h =
2.25) and T < TDL,0 (T = 0.35, TDL,0 = 0.382), no intersections of
CR and CI ; (2) red, ζ = 4 (γ = 0.5, h = 3), single intersection on
the real axis at the critical point T = TDL,0 = 0.582; and (3) blue,
ζ = 5 (γ = 0.5, h = 3.75) and T > TDL,0 (T = 0.8, TDL,0 = 0.671),
two intersections of CR and CI yield the wave number of oscillations
q◦(ζ = 5, T = 0.8) ≈ 0.31 in accordance with available analytical
results.

not have disorder lines. As an example we present in Fig. 1
the graphical solution of Eqs. (22) and (23) for the XY chain.

A salient point we infer from Eqs. (17), (18), (22), and (23)
is the existence of an infinite sequence of the disorder line
temperatures

TDL,n = ε′′(
α (n), v◦)

(2n + 1)π
≡ TDL,0

2n + 1
, (24)

which control the appearance of the oscillations ∝ qn of the
correlation function Gr .

The fermion spectrum analytically continued onto the com-
plex plane ε(z) contains the information on the existence of
disorder lines in a given model. If they exist, one can find
from ε(z) the disorder line temperatures, the wave numbers
of oscillations, and the correlation lengths, as functions of
temperature and parameters of the Hamiltonian.

III. APPLICATIONS TO XY CHAIN

A. Zeros of partition function

As probably the simplest albeit nontrivial model to explain
the salient points of our analysis, we take the quantum XY
chain in the transverse magnetic field:

H = −
N∑

n=1

{
J

4

[
(1 + γ )σ x

n σ x
n+1 + (1 − γ )σ y

n σ
y
n+1

]+ 1

2
hσ z

n

}
.

(25)

Here σ ’s are the standard Pauli matrices; coupling J > 0 is
ferromagnetic. We assume 0 < γ � 1. The range of negative
γ is readily available from the model’s symmetry under the
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exchange γ ↔ −γ and x ↔ y. The material presented in
this section is quite well known [32,41]; in particular, the
equations for the DL at finite temperature were reported in
[26]. However, Barouch and McCoy did not elaborate on their
findings to analyze the DLs in more depth. The novelty of
the present analysis of the XY chain is to advance a common
framework unifying DLs and conventional phase transitions
as different types of zeros of the model’s partition function.

The Jordan-Wigner (JW) transformation [32,39] maps
Eq. (25) onto the free-fermionic Hamiltonian

H = −
N∑

n=1

{
J

2
[c†

ncn+1 + γ c†
nc†

n+1 + H.c.] + h

(
c†

ncn− 1

2

)}
.

(26)

The zeros of the model’s partition function are determined by
the following equation [40]:

ε(k) =
√

(h − cos k)2 + γ 2 sin2 k = iωn . (27)

From now on we set the units such that J = 1. Using the
complex variable in Eq. (15), the spectrum can written as

ε2(z) = (1 + γ )2

4
(z − λ+)(z − λ−)(z−1 − λ+)(z−1 − λ−) ,

(28)

where

λ± = h ±
√

h2 + γ 2 − 1

1 + γ
. (29)

The generating function (14) for this model reads [41]

D(z) =
[

(z − λ+)(z − λ−)

(1 − zλ+)(1 − zλ−)

]1/2

. (30)

Equation (27) for the partition function zeros is equivalent to

ε2(z) + ω2
n = 1 − γ 2

4
+
−
(z − 
+)(z − 
−)

× (z−1 − 
+)(z−1 − 
−), (31)

with the roots


± = h ± R −
√

(h ± R)2 − (1 − γ 2)2

1 − γ 2
, (32)

where

R ≡
√

γ 2(h2 + γ 2 − 1) − (1 − γ 2)ω2
n . (33)

Note that in the limit T → 0 : 
± → λ±.

The Majorana correlation function is

Gr = 16T

1 − γ 2

∮
|z|=1

dz

2π i
zr−1D(z)ε(z)

∞∑
n=0


+
−
(z − 
+)(z − 
−)(z−1 − 
+)(z−1 − 
−)

. (34)

One needs to keep in mind that the roots 
± in the above expressions depend on n.

Conventional phase transitions correspond to the zeros of
the partition function occurring for real wave numbers k in
Eq. (15), i.e., for z lying on the unit circle, that is,

|
±| = 1 . (35)

One can show that 
± ∈ R and 
± � 1 when R defined by
Eq. (33) is real, i.e., R ∈ R. The condition for the bigger root
to reach unity is


+ = 1 : (h ± 1)2 + ω2
n = 0 , (36)

which can be satisfied only at T = 0 for two values of
the external field h = ±1. These two well-known lines of
ferromagnetic-paramagnetic quantum phase transitions [32]
are shown on the phase diagram in Fig. 2.

Condition (35) can be also satisfied when γ = 0 and |h| <

1, again at zero temperature only. In this case the roots are
complex conjugate,


± = h ± i
√

1 − h2 . (37)

Solution (37) engenders the line of quantum criticality corre-
sponding to the gapless IC phase with the wave number k =
arccos h [32]. This IC line separates two ordered (at T = 0
only) phases with magnetizations mx and my, and it is also
shown on the (h, γ ) plane in Fig. 2.

Two cases (36) and (37), corresponding to the two con-
tinuous quantum phase transitions in the XY chain, exhaust

possible solutions of Eq. (27) or, equivalently of Eq. (31) with
a real wave number

k = −i ln 
 . (38)

Other solutions for zeros of the partition function exist at T >

0 and at complex wave numbers

k ≡ q + iκ, z = eiq−κ . (39)

They correspond to disorder lines which can be thought of as
“weak transitions,” analyzed in the following section.

B. Disorder lines at finite temperature

Similarly to the classical Ising chain [31], the XY model in
the transverse field possesses an infinite sequence of disorder
lines (weak thermal transitions).

The transition between the regimes of monotonous and
oscillating decay of correlation functions, i.e., a disorder line,
can occur only when the roots 
± from real become complex.
One can check that this happens when the expression under
the radical in Eq. (33) changes its sign from positive to nega-
tive. It is possible in principle only if

(I) : h2 + γ 2 > 1, (40)

which defines the boundary on the plane (h, γ ) of the model’s
parameters where the disorder lines can occur. If the above
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FIG. 2. Disorder lines hDL (γ , T, n) of the XY chain in the (h, γ )
plane for n = 1 (black), 3 (red), 5 (green), and 7 (blue) at (a) T =
0.015 and (b) T = 0.035. The dotted line is the T → 0 limit h2 +
γ 2 = 1.

condition is satisfied, we can use Eq. (33) to define

TDL,n = TDL,0

2n + 1
, TDL,0 ≡ γ

π

√
h2 + γ 2 − 1

1 − γ 2
. (41)

At

(Ia) : T < TDL,n �−→ 
± ∈ R , (42)

ther are no oscillations due to the nth root. For the root param-
eters (39) we find

cos k = z + z−1

2
= h

1 − γ 2
± π (2n + 1)

√
T 2

DL,n − T 2

1 − γ 2
(43)

and

q = 0 , (44)

cosh κ = h

1 − γ 2
± π (2n + 1)

√
T 2

DL,n − T 2

1 − γ 2
. (45)

One can check that κ > 0, so 
± < 1.
In the temperature range

(Ib) : T > TDL,n �−→ 
± ∈ C , (46)

there are oscillations due to the nth root which set in at the
critical temperature TDL,n. The parameters of the root are found
from

cos k = z + z−1

2
= cos q cosh κ − i sin q sinh κ

= h

1 − γ 2
± iπ (2n + 1)

√
T 2 − T 2

DL,n

1 − γ 2
, (47)

FIG. 3. The field dependence of TDL,n for n = 0, 1, 2, 3 (from top
to bottom) for γ = 0.8. The origin of all TDL,n lies at the value of
h = ±√

1 − γ 2 = ±0.6.

where the IC wave numbers of oscillations ±q and the imag-
inary part of the wave number κ are determined by the
following parametrization relations

cos2 q = Q −
√

Q2 − h2

(1 − γ 2)2
, (48)

cosh κ = h

(1 − γ 2) cos q
, (49)

where we introduced the auxiliary parameter

Q ≡ 1

2

(
1 + h2 + |R|2

(1 − γ 2)2

)
. (50)

One can show that in the ranges (40) and (42) the above
relations yield cos2 q < 1 and cosh κ > 1.

Inside the circle

(II) : h2 + γ 2 < 1 (51)

no disorder lines exist, since the roots 
± are always complex;
i.e., the IC oscillations are present at arbitrary temperature.

To visualize the complicated surfaces of the disorder line
solutions in the parametric space we present the plots in
Figs. 2 and 3. The magnetic field hDL(γ , T, n) on the disorder
lines with different n in the (γ , h) plane is obtained from
TDL,n(γ , h) = T as

hDL(γ , T, n) = ±
√

1 − γ 2

√
1 + π2(2n + 1)2T 2

γ 2
. (52)

These curves are plotted in Fig. 2 for two different tempera-
tures and several values of n.

Another view on “disorder surfaces” is given by their cross
sections in the (h, T ) plane. The sheets of the DL temperatures
TDL,n(γ , h) corresponding to different n all sprout from the
same origin, i.e., the circle h2 + γ 2 = 1. The DL temperatures
as functions of the field for a fixed γ are shown in Fig. 3. In the
limit T → 0 all disorder lines collapse in Fig. 2 onto a single
circle h2 + γ 2 = 1, in agreement with the classical results
[26]. Barouch and McCoy were the first to our knowledge to
find the finite-temperature disorder line in the XY chain, and
in particular, they found the leading oscillating mode (with
n = 0) in the zz spin correlation function at T > 0. In Fig. 4
we plot the field dependencies of several wave numbers of os-
cillations qn and inverse characteristic length parameters κn of
the oscillating modes. The minimal κ0 can be identified with
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FIG. 4. The h dependence of (a) qn and (b) κn for n = 0 (ma-
genta), n = 3 (red), n = 5 (green), and n = 7 (blue) at γ = 0.5 and
T = 0.015. For brevity the critical fields hDL (n) are denoted as hn.
The dotted line is the T → 0 limit.

the inverse correlation length. As a result of level crossing
there are cusps in κn at the critical fields hDL(n), resembling
similar features of corresponding quantities at the cascades
of DLs found in the classical Ising chain [31]. In the zero-
temperature limit the inverse correlation length [dotted curve
in Fig. 4(b)] vanishes at the quantum critical point h = 1, as it
must. Similar plots are presented in Fig. 5 as functions of γ at
fixed value of the field.

One can easily find from Eq. (47) that the wave vectors of
oscillations vanish when T → TDL,n as

qn ∝ (T − TDL,n)
νL , (53)

while if the temperature is kept constant, qn shown in Fig. 4(a)
vanish above the critical fields hDL(γ , T, n) [Eq. (52)] as

qn ∝ (hDL − h)νL (54)

with the critical index of modulation νL = 1/2 introduced
earlier by Nussinov and co-workers [28].

C. Ground-state factorization

The original idea by Müller and co-workers [42] was to
rotate each spin of the chain in the xz plane to make the trans-
formed Hamiltonian ferromagnetic with the fully separable
(factorized) ground state. In the case of the XY chain such a
factorizable doubly degenerate ferromagnetic state occurs on

FIG. 5. The γ dependence of (a) qn and (b) κn for n = 0 (ma-
genta), n = 3 (red), n = 5 (green), and n = 7 (blue) at h = 0.75 and
T = 0.015. The dotted line is the T → 0 limit.

the DL circle γ 2 + h2 = 1 [32]:

|�±〉 =
N∏

i=1

(cos θ |↑i〉 ∓ sin θ |↓i〉), (55)

with

〈�±�±〉 = 1, 〈�+�−〉 = cosN 2θ. (56)

The angle of spin rotation, θ , is related to the roots (29)
merging on the DL circle as

λ+ = λ− =
√

1 − γ

1 + γ
= cos 2θ. (57)

The problem of separable states in various spin models was
quite vigorously studied in the literature (see, e.g., [43] and
more references in there). Our goal in this section is to present
a consistent line of arguments relating the factorization of the
ground state to the analytical properties of the spectrum and,
thus, of the generating function. To the best of our knowledge,
such analysis was not presented before.

The state (55) is maximally disentangled, since the con-
currence C introduced by Wootters [44] as a measure of
entanglement vanishes on the DL circle. Indeed, the two-site
concurrence can be calculated as

C =
∑
m �=n

〈�|iσ y
miσ y

n |�〉 . (58)
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The operator P̂n = iσ y
n of the rotation by the angle π/2

transforms a vector into the orthogonal one, so C = 0 in a
factorized state. For the states (55) one can easily verify

〈�+|σ y
mσ y

n |�+〉 = 〈�−|σ y
mσ y

n |�−〉 = 0, ∀ m �= n. (59)

The constant correlation functions [26] on the DL circle are
a hallmark of complete ground-state factorization:

〈
σ x

mσ x
n

〉 = 〈
σ x

m

〉〈
σ x

n

〉 = sin2 2θ = 2γ

1 + γ
, ∀ m �= n. (60)

We can trace such remarkable behavior of correlations from
the analytical properties of spectrum ε(z) and closely related
generating function D(z). At T = 0 the Majorana function
(16) becomes

Gn =
∮

|z|=1

dz

2π i
zn−1D(z) . (61)

The key property leading to the factorization result is that
the roots (57) merge on the DL line γ 2 + h2 = 1, and the
generating function (30)

D(z) = z − cos 2θ

1 − z cos 2θ
(62)

becomes analytical ∀ |z| � 1. A straightforward calculation
yields

Gn = 0, n � 1, (63)

G0 = − cos 2θ, (64)

G−n = sin2 2θ cosn−1 2θ, n � 1 . (65)

The spin correlation functions Sαα
m−n ≡ 〈σα

n σα
m〉 are given by

the determinants of the Toeplitz matrices [39]. For the yy
components we trivially obtain

Syy
r = det

⎛
⎜⎜⎜⎜⎝

0 G0 G−1 · · · G2−r

0 0 G−2 · · · G3−r

0 0 0 · · · G4−r
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ (66)

in agreement with Eq. (59). The Toeplitz determinant for the
xx function

Sxx
r = det

⎛
⎜⎜⎜⎜⎝

G−1 G−2 G−3 · · · G−r

G0 G−1 G−2 · · · G1−r

0 G0 G−1 · · · G2−r
...

0

. . .

· · ·
. . .

0

. . .

G0

...

G−1

⎞
⎟⎟⎟⎟⎠ (67)

is quite special: one can use the first row decomposition re-
peatedly to obtain

Sxx
r =

r∑
n=1

(−G0)n−1G−nSxx
r−n, (68)

whereby the result (60) Sxx
r = sin2 2θ for arbitrary r can be

proved by induction.

IV. 2D ISING MODELS

Due to correspondence between principal eigenvectors of
transfer matrices of 2D Ising models and ground states of
quantum chains the above results can be applied to find disor-
der lines in the former. This correspondence is stemming from
commutation of the transfer matrix of a given Ising model
(square, triangular, hexagonal, etc.) with the Hamiltonian of
the quantum chain at particular values of model’s couplings
[33–35,37,38]. From analysis of the eight-vertex model it is
also possible to establish the equivalence of solvable 2D Ising
models to free fermions [45,46]. In this section we extend the
present analysis to apply it for Ising models which possess
disorder lines.

Due to the aforementioned correspondence between the
classical and quantum models, the Gibbs thermal average of
two Ising spins can be evaluated as a ground-state average
of the quantum spins [33–35,37]. Thus the disorder lines
analyzed in the previous sections as points where oscillations
of the correlation functions of the quantum model set in are
also points of oscillations of thermal correlation functions in
the classical model.

The relations for the quantum-classical correspondence
were given in detail in [35] using the quantum cluster model

H = −
N∑

n=1

{
J

4

[
(1 + γ )τ x

n − (1 − γ )τ z
n−1τ

x
n τ z

n+1

]

+ 1

2
hτ z

nτ
z
n+1

}
, (69)

where τ ’s are also the Pauli matrices. The cluster Hamiltonian
(69) maps onto the XY chain (25) by the duality transforma-
tion [37,47]:

τ x
n = σ x

n−1σ
x
n , τ z

nτ
z
n+1 = σ z

n . (70)

The thermal average of two Ising spins sn is given by ground-
state correlation functions of two τ spins or of the string of σ

spins:

〈
sLsR

〉
Gibbs

= 〈
τ z

L τ z
R

〉
GS

=
〈

R−1∏
l=L

σ z
l

〉
GS

. (71)

This is the way to recover the results of Stephenson [25]
for the frustrated triangular Ising model with J1, J2, J3 cou-
plings [36,37]. For the transfer matrix along the direction of
J3 exchange the correspondence between parameters of the
quantum chain and the Ising model reads [35,37]

h = S1S2C3 + C1C2S3

C3
,

γ = 1

C3
, (72)

Ci ≡ cosh 2βJi , Si ≡ sinh 2βJi.

The equations of Stephenson [25] for TDL follow from the
condition h2 + γ 2 = 1 expressed via Ising couplings (72).
The roots λ± [Eq. (29)] of the spectrum on the complex plane
(39) become complex conjugate on the disorder line, with the
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FIG. 6. The Union Jack model [48].

wave number of oscillations

sin2 q = 1 − γ 2 − h2

1 − γ 2
(73)

smoothly growing inside the oscillating phase in agreement
with Eq. (54), while the inverse correlation length

κ = min {− ln |λ±|} (74)

has a cusp at the DL temperature [25].
There are also so-called disorder lines of the second kind

[25], when the wave vector of modulations does not follow
Eqs. (53) or (54), but instead changes discontinuously (see
also [27,28]). Below we consider two Ising models possessing
such DLs with q changing from q = 0 to q = π , and we con-
nect the properties of DLs of the models with their Lee-Yang
zeros.

One of these is the frustrated Ising model on the Union
Jack lattice first solved in [48]. The lattice with two couplings
is shown in Fig. 6. The model possesses the ferromagnetic
(FM) and the antiferromagnetic (AF) phases separated by the
paramagnetic (PM) one (for the phase diagram, see Fig. 7).
Stephenson found the DL of the second kind such that the PM
phase is divided into two parts: The part adjacent to the AF

FIG. 7. Phase diagram of the Union Jack model [48] with J ≡√
J2

1 + J2
2 . The lines correspond to the transitions: Red, PM-AF;

blue, PM-FM; black, DL of the second kind.

FIG. 8. Inverse correlation lengths in the Union Jack model for
T = 2J (red) and T = J (blue). The cusps on the DL of the second
kind occur in the PM phase localized between two critical points of
PM-AF or PM-FM transitions where κ = 0.

phase has oscillations with q = π while the part neighbor-
ing the FM phase has q = 0 [24,25,37]. Fan and Wu have
shown [45] that the Ising model on the Union Jack lattice
is equivalent to the eight-vertex model in the free-fermionic
limit, which is

ω1ω2 + ω3ω4 = ω5ω6 + ω7ω8. (75)

According to [46],

ω1 = 2e2K2 cosh 4K1, ω2 = 2e−2K2 , ω3,4 = 2,

ω5,6,7,8 = 2 cosh 2K1, where Kn ≡ Jn/T, (76)

so the free-fermion condition (75) yields

2ω5
2 = 4 + ω1ω2. (77)

For the frustrated model with K1 > 0, K2 < 0, and −|K1| <

K2, when

γ = ω5
2

ω1 + ω2
= 4 + ω1ω2

2(ω1 + ω2)
, h = 1

4
(ω1 − ω2), (78)

and cosh 4K1 > e−4K2 , the diagonal transfer matrix of the
Union Jack or the free-fermion eight-vertex models commutes
with the ferromagnetic XY Hamiltonian (25), while when
cosh 4K1 < e−4K2 it commutes with the Hamiltonian (25) for
the case of antiferromagnetic coupling and negative field [34].

The thermal transition into the FM phase at e−4K2 +
2e−2K2 = cosh 4K1 corresponds to the quantum transition in
the chain (25) at h = 1 and γ = (ω2 + 2)/4; the similar
transition into the AF phase at e−4K2 − 2e−2K2 = cosh 4K1

corresponds to the quantum transition in the AF chain at
h = −1 and γ = (ω2 − 2)/4. The disorder line of the second
kind at cosh 4K1 = e−4K2 corresponds to h = 0 in the both
ferromagnetic and antiferromagnetic chains and γ = (4 +
ω2

2 )/4ω2 = cosh K2 > 1. The phase diagram of the Union
Jack Ising model can be obtained from mappings (76)–(78). In
particular, the cusp in the correlation length can be detected,
as shown in Fig. 8.

A similar situation occurs in the piled-up dominoes (PUD)
model considered in [49]. It is defined on the lattice shown
in Fig. 9. The model has the transfer matrix V in the vertical
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FIG. 9. Piled-up dominoes (PUD) model [49].

direction, which can be represented as

V = A exp (Hchain ) , Hchain =
∑

k

ε(k)c†
kck . (79)

The fermionic spectrum is defined as

cosh εk = cosh 4K∗ cosh 2(K + K ′) − cos k sinh 4K∗

× sinh 2(K + K ′) − 2 sin 2K∗ sinh 2K ′ sin2 k ,

(80)

in terms of the PUD couplings K = J/T , K ′ = J ′/T . K∗ is
given by sinh 2K∗ sinh 2K = 1. The model has PM-FM and
PM-AF transitions when ε(0) = 0 and ε(π ) = 0, correspond-
ingly [49] (see Fig. 10). More solutions for ε(z) = 0 are found
inside the circle |z| = 1 on the complex plane. From Eq. (80)
we get the equation

2 sinh 2K∗ sinh 2K ′
(

z + z−1

2

)2

− (τ 2
+ − τ 2

−)

(
z + z−1

2

)

+ τ 2
+ + τ 2

− − 2 sin 2K∗ sinh 2K ′ = 0 , (81)

FIG. 10. Phase diagram of the PUD model [49]. The lines cor-
respond to the transitions: red, PM-AF; blue, PM-FM; black, DL of
the second kind.

FIG. 11. Inverse correlation lengths in the PUD model for T =
1.5J (red) and T = 3J (blue). The cusps on the DL of the second
kind occur in the PM phase localized between two critical points of
PM-AF or PM-FM transitions where κ = 0.

which yields the roots

z± + z−1
±

2
= eiq± cosh κ± = τ 2

+ − τ 2
− ± √

D

4 sin 2K∗ sinh 2K ′ . (82)

In the above equations we used the following notations:

τ± ≡ sinh (K + K ′ ± 2K∗) , (83)

D ≡ (τ 2
+ + τ 2

− − 4 sin 2K∗ sinh 2K ′)2 − 4τ 2
+τ 2

− . (84)

The parametric curves of the FM and AF phase transitions
[49] are recovered from the above equations at κ+ = 0 and
κ− = 0, correspondingly, leading to

τ 2
± = 0 , sinh 2K sinh 2(K + K ′) = cos k = ±1 . (85)

In addition we find the DL of the second kind when

κ+ = κ− at K + K ′ = 0. (86)

To the best of our knowledge, this disorder line was not
reported before. This feature inside the PM phase is accom-
panied by the cusps of the correlation length, as shown in
Fig. 11.

V. 2D OR 3D FERMIONS

For the grand canonical ensemble of noninteracting
fermions the zeros of the partition function are readily found
as [1]

ξ (k) ≡ ε(k) − μ = iωn , (87)

where μ is the chemical potential. They are also zeros of the
inverse single-particle temperature Green’s function [50]:

G−1(k, ωn) = 0 . (88)

In the limit T = 0 Eq. (87) becomes

ε(k) − εF = 0 , (89)

proving that the Fermi energy defines the surface of quantum
criticality (gaplessness), and its appearance or restructuring
constitutes a quantum phase transition [51]. This point has
been pursued and elaborated by Volovik for quite a while
[52,53] (see also, e.g., [54]).
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The equation for zeros of the partition function (87) can
be studied in the range of complex temperature or magnetic
field. We follow our earlier analysis and analytically continue
the spectrum ε(k) onto the complex plane as k = q + iκ .

The above equations are valid for any type of free
fermionic Hamiltonian in two or three spatial dimensions,
and analysis of Eq. (88) can be done for tight-binding lattice
models, Dirac or topological materials, or even larger classes
of models (see [27,28,30]). For simplicity we choose to deal
with the 3D nonrelativistic gas of fermions with the spectrum
ε(k) = k2

2m .
The chemical potential of the degenerate (T � εF ) Fermi

gas to lowest order [1] is

μ

εF

= 1 − π2

12

(
T

εF

)2

+ O(T 4) , (90)

where μ(0) = εF = k2
F

2m . To leading order the solutions of
Eq. (87) read

qn

kF

≈ 1 + π2

24
(3(2n + 1)2 − 1)

(
T

εF

)2

, (91)

κn

kF

≈ π

2
(2n + 1)

T

εF

, (92)

and

ξ (k) − iωn = 1

2m
(k − qn + iκn)(k + qn − iκn). (93)

The coordinate representation of the temperature Green’s
function (88) is given by the following expression [50]:

G(r) =
∫

dk
(2π )3

eikrnF (ξ ), (94)

where nF (ξ ) is the Fermi-Dirac distribution function. It can be
written as an expansion similar to Eq. (34):

G(r) =
∫ ∞

0

k2dk

(2π )2
sin kr

(
1 −

∞∑
n=0

4T ξ (k)

ξ 2(k) + ω2
n

)
, (95)

where ξ 2(k) + ω2
n in the above series can be easily factorized

using the roots (93) for zeros of the partition function. Integra-
tion by parts brings the above equation to a better converging
series:

G(r) = − 1

π2r3
+ 2T

π2m

∫ ∞

0
kdk

[(
1

r3
− k2

2r

)
cos kr

+ k

r2
sin kr

] ∞∑
n=0

ω2
n − ξ 2(k)(

ξ 2(k) + ω2
n

)2 . (96)

Since [55]

2T
∞∑

n=0

ω2
n − ξ 2(k)(

ξ 2(k) + ω2
n

)2 −−→
T →0

δ(ξ ) , (97)

the zero-temperature G(r) can be simply read off the integrand
of Eq. (96). It oscillates with the wave number kF , and

G(r) −−−→
rkF 
1

− k2
F

2π2r
cos kF r. (98)

The integral (96) is quite cumbersome, but its key features are
the contributions from the poles (93) with the leading term

coming from n = 0:

G(r) ∼ 1

r
exp (±iq0r − κ0r). (99)

The above result clarifies the physical meaning of zeros of
the partition function with complex k ∈ C: The real part q0(T )
acts as a T -dependent Fermi wave vector which sets the period
of spatial oscillations, while the imaginary part determines the
inverse correlation length κ0 = πmT/kF .

It is also possible to introduce a finite-temperature general-
ization of the topological invariant N1 [52] accounting for the
2πN1 phase change of the Green’s function (88) while going
around a path enclosing the Fermi surface. For the isotropic
spectrum we parametrize the Fermi surface by the magni-
tude of the wave vector continued onto the complex plane
k ∈ C with the poles Qn = [2m(μ + iωn)]1/2 ≡ qn + iκn [see
Eq. (93)]. Taking a small contour C0 of radius ε around the
zeroth pole Q0,

C0 : k = Q0 + εeiϕ, ϕ ∈ [0, 2π ) , (100)

the topological invariant is evaluated as a logarithmic residue
at Q0:

N1 =
∮

C0

dk

2π i
∂k ln G−1(k, μ) = 1 . (101)

The above definition smoothly evolves into the known result
at zero temperature [52,53].

It is possible to define a similar topological invariant for
the chain considered in Sec. III using the loop integral around
the poles 
± [cf. Eq. (28)] of the logarithmic derivative
of G−1(k, ωn) = ε(k) − iωn. The latter is the temperature
Green’s function of the Bogoliubov fermions. However, such
a topological number does not seem to be immediately useful.
It is more relevant for various analyses [56] to count the
number of zeros of the partition function (or poles of the
Green’s function) inside the unit circle on the complex plane:

Nz =
∮

|z|=1

dz

2π i
∂z ln

(
ε2(z) + ω2

n

)
. (102)

Any change of Nz means that a root (roots) crossed the unit cir-
cle |z| = 1, which, according to the analysis of Sec. III, signals
a thermal or quantum phase transition. Definition (102) can be
easily adapted for the tight-binding quadratic Hamiltonians in
d dimensions as well.

VI. CONCLUSION

An important motivation of this study is the conclusion
of our earlier related work on the classical Ising chain [31]:
The cascades of disorder lines in that model are zeros of the
partition function with the complex magnetic field. Similarly,
the appearance of modulations in the free fermion models
stems from the analytical properties of zeros of their partition
functions on the complex plane of the wave vectors k ∈ C.

In this paper we propose a unifying framework based on
the analysis of the roots for zeros of the partition function on
the complex plane of wave numbers. The general power of
this approach is twofold: First, it is not sensitive to the type of
order parameter and can be used for both local and nonlocal
parameters. Second, these roots combine all possible solutions
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corresponding to the continuous phase transitions, as well as
to the disorder lines (or points of modulation transitions). We
show how the analytical properties of the two-point Majorana
correlation functions on the complex plane are related to the
appearance of oscillations in those functions on the disorder
lines and to the properties of the complex roots of the partition
function. In particular, even the known factorization of the
ground state of the XY chain on the disorder line, and con-
sequently vanishing entanglement, is shown to follow directly
from analyticity of the Majorana generating function inside
the unit circle on the complex plane.

The disorder line transition is very weak; it is not straight-
forward to classify it in the standard scheme. For instance, for
the XY chain it was rigorously shown [57] that its ground-state
energy is a smooth and even infinitely differentiable function
on the disorder line. The only nonanalytical clean-cut feature
on the disorder line is a cusp in the behavior of the correlation
length, which we explicitly calculated and plotted for the
models considered. For the disorder lines with the modulation
wave vectors continuously growing deep into the oscillating
phase [cf. Eq. (53) or Eq. (54)], it is convenient to use the
critical index of modulation νL = 1/2 introduced earlier by
Nussinov and co-workers [28].

Most of our results are given for the simple quantum XY
chain in a transverse field which is dually equivalent to free
fermions. We find an infinite cascade of disorder lines at finite
temperature in this model and present results for such physical
parameters as disorder line temperatures, correlation lengths,
and wave vectors of oscillations. This was not analyzed before
in the literature. Since the transfer matrices of several 2D
Ising models commute with the Hamiltonian of the quantum
chain at some special points [33–38], we used the results for
the chain to detect the disorder lines in several frustrated 2D
Ising models as well. The present formalism can be straight-

forwardly applied for tight-binding lattice fermions or Fermi
gas in two and three spatial dimensions. In particular, we find
the complex roots for the zeros of the partition function of the
3D nonrelativistic degenerate gas of fermions. The real part
of this root is used to define the temperature-dependent Fermi
wave vector which sets the period of spatial oscillations, while
its imaginary part determines the inverse correlation length
(gap) κ ∝ T . The limit T → 0 naturally leads to the definition
of the Fermi energy as the surface of quantum criticality
(gaplessness).

The appearance of modulation in correlation function
seems to be a very common phenomenon. It occurs in a
large variety of models [27–29], including the recently re-
ported pattern formation in the scalar Euclidian quantum field
theory with a complex action [30]. The important point to
stress is that all these modulation transitions can be directly
related to the partition function zeros, as done in the present
study.

An interesting direction for the future work is to apply this
formalism for the XY chain with spatial and field modulations
[11], including the interacting XY Z case [58], and to analyze
their Majorana edge states [10,59,60], and to probe disorder
lines in the deformed integrable Kitaev chains [10] and in the
(judiciously fermionized) Kitaev ladder or hexagonal models
[13,14].
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