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We study Chern insulators from the point of view of Kähler geometry, i.e., the geometry of smooth manifolds
equipped with a compatible triple consisting of a symplectic form, an integrable almost complex structure, and a
Riemannian metric. The Fermi projector, i.e., the projector onto the occupied bands, provides a map to a Kähler
manifold. The quantum metric and Berry curvature of the occupied bands are then related to the Riemannian
metric and symplectic form, respectively, on the target space of quantum states. We find that the minimal volume
of a parameter space with respect to the quantum metric is π |C|, where C is the first Chern number. We determine
the conditions under which the minimal volume is achieved both for the Brillouin zone and the twist-angle
space. The minimal volume of the Brillouin zone, provided the quantum metric is everywhere nondegenerate, is
achieved when the latter is endowed with the structure of a Kähler manifold inherited from the one of the space
of quantum states. If the quantum volume of the twist-angle torus is minimal, then both parameter spaces have
the structure of a Kähler manifold inherited from the space of quantum states. These conditions turn out to be
related to the stability of fractional Chern insulators. For two-band systems, the volume of the Brillouin zone is
naturally minimal provided the Berry curvature is everywhere non-negative or nonpositive, and we additionally
show how the latter, which in this case is proportional to the quantum volume form, necessarily has zeros due to
topological constraints.
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I. INTRODUCTION

The notion of topological phases has drastically changed
our understanding of gapped phases of matter. There is much
to learn about a band insulator beyond the assertion that it has
a gap separating the valence bands, which form the occupied
bands at zero temperature, from the conduction bands. In the
particular case of two spatial dimensions, in the absence of
other symmetries, the occupied bands may have a nontrivial
topological twist determining what is called a Chern insulator.
This topological twist is not merely a mathematical observa-
tion and it is manifested in the topological response of the
system as known in integer and fractional quantum Hall ef-
fects, in which the transverse Hall conductivity is proportional
to the first Chern number, a topological invariant of the vector
bundle of occupied states over the two-dimensional Brillouin
zone. Finer properties of insulating states refer not just to
the topology, but also to their geometry [1,2]. Of particular
interest is the momentum-space quantum metric, related to the
overlap of Bloch states at nearby quasimomenta [1–3]. As it
turns out, the integral of this metric over the Brillouin zone
[4] is associated to the spread functional and the localization
tensor of the material [3,5–8]. There are numerous proposals
in the literature for extracting the quantum metric [9–15]. A
proposal [4], making use of the fluctuation-dissipation theo-
rem, shows that the localization tensor can also be measured
through spectroscopy in synthetic quantum matter, such as
ultracold atomic gases or trapped ions. The momentum-space

quantum metric has recently been observed in ultracold gases
[16] and in a microcavity hosting exciton-polariton modes
[17].

The connection of microscopic geometric quantities, such
as the Brillouin zone Berry curvature and quantum metric,
to macroscopic geometric quantities associated with ground
state properties of the band insulator is given, at zero temper-
ature, by integrating the former quantities over the Brillouin
zone. Equivalently, one can consider the system in finite size
and take periodic boundary conditions twisted by phases.
As one varies these phases, one obtains a family of many-
particle ground states over the so-called twist-angle space
and from which we can extract the macroscopic geomet-
ric quantities mentioned above. In two spatial dimensions,
the Berry curvature in twist-angle space yields the famous
Thouless-Kohomoto-Nightingale-den Nijs result for the Hall
conductivity [18–20] and the quantum metric is related to the
localization tensor [4,20]. The anisotropy of the localization
tensor is measured by a modular parameter τ in the upper
half-plane, which describes a complex structure in twist-angle
space [20].

The study of the geometry of band insulators can also be
used to understand if the material can host stable fractional
topological phases [21,22]. In particular, for a Chern band
to have an algebra of projected density operators which is
isomorphic to the W∞ algebra found by Girvin, MacDonald,
and Platzman for the fractional quantum Hall effect [23],
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certain geometric constraints are naturally found, which en-
force a compatibility relation between the momentum-space
quantum metric and the Berry curvature of the band [21,22].
This compatibility relation between the quantum metric and
the Berry curvature is, as noted in Ref. [22], the same
compatibility required, in an oriented surface, between the
Riemannian metric and a symplectic form for these to endow
the surface with a Kähler structure.

Motivated by the above, we provide in this paper a detailed
study of the geometry of Chern insulators from the perspective
of Kähler geometry. In particular, we find that the minimal
quantum volume, as determined by the Riemannian volume
form induced by the quantum metric, is given by π |C|, where
C is the first Chern number of the occupied band. Furthermore,
we determine the conditions of achieving the minimal quan-
tum volume both in the Brillouin zone and in the twist-angle
space. The minimal volume of the Brillouin zone, provided
the quantum metric is everywhere nondegenerate, is achieved
when the latter is endowed with the structure of a Kähler
manifold induced from the one of the space of quantum states.
If the quantum volume of the twist-angle torus is minimal,
then both tori have the structure of a Kähler manifold inherited
from the space of quantum states. These conditions are related
to the geometric stability conditions for fractional Chern in-
sulators presented in Refs. [21,22], measuring the deviation
from the lowest Landau-level physics. For two-band systems,
the quantum volumes are naturally minimal provided the
Berry curvature is everywhere non-negative or nonpositive,
and we additionally show how the latter, which in this case
is proportional to the quantum volume form, necessarily has
zeros due to topological constraints. The results of this paper
are accompanied, complemented, and supported by those of
Ref. [24], in which physical implications of the mathematical
structures we find in this paper are studied and verified with
explicit models.

This paper is organized as follows. In Sec. II, we explore
the geometry of Chern insulators from the point of view of
Kähler geometry. In Sec. III, we present our main results,
namely Theorems 1, 2, and 3, together with some corollaries
and remarks. In Sec. IV, we provide a physical interpretation
for the results of Theorem 1 in terms of the many-particle
ground state of the band insulator. Finally in Sec. V we draw
the conclusions. In Appendix A, the reader can find detailed
mathematical derivations of the results presented in Sec. III.

II. GEOMETRY OF CHERN INSULATORS

In a tight-binding description of an insulator in two spa-
tial dimensions, in the presence of translation invariance, the
Hamiltonian is described by an n × n matrix H (k), which is
smooth as a function of quasimomentum k in the Brillouin
zone BZ2, topologically, a two-torus. The number n speci-
fies the internal degrees of freedom. The presence of a gap
below the Fermi level EF allows one to define the Fermi
projector P(k) = �(EF − H (k)), where �(·) is the Heavi-
side step function, which describes the ground state of the
insulator and, up to adiabatic deformation, it determines its
topological properties. In fact, the smoothness and the gap
condition imply that we have a rank r Hermitian vector bundle
E → BZ2, where r is the number of occupied bands and is

the constant rank of the Fermi projector, whose fiber over k ∈
BZ2 is simply Im[P(k)] ⊂ Cn. The smooth family of orthog-
onal projectors {P(k)}k∈BZ2 can be seen as a classifying map
P : BZ2 → Grk (Cn) for the vector bundle E → BZ2, where
we interpret the Grassmannian manifold of r-dimensional
subspaces of Cn, denoted Grr (Cn), as the set of orthogonal
projectors of rank r. The Chern insulator is determined by
the reduced complex K-theory class [E ] ∈ K̃0(BZ2), which
is determined by the idempotent P [25–27].

The space Grr (Cn) has the natural structure of a Kähler
manifold (see, for instance, Refs. [28,29] for more details),
i.e., it is a symplectic manifold together with a compatible
complex structure J giving it the structure of a complex man-
ifold. By a symplectic manifold structure we mean that it is a
smooth manifold together with a nondegenerate closed two-
form ω – the symplectic form. The almost complex structure
J is a linear map on the tangent spaces that squares to minus
the identity. Morally, it acts as multiplication by

√−1. The
fact that Grr (Cn) is a complex manifold means that we can
find local complex coordinates z j and, with respect to these,

J

(
∂

∂z j

)
= i

∂

∂z j
and J

(
∂

∂z j

)
= −i

∂

∂z j . (1)

Finally, the fact that ω and J are compatible means that
g = ω(·, J·) is a Riemannian metric. It is said in this case
that the complex structure J is ω-compatible. In a Kähler
manifold, the symplectic form is also known as the Kähler
form. In the particular case of the Grassmannian, the com-
patible triple of structures stem from the usual Fubini-Study
Kähler structure on the complex projective space CPm, with
m = (n

r

) − 1, through the Plücker embedding ι : Grr (Cn) ↪→
P (	rCn) ∼= CPm (see Ref. [30]). The latter map sends Im(P),
or equivalently, P to the line spanned by a Slater determinant
made of a linear basis for Im(P). For this reason we write
these structures as ωFS, JFS , and gFS .

One can write these three structures in a familiar form by
using orthogonal projectors. To do this, it is useful to recall
that, since a projector satisfies P2 = P, if Q = I − P is the or-
thogonal complement projector, where I is the identity matrix,
then we have the relation PdPP = QdPQ = 0 and hence the
differential dP satisfies dP = QdPP + PdPQ. Furthermore,
since P† = P for orthogonal projectors, we see that dP is
completely determined by the triangular matrix QdPP [in an
orthonormal basis where P = diag(Ir, 0n−r ) it is represented
by a lower triangular matrix whose entries are one-forms].

The symplectic and Riemannian structures are given by

ωFS = − i

2
Tr((QdPP)† ∧ QdPP) = − i

2
Tr(PdP ∧ dP),

gFS = Tr((QdPP)†QdPP) = Tr(PdPdP), (2)

and the complex structure is defined by

(QdPP) ◦ JFS = iQdPPand(PdPQ) ◦ JFS =−iPdPQ, (3)

where the second equation is essentially the Hermitian con-
jugate of the first since JFS is an R-linear operator and,
therefore, it is completely specified by the first equation. It is
not hard to see that, indeed, ωFS (·, JFS·) = gFS . A remarkable
property of this structure is that it is invariant under the action
of U(n) by conjugation P 
→ UPU †, for U ∈ U(n), so all the
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structures are completely determined by knowing them at one
particular projector. Before moving on, it is important to note
that ωFS is related to the curvature two-form of a connection
on a line bundle over Grr (Cn). Namely, over Grr (Cn) we
can consider the vector bundle whose fiber over an orthog-
onal projector P is simply Im(P)—the tautological bundle
E0 → Grr (Cn). This rank r-vector bundle is naturally a sub-
bundle of the trivial bundle θn = Grr (Cn) × Cn. The Berry
connection is then simply given by projection of the exterior
derivative. The curvature of this connection is determined by
the matrix of two-forms

� = iPdP ∧ dPP. (4)

We can then consider the top exterior power of this bundle,
	rE0 → Grr (Cn), which is a line bundle whose fiber at P is
spanned by a Slater determinant

v1 ∧ . . . ∧ vr, with spanC{vi}r
i=1 = Im(P). (5)

The connection induced on this line bundle from the Berry
connection on the tautological vector bundle has curvature
two-form

�0 = Tr(�) = iTr(PdP ∧ dPP) = iTr(PdP ∧ dP). (6)

The relation between ωFS and �0 is then clear: ωFS =
−(1/2)�0. In the physics literature, the quantity χ = gFS +
iωFS = gFS − i(�0/2) is usually known as the quantum geo-
metric tensor.

Geometric quantities related to gFS and ωFS appear nat-
urally in the context of insulators because we have a map
P : BZ2 → Grr (Cn), which provides the means to pull back
the rich geometry in the target to the Brillouin zone. The
pullback by P of the tautological vector bundle, i.e., the vector
bundle whose fiber at k ∈ BZ2 is Im[P(k)], is simply the
occupied band vector bundle P∗E0 = E → BZ2. The pullback
of the rth exterior power of the tautological vector bundle is a
line bundle whose fiber at k is spanned by a Slater determinant
of a basis for Im[P(k)]. This bundle specifies the ground
state completely as, physically, the ground state is obtained
precisely by occupying the r bands below the Fermi level EF .

The Berry curvature for 	rE = P∗	rE0 is

� = P∗�0 = i
2∑

i, j=1

Tr

(
P(k)

∂P

∂ki
(k)

∂P

∂k j
(k)

)
dki ∧ dk j . (7)

Meanwhile, the pullback of the metric gFS by P, is the so-
called quantum metric

g = P∗gFS =
2∑

i, j=1

Tr

(
P(k)

∂P

∂ki
(k)

∂P

∂k j
(k)

)
dkidk j . (8)

Following the discussion in Ref. [20], we can consider
threading a flux through a finite system of size N × N with
periodic boundary conditions, i.e., in a torus. This means that
the fermions acquire phases eiθi , i = 1, 2, as they are adiabati-
cally moved around the fundamental cycles of position space.
The angles θ = (θ1, θ2) are referred to as the twist angles and
they span the twist-angle torus T 2

θ . In momentum space, these
angles can be accounted for by sampling the matrix H (k) at
points k = (2π/N )m + θ/N , with m ∈ {0, . . . , N − 1}2. The
ground state of the system, as we vary θ, produces a smooth

Hermitian line bundle L → T 2
θ , whose Berry curvature has

the form

�̃ = 1

N2

∑
m

�12

(
2πm

N
+ θ

N

)
dθ1 ∧ dθ2, (9)

where �12 = �(∂/∂k1, ∂/∂k2) is the single component of the
Berry curvature in Eq. (7). In the thermodynamic limit, N →
∞, we get

�̃ →
(∫

BZ2

d2k

(2π )2
�12(k)

)
dθ1 ∧ dθ2 = C

2π
dθ1 ∧ dθ2,

(10)

where C = ∫
BZ2 �/(2π ) is the first Chern number of the occu-

pied Bloch bundle E → BZ2. The relation to linear response
theory is then

e2�̃ = σHalldθ1 ∧ dθ2, (11)

where σHall = e2C/(2π ) is the Hall conductivity of the insu-
lator and e is the charge of the fermions. We find that the
Berry curvature is, in the thermodynamic limit N → ∞, flat.
Observe additionally that

C =
∫

BZ2

�

2π
=

∫
T 2

θ

�̃

2π
, (12)

and, as a consequence, the line bundle L → T 2
θ is isomor-

phic, in the smooth category, to the line bundle 	rE →
BZ2, where we identify BZ2 ∼= T 2

θ , through k = (k1, k2) 
→
(θ1(k), θ2(k)) = (k1, k2). In a similar fashion, we can deter-
mine the quantum metric in twist-angle space, yielding,

g̃ = 1

N2

2∑
i, j=1

∑
m

gi j

(
2πm

N
+ θ

N

)
dθidθ j, (13)

where gi j = g(∂/∂ki, ∂/∂k j ) are the components of the quan-
tum metric in Eq. (8). In the same way that the Berry curvature
is flat, also the quantum metric is flat in the thermodynamic
limit N → ∞

g̃ =
2∑

i, j=1

(∫
BZ2

d2k

(2π )2
gi j (k)

)
dθidθ j . (14)

This metric also appears in the properties of the insulator in
question, namely, it is related to the so-called localization
tensor. The fact that we have a flat metric tensor allowed us
in Ref. [20] to extract a modular parameter τ ∈ H, which de-
termines a complex structure j̃ on T 2

θ . This complex structure
is defined by a rotation of 90 degrees in the standard orien-
tation of the torus with respect to the quantum metric g̃. This
complex structure turned out to be related to the anisotropy of
the localization tensor.

In two dimensions having a metric and an orientation spec-
ifies a complex structure. Indeed, provided g is nondegenerate,
we get, by a rotation of 90 degrees in the standard orientation
of BZ2 with respect to g, an almost complex structure over
it, which we call j. We can get an explicit expression for j
as follows. At a given point k of the Brillouin zone we can
always choose an orthonormal frame e1, e2, consistent with
the orientation (i.e., the determinant of the matrix relating
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e1, e2 to ∂/∂k1, ∂/∂k2 is positive), for the quantum metric g,
which is a Riemannian metric, so that

g(ei, e j ) = δi j, i, j = 1, 2.

Then at that point j(e1) = e2 and j(e2) = −e1. Hence, it
follows that

g( j(ei ), e j ) = εi j, i, j = 1, 2, (15)

where εi j is the Levi-Civita symbol in two dimensions. Equiv-
alently, g( j·, ·) = e1 ∧ e2 is the volume form associated with
g, where e1, e2 is the dual basis of e1, e2. We will now give
an expression for j in the original (k1, k2) coordinates. Let us
denote by gi j and ji

j , 1 � i, j � 2, the components of g and j
in the (k1, k2) coordinates, respectively. From g( j·, ·) = e1 ∧
e2 = √

det(g)dk1 ∧ dk2, where det(g) = det(gi j ), we get,

2∑
k=1

gk j jk
i =

√
det(g)εi j, i, j = 1, 2. (16)

It is also useful to write the equivalent form

gi j =
2∑

k=1

√
det(g)εik jk

j , i, j = 1, 2. (17)

Either way, it follows that

ji
j = − 1√

det(g)

2∑
k=1

εikgk j, i, j = 1, 2, (18)

or, in matrix form,

j = 1√
det(g)

[−g12 −g22

g11 g12

]
. (19)

By construction, j does indeed satisfy the requirements of
an almost complex structure, namely that j2 = −I , provided
g is nondegenerate. The expression presented above for j is
global, i.e., we can use it at any point over the Brillouin
zone. However, being able to find local coordinates x1, x2

in a neighborhood of any point k ∈ BZ2 such that j as-
sumes the canonical form j(∂/∂x1) = ∂/∂x2 and j(∂/∂x2) =
−∂/∂x1 is a much more subtle question, namely that of in-
tegrability of j, and it implies solving a partial differential
equation. If such local coordinates exist, then z = x1 + ix2

will be a local complex coordinate since j(∂/∂z) = i∂/∂z
and j(∂/∂z) = −i∂/∂z. What we did above by choosing a
orthonormal basis at a point (which is a linear combination
of the natural tangent vectors ∂/∂k1 and ∂/∂k2) was to make
j look canonical at a specific point. Indeed we can always
choose local coordinates xi(k1, k2), i = 1, 2, such that ∂/∂xi,
i = 1, 2, become, at a specific point, an orthonormal frame for
g but away from that point that will, in general, not happen.
Finding local coordinates such that this happens everywhere,
up to a conformal factor, is equivalent to solving the Beltrami
equation for isothermal coordinates. Hence, solving the Bel-
trami equation gives us local holomorphic coordinates in two
dimensions. Being able to find local holomorphic coordinates
for which j assumes the canonical form of multiplication by
i is a very special feature of oriented surfaces. Indeed, in two
dimensions any almost complex structure j is integrable and it
endows the surface with the structure of a complex manifold

[31]. One is then naturally lead to ask under which condi-
tions the geometry induced by P on BZ2, given by the triple
(P∗ωFS, j, P∗gFS ) = (ω, j, g), is compatible and gives rise to
a Kähler structure. In this case, the map P : BZ2 → Grr (Cn)
is a Kähler map in the sense that the pullback of the triple
(ωFS, JFS, gFS ) is well defined as a compatible triple (ω =
P∗ωFS, j = P∗JFS, g = P∗gFS ) giving BZ2 the structure of a
Kähler manifold. The meaning of j = P∗JFS needs further
justification. In the case that g = P∗gFS is a Riemannian met-
ric the map P has to be an immersion, i.e., the differential dP
is full rank at every point of the Brillouin zone. In that case dP
provides an isomorphism of the tangent spaces of the Brillouin
zone to their images. The condition that ω(·, j·), with ω non-
degenerate, then turns out to imply dP ◦ j = JFS ◦ dP, i.e.,
the map is holomorphic—this is what we mean by j = P∗JFS .
Hence a Kähler map is a map that preserves all the three
structures involved. We will see that when (ω, j, g) form a
compatible triple, the Chern number is necessarily negative.
We point out that, under the condition of nondegeneracy of
g, the Riemannian volume form

√
det(g)dk1 ∧ dk2 (notice

that the orientation of BZ2 is explicitly used to define it),
where det(g) is the determinant of the matrix representing
the metric in periodic coordinates, is symplectic, i.e., it is
nondegenerate and closed. As a consequence, if we consider
the triple of structures (

√
det(g)dk1 ∧ dk2, j, g), we easily see

that it is compatible, cf. Eq. (17), and it gives BZ2 a Kähler
structure. However, this triple does not generally coincide
with the triple (ω, j, g). We will see that only when the map
is Kähler these two triples coincide. One can then ask what
are the physical consequences of this condition. Furthermore,
we could also ask whether (ω̃ = −�̃/2, j̃, g̃) gives T 2

θ the
structure of a Kähler manifold and what are the physical
consequences.

As we will see, there will also be cases where (ω,− j, g)
form a compatible triple. Namely, the almost complex struc-
ture is defined with respect to the orientation opposite to the
natural orientation specified by the ordered pair of coordinates
(k1, k2). This situation corresponds to the case where the
Chern number is positive.

We note that the relation between holomorphicity of the
wave function, related to the holomorphicity of the map to
the projective space (see Sec. IV), and the Berry curvature
being a Kähler form has been studied in the different context
of the fractional quantum Hall effect in curved background
geometry [32], where the relevant metric there is that of the
spatial sample as opposed to the quantum metric.

III. MAIN RESULTS

In this section we answer the questions formulated in the
end of previous section. We refer the reader to Appendix A
for the proofs.

We first note that the condition of P : BZ2 → Grr (Cn) to
be an immersion is equivalent to g = P∗gFS being nondegen-
erate [det(g) �= 0 everywhere], which we use frequently in the
discussion below.

Next, we observe that for P : BZ2 → Grr (Cn) to be Kähler
it is enough for P to be an immersion and to be holomorphic,
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i.e., to satisfy

Q
∂P

∂z
= 0, (20)

in local complex coordinates, see Proposition 2 and its proof
in Appendix A. We then have the following result.

Theorem 1. Suppose P : BZ2 → Grr (Cn) is an immersion,
then the Cauchy-Schwarz-like inequality is saturated√

det(gi j (k)) = ∓�12(k)

2
, for all k ∈ BZ2,

if and only if the map P is Kähler with respect to the triple of
structures (ω,± j, g).

We will use the notation volg(BZ2) and vol̃g(T 2
θ ) to denote

the integrals

volg(BZ2) =
∫

BZ2

√
det(g)d2k

and

vol̃g(T 2
θ ) =

∫
T 2

θ

√
det(̃g)d2θ,

where det(g) and det(̃g) are the determinants of the matri-
ces representing g and g̃ in the periodic coordinates k =
(k1, k2) and θ = (θ1, θ2), respectively. In the case where the
quantum metrics are nondegenerate the quantities volg(BZ2)
and vol̃g(T 2

θ ) correspond to the volumes of BZ2 and T 2
θ ,

respectively, as measured by the quantum metrics. For this
reason, we will refer to them as the quantum volumes and
the top-forms

√
det(g)dk1 ∧ dk2 and

√
det(̃g)dθ1 ∧ dθ2 as the

quantum volume-forms of the Brillouin zone and twist-angle
space, respectively. Furthermore we will use the diffeomor-
phism BZ2 ∼= T 2

θ given by k = (k1, k2) 
→ (θ1(k), θ2(k)) =
(k1, k2) to identify the two-tori.

We have the following result and associated corollaries.
Theorem 2. The following inequalities hold

π |C| � volg(BZ2) � vol̃g
(
T 2

θ

)
,

where the left-hand side inequality is saturated if and only if√
det(g) = |�12|

2 and provided �12 does not change sign over
BZ2, and the right-hand side inequality is satisfied if and only
if, for every k ∈ BZ2,

gi j (k) = e2 f (k)g̃i j (θ = k), 1 � i, j � 2,

for some function f ∈ C∞(BZ2), i.e., g is related to g̃ by a
Weyl rescaling, implying that, provided P is an immersion,
they share the same complex structure j (and hence the same
modular parameter).

Observe that the topological invariant π |C| appears as
the lower bound for both quantum volumes volg(BZ2) and
vol̃g(T 2

θ ). In other words, the first Chern number of the occu-
pied Bloch bundle determines the minimal quantum volume.
As a consequence of Theorem 2, we have the following corol-
laries.

Corollary 1. If P is an immersion, and thus det(g) �= 0
everywhere, then volg(BZ2) = π |C| if and only if P is Kähler
by Theorem 1.

Corollary 2. If g̃ is nondegenerate and vol̃g(T 2
θ ) = π |C|

then (− 1
2 �̃, g̃,± j̃) is a flat Kähler structure. The converse

is also true. In both cases, we also have volg(BZ2) = π |C|.

If in the first implication we have, in addition, that P is an
immersion, implying g in nondegenerate, then P is a Kähler
map for the same complex structure. This implies that the
same Weyl rescaling that relates g and g̃ in this case, relates
also � and �̃, i.e.,

� = e2 f �̃.

Because the integral of the curvatures yields C, we have∫
BZ2

d2k
(2π )2 e2 f (k) = 1, which is consistent with the findings in

the proof of Theorem 2.
Remark 1. Corollaries 1 and 2 are, in the mathematics lit-

erature, presented as a corollary of Wirtinger’s inequality (see
Proposition 3 and its proof in Appendix A), which states that
every complex submanifold of a Kähler manifold is volume
minimizing in its homology class.

Corollary 3. If any of the volumes volg(BZ2) < π or
vol̃g(T 2

θ ) < π we have C = 0.
Corollary 3 is perhaps one of the most dramatic con-

sequences in the sense that the volumes measured by the
quantum metrics, which are purely geometric quantities, al-
low us to infer about nontrivial topological properties of the
insulator.

The results presented place strong constraints in the ge-
ometry of Chern bands, which is relevant to the study of the
stability of fractional topological insulators. Consider now, for
the sake of simplicity of the following discussion, the case of a
single band, i.e., r = 1. In the works of Refs. [21,22], the sta-
bility of topological phases arising in fractionally filled Chern
insulators is studied. The saturation of the inequality in Propo-
sition 3 together with the Fubini-Study metric being uniform
throughout the Brillouin zone is then found as a criterion for
the algebra of projected operators to be isomorphic to the one
in the fractional quantum Hall effect—the W∞ algebra found
by Girvin, MacDonald, and Platzman [23]. Observe that this
condition corresponds to the saturation of both inequalities in
Theorem 2 and, provided nondegeneracy of the metric, it is
the situation described in Corollary 2, supplemented with the
additional condition that the conformal factor is trivial to have
constancy of the metric in momentum space. Furthermore,
in Ref. [22] the saturation of the inequality of Proposition 3
for every k ∈ BZ2 was identified as having a Kähler struc-
ture in the Brillouin zone. The saturation of the inequality
is not enough to have a Kähler structure as one needs the
immersion condition or, equivalently, det(g) �= 0 everywhere.
We remark that the holomorphicity condition Q∂P/∂ z̄ = 0
found in Proposition 2 is the momentum space form of the
real-space equation Qα (x′ − iy′)Pα = 0 found in Ref. [21], for
the case when both inequalities in Theorem 2 are satisfied
and the complex structure in BZ2 is the same as the one in
T 2

θ and completely determined by a single (multivalued) com-
plex coordinate of the form z = k1 ± τk2, for some modular
parameter τ ∈ H and the sign takes into account a possible
orientation flip with respect to the standard one in the Bril-
louin zone. In Ref. [33] and in related works [34–36], a Kähler
structure where the associated complex structure is given by
the flat isotropic one, i.e., determined by z = k1 + τk2, with
τ = i, plays an important role in the construction of ideal
fractional Chern insulator models.
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Finally, we present a few results, which we noticed as
a consequence of analyzing the particular case of two-band
models.

Theorem 3. For two-dimensional two-band models, there
must exist a point in the Brillouin zone where det(g) = 0.
In other words, the map P : BZ2 → Gr1(C2) = CP1 ∼= S2

cannot be an immersion.
The next proposition is known in the literature and, as far as

we know, the first to notice it were Yu-Quan Ma et al. [37,38].
Proposition 1. For two-dimensional two-band models the

inequality of Proposition 3 is saturated
√

det(g) = |�12|/2.
Looking at the proof of Proposition 3 in the Appendix, this

last result follows from the fact that the orthogonal comple-
ment projector Q(k) = I − P(k) has rank 1 in this case and
saturation of the inequality is automatic. As a consequence of
this proposition we have the two following corollaries.

Corollary 4. For two-dimensional two-band models, there
must exist a point in the Brillouin zone where the Berry
curvature vanishes.

We point out that in Ref. [33] it was noted that it is impos-
sible to have a uniform Berry curvature for two-dimensional
two-band models—a manifestation of Theorem 3 and Corol-
lary 4.

Corollary 5. For two-dimensional two-band models, if �12

or −�12 is everywhere nonnegative then volg(BZ2) = π |C|.
This implies that the quantum volume volg(BZ2) directly

tells us about the topology of quantum states in this particular
case.

IV. PHYSICAL INTERPRETATION OF THE KÄHLER
MAP CONDITION

In this section, we provide a physical interpretation of the
Kähler map condition appearing in Theorem 1, namely, that
the Fermi projector P(k) = �(EF − H (k)), besides providing
an immersion of the Brillouin zone BZ2 to the Grassmannian
Grr (Cn), satisfies

Q
∂P

∂z
= 0, (21)

in local complex coordinates z coming from the complex
structure j (or − j, depending on the sign of the first Chern
number, see the proof of Theorem 1 in Appendix A) in the
Brillouin zone. We will phrase this condition in terms of the
many-particle ground state of the band insulator, which is
obtained by filling the Bloch bands below the Fermi level.
Recall that this state is, at the formal level, a Slater determi-
nant over the momenta k in the Brillouin zone, where each
momentum piece is itself a Slater determinant determined by
the r-dimensional subspace Im[P(k)] ⊂ Cn, where n is the
total number of bands in the system [see Eq. (5)]. We may
construct a linear independent set of local Bloch wave func-
tions |v1,k〉, . . . , |vr,k〉 spanning Im[P(k)] ⊂ Cn, depending
smoothly on k, for k in a small open set, which we can write
in terms of the canonical basis of Cn,

|vi,k〉 =
n∑

j=1

v
j
i (k)| j〉, i = 1, . . . , r. (22)

Associated to these vectors, we have operators, which create
them in the many-particle Fock space:

ξ
†
ik =

n∑
j=1

v
j
i (k)c†

jk, i = 1, . . . , r, (23)

where c†
jk denotes the original fermion creation operator,

which creates a fermion with momentum k and internal degree
of freedom j, with j = 1, . . . , n. The k piece of the many-
particle ground state is then determined by

r∏
i=1

ξ
†
ik|0〉, (24)

where |0〉 denotes the vacuum. This piece is only determined
up to a gauge transformation. Namely, we are allowed to per-
form linear combinations among the states |vi,k〉, i = 1, . . . , r,
which do not change Im[P(k)]. This amounts to taking the
n × r matrix v(k) = [v j

i (k)]1�i�r,1� j�n and multiplying it on
the right by a k × k invertible matrix S(k):

v(k) 
−→ v(k)S(k), (25)

and this can be done locally, in a neighborhood of the con-
sidered momentum, in a smooth way. The effect of this gauge
transformation is to transform the k piece of the many-particle
ground state as

r∏
i=1

ξ
†
ik|0〉 
−→ det (S(k))

r∏
i=1

ξ
†
ik|0〉, (26)

which clearly does not change the state. It is useful to write
the projector P(k) in terms of the matrix v(k). To do this,
note that from v(k) we can build a unitary gauge, i.e., a gauge
u(k) = [u j

i (k)]1�i�r,1� j�n for which the r columns of the new
matrix form an orthonormal basis of Im[P(k)]. In matrix
notation, this is equivalent to the requirement u†(k)u(k) = Ir .
Since this is a gauge transformation, this can be achieved
by multiplying on the right by a matrix S(k) and we
have

u(k) = v(k)S(k), such that u†(k)u(k) = Ir . (27)

The unitarity condition above implies that the gauge transfor-
mation S(k) has to satisfy

S†v†vS = Ir ⇒ (SS†)−1 = v†v, (28)

where here and below, we drop the k dependence from the
expressions just to make the formulas less cumbersome to
read. If we find one S satisfying this equation, obviously,
multiplying it on the right by a unitary r × r matrix will give
another valid solution, which is just a manifestation of the
fact that all we have done with this choice (coming from the
Hilbert space inner product structure) was to reduce the full
complex linear gauge group GL(r;C) to the unitary gauge
group U(r) ⊂ GL(r;C). We can then write

P = uu† = vSS†v† = v(v†v)−1v†. (29)

If we recall that the Berry connection, denoted ∇, is de-
termined by the projection of the exterior derivative, we
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can determine the one-form connection coefficients A =
[Aj

i ]1�i, j�r in the gauge provided by v:

∇v = Pdv = v
(
(v†v)−1v†dv

) ⇒ A = (v†v)−1v†dv. (30)

The reader should compare the above expression to the case
in which the gauge is unitary, denoted u, for which the expres-
sion of the connection coefficients, because u†u = Ir , reduces
to the familiar form

A = (u†u)−1u†du = u†du

= [u†
i du j]1�i, j�r = [〈uik|d|u jk〉]1�i, j�r, (31)

where ui, i = 1, . . . , r, denote the columns of the n × r matrix
u, which provide a basis of Bloch wave functions |uik〉, i =
1, . . . , r, spanning the r Bloch bands below the Fermi level at
momentum k, namely Im[P(k)].

Now equipped with the notion of holomorphic local
coordinate, we have preferred local gauges which are holo-
morphic, namely, since can write

A = A(0,1) + A(1,0), (32)

where A(0,1) only contains dz̄, while A(1,0) only contains dz. A
holomorphic gauge is one in which A(0,1) = 0. By applying a
gauge transformation, v 
→ vS, we have

A 
−→ A′ = S−1AS + S−1dS. (33)

A holomorphic gauge can be found by solving,

A′(0,1) = S−1A(0,1)S + S−1 ∂S

∂ z̄
d z̄ = 0. (34)

In complex dimension one this equation has no obstruction
to integrability, because there are no (2,0)-forms, and one
can always find a holomorphic gauge (see Proposition 3.7 of
Ref. [39]). It is then clear the reason for calling it a holomor-
phic gauge: if we have any two holomorphic gauge choices,
v and v′, defined on the same local neighborhood, then the
gauge transformation S relating them, v′ = vS, is seen to
be holomorphic by Eq. (34) (set A(0,1) = A′(0,1) = 0). Essen-
tially, by choosing local holomorphic gauges, what we are
doing is to equip our occupied Bloch vector bundle E → BZ2

with the structure of a holomorphic vector bundle where the
Cauchy-Riemann operator is simply the (0,1) part of the Berry
connection. Since the Berry connection preserves the Hermi-
tian inner product, i.e., parallel transport is unitary, the Berry
connection becomes the Chern connection of the Hermitian
holomorphic vector bundle E → BZ2 (see Proposition 4.9 of
Ref. [39]).

In particular, in a holomorphic gauge v, we have

A(0,1) = (v†v)−1v† ∂v

∂ z̄
d z̄ = 0 ⇒ v† ∂v

∂ z̄
= 0, (35)

since v†v is invertible. Now the condition Q∂P/∂ z̄ = 0 means
that actually, locally, we can choose a holomorphic gauge and
that in such gauge v = v(z), i.e., the local Bloch wave func-
tions themselves can be chosen to be holomorphic functions.
To see this, we will write the condition explicitly. We begin
by taking v to be a holomorphic gauge, meaning v†∂v/∂z = 0
and we will write P in terms of v. Also, it will be more conve-
nient to work with the equivalent condition Q(∂P/∂ z̄)P = 0,
which follows due to P being a projection operator (since Q =

I − P and QdQQ = 0 we have QdP = −QdQ = −QdQP
= QdPP). We then have,

Q
∂P

∂ z̄
P = Q

∂

∂ z̄
(v(v†v)−1v†)P

= Q
[∂v

∂ z̄
(v†v)−1v† − v(v†v)−1 ∂

∂ z̄
(v†v)(v†v)−1v†

+ v(v†v)−1 ∂v†

∂ z̄

]
P

= Q
[∂v

∂ z̄
(v†v)−1v† − v(v†v)−1 ∂v†

∂ z̄
v(v†v)−1v†

− v(v†v)−1v† ∂v

∂ z̄
v(v†v)−1v† + v(v†v)−1 ∂v†

∂ z̄

]
P

= Q
[∂v

∂ z̄
(v†v)−1v† − v(v†v)−1 ∂v†

∂ z̄
v(v†v)−1v†

+ v(v†v)−1 ∂v†

∂ z̄

]
P

= Q
[∂v

∂ z̄
(v†v)−1v† − v(v†v)−1 ∂v†

∂ z̄

+ v(v†v)−1 ∂v†

∂ z̄

]
P = Q

[
∂v

∂ z̄
(v†v)−1v†

]
P = 0,

(36)

where we used the holomorphic gauge condition and the fact
that P = v(v†v)−1v† and it is a projection operator, i.e., P2 =
P. Since Pv = v(v†v)−1v†v = v it follows that v†P = v†, so
we can write the previous condition as

Q
∂v

∂ z̄
(v†v)−1v† = 0. (37)

Multiplying on the right by v, we get

Q
∂v

∂ z̄
= 0. (38)

Now since from the holomorphic gauge constraint we have
A(0,1) = 0 ⇔ ∇ ∂

∂ z̄
v = P∂v/∂ z̄ = 0, it follows that v satisfies

∂v/∂ z̄ = 0, i.e., it is holomorphic. We conclude that the
ground state of the band insulator can be locally described by
local holomorphic Bloch wave functions |v1k〉, . . . , |vrk〉. This
should be compared to what happens in the integer quantum
Hall effect in which the ground state wave function is, in
the symmetric gauge, a Gaussian factor times a holomorphic
Slater determinant of single-particle states taken from the low-
est Landau level. The Gaussian factor in the integer Hall effect
appears because the symmetric gauge is unitary, but one could
also work with a holomorphic gauge, in which case that factor
does not appear and, effectively, the single-particle states from
the lowest Landau level in the plane are just holomorphic
functions which are square integrable with respect to an L2-
inner product. In analogy with what happens in the lowest
Landau level, here the local wave functions can be chosen
to effectively only depend on half of the degrees of freedom,
meaning they only depend on the z coordinate and not on z̄. An
alternative way of understanding this feature for the integer
quantum Hall effect is to use the Landau gauge, in which
the lowest Landau level is identified with the Hilbert space of
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square integrable functions in the momentum variable with re-
spect to which translation symmetry is preserved and, hence,
it corresponds to the Hilbert space of a particle in dimension 1.
The sign of the first Chern number C associated with the Fermi
projector, by determining whether the map is Kähler with
respect to j or − j (see the proof of Theorem 1 in Appendix
A), controls the notion of orientation or chirality of the wave
function in momentum space, for if we locally write z = |z|eiθ

any holomorphic function will wind in the positive orientation
of the z plane, i.e., in the positive θ direction. Alternatively
and in a complementary way, we can also connect this notion
of chirality to the sign of the first Chern number by consid-
ering parallel transport with respect to the Berry connection
around loops. The fact that P∗ωFS is a symplectic form when
the map is an immersion has as a consequence that P∗ωFS

is a volume form on the Brillouin zone. This volume form
(because it is nowhere vanishing) determines an orientation
on the Brillouin zone and, because the map is Kähler, it is also
the one induced by the complex structure j (or − j), which
makes the map P : BZ2 → Grk (Cn) holomorphic. The fact
that P∗ωFS = −�/2, where � is the Berry curvature, then
tells us that in this orientation the Chern number is negative
(see also the proof of Theorem 1 in Appendix A). Suppose for
a moment that we are considering a single band, i.e., r = 1, for
the sake of simplicity (equivalently, consider the top exterior
power line bundle 	rE → BZ2, whose fibers describe Slater
determinants of vectors in the corresponding fibers of the
occupied Bloch vector bundle E → BZ2). If γ is a closed
loop which is the boundary of some region � ⊂ BZ2, with �

having the same orientation as BZ2, we will have, by Stokes’
theorem,

exp

(
i
∫

γ

A

)
= exp

(
i
∫

�

�

)
= exp

(
−2i

∫
�

P∗ωFS

)
,

(39)

and because P∗ωFS is the volume form,∫
�

P∗ωFS =
∫

�

ω > 0 (40)

so that the argument of the parallel transport phase,
∫
�

�,
which equals, in magnitude, twice the symplectic volume of
� measured with respect to ω, or equivalently, due to P being
Kähler, twice the volume of � measured with respect to the
quantum metric g, will necessarily have negative sign. We
notice also that the statement is gauge invariant and is valid
for every loop γ enclosing some arbitrary region � ⊂ BZ2 in
the same orientation as the Brillouin zone.

The phenomenon of chirality described above is also sim-
ilar to what happens in the lowest Landau level, in which
the sign of the magnetic field also controls the chirality of
the wave function. The fact that the geometrical degrees of
freedom are cut in half is, intuitively, and, in fact, formally
due to Theorem 1, also consistent with the saturation of the
Cauchy-Schwarz-like inequality in Theorem 1 in that this
band insulator will have less geometrical degrees of freedom
in its description because the quantum metric and the Berry
curvature are no longer independent quantities.

We point out that a closely related result has been obtained
also by Lee et al. [33]; they have shown, in the context

of a single band, that the (local) Bloch wave function is a
holomorphic function with respect to the isotropic flat com-
plex structure, τ = i, if and only if the inequality tr(g) =
2
√

det(g) � |�12| is saturated. Our result holds more gener-
ally for a general complex structure given by Eq. (19), also
including a general number of bands r. Besides, the results
presented here reexpress this local holomorphicity condition
(expressed in terms of local Bloch wave functions) as a global
holomorphicity condition for the map to the Grassmannian
Grr (Cn) induced by the Fermi projector P(k) = �(EF −
H (k)), which, provided the additional immersion condition,
det(g) �= 0 everywhere in BZ2, is translated into a Kähler map
condition.

V. CONCLUSIONS

In this paper we have studied the geometry of Chern in-
sulators using the natural Kähler geometry of the space of
orthogonal projectors of a given rank, the latter being asso-
ciated with the number of occupied bands. In the process,
we have established important results, namely Theorem 1,
which renders the saturation of the Cauchy-Schwarz-like in-
equality equivalent to a Kähler map condition for the Fermi
projector, and Theorem 2, which determines the conditions
of minimal quantum volume both in the Brillouin zone and
in the twist-angle space. The minimal quantum volume is, in
both cases, precisely given by the topological invariant π |C|,
where C is the first Chern number of the occupied bands.
Supplemented with a nondegeneracy condition, the minimal
volume conditions amount to these tori being endowed with
the structure of a Kähler manifold inherited from the Kähler
geometry of the space of quantum states. Strikingly, for the
case of a single Chern band, when both quantum volumes
are equal and minimal, together with the additional condition
that the conformal factor relating the metrics is trivial, we get
that the algebra generated by the projected density operators
is isomorphic to the W∞ algebra in the fractional Hall effect
[21]. Hence, this can also be used as a necessary criterion for
the stability of fractional topological insulators.

We have related the Kähler map condition appearing in
Theorem 1 to the possibility of writing local holomorphic
Bloch functions, thus obtaining a description of the many-
particle ground state of the insulator, which is quite close to
the one in the integer quantum Hall effect in which, apart from
an overall Gaussian factor, we have a Slater determinant of
holomorphic functions. The sign of the Chern number is seen
to control the chirality of the wave function just like the sign
of the magnetic field does in the case of the quantum Hall
effect.

A remarkable consequence of Theorem 2 is Corollary 3,
which states that if any of the quantum volumes is smaller
than π then we immediately have that C = 0, i.e., we have a
trivial Chern insulator. In the accompanying paper [24], it is
also shown with several tight-binding models that even when
C �= 0, the quantum volume often gives a good estimate of
the Chern number. This shows how the quantum volumes,
intrinsically geometric quantities, are tied to the nontrivial
topology of the Chern insulator.

Additionally, we found that, for two-band systems, it is
impossible to satisfy the nondegeneracy condition due to
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topological constraints placed by the fundamental group of
the two-torus. However, provided the Berry curvature is ev-
erywhere non-negative or nonpositive, the quantum volume
will automatically reach the minimal value π |C|, the reason
being due to the minimal dimension of the total number of
internal degrees of freedom.
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APPENDIX A: DETAILED MATHEMATICAL PROOFS

Proposition 2. If P : � → Grr (Cn) is an immersion of a
Riemann surface to the Grassmannian, which is holomorphic,
i.e., it satisfies, in every local complex z coordinate on the
surface,

Q
∂P

∂ z̄
= 0,

then it is a Kähler map with respect to the usual Kähler
structure on Grr (Cn) given by (ωFS, JFS, gFS ). The converse
is also true, i.e., if P : � → Grr (Cn) is Kähler then it is an
holomorphic immersion of �.

Proof. Since P is an immersion, we will immediately have
that g = P∗gFS is a Riemannian metric. Furthermore, the two-
form ω = P∗ωFS is automatically closed. It remains to show
that if P is holomorphic then ω(·, j·) = g and also that ω is
nondegenerate. Recall that P being holomorphic means that
the differential of P intertwines the two complex structures
(see, for example, Ref. [30]), i.e.,

JFS ◦ dP = dP ◦ j. (A1)

If we take a complex coordinate z associated to j over �, so
that

j

(
∂

∂z

)
= i

∂

∂z
and j

(
∂

∂z

)
= −i

∂

∂z
, (A2)

we have

JFS

(
∂P

∂z

)
= i

∂P

∂z
. (A3)

Observing that dP = QdPP + PdPQ, that (QdPP) ◦ JFS =
iQdPP and that (PdPQ) ◦ JFS = −iPdPQ, we get,

iQ
∂P

∂z
P − iP

∂P

∂z
Q = iQ

∂P

∂z
P + iP

∂P

∂z
Q. (A4)

This then implies the equation

P
∂P

∂z
Q = 0, (A5)

or, equivalently, the Hermitian conjugate

Q
∂P

∂z
P = Q

∂P

∂z
= 0, (A6)

where the last equality follows from QdPQ = Q(−dQ)Q =
0. Observe that

P∗ωFS = − i

2
Tr(PdP ∧ dP)

= − i

2

(
Tr

(
P

∂P

∂ z̄

∂P

∂z

)
− Tr

(
P

∂P

∂z

∂P

∂ z̄

))
dz̄ ∧ dz

= − i

2

(
Tr

(
P

∂P

∂ z̄
Q

∂P

∂z

)
− Tr

(
P

∂P

∂z
Q

∂P

∂ z̄

))
dz̄ ∧ dz

= − i

2
Tr

(
P

∂P

∂ z̄
Q

∂P

∂z

)
dz̄ ∧ dz

= i

2
Tr

(
P

∂P

∂ z̄

∂P

∂z

)
dz ∧ dz̄,

where we used PdPP = 0 and QdQQ = 0 which imply
that PdP = PdPQ = dPQ = −dQQ and similarly dPP =
QdPP = QdP. Also, by the same reasoning

P∗gFS = Tr(PdPdP) = Tr

(
P

∂P

∂ z̄

∂P

∂z

)
dz̄dz.

Using Eq. (A2) we get

i

2
dz ∧ dz̄(·, j·) = i

2
(dz ⊗ dz̄ − dz̄ ⊗ dz)(·, j·)

= 1

2
(dz ⊗ dz̄ + dz̄ ⊗ dz) = dzdz̄.

Thus, we conclude

ω(·, j·) = P∗ωFS (·, j·) = P∗gFS = g.

Finally, ω is nondegenerate because g is so and they are both
determined by the same function, namely Tr(P ∂P

∂z
∂P
∂z ).

The converse is also true, for if P : � → Grr (Cn) is Kähler
it automatically is an immersion since that is implied by g
being nondegenerate and it has to be holomorphic in order to
be Kähler. Hence, the proof is concluded. �

Proposition 3. (Cauchy-Schwarz-type inequality and rela-
tion to the Wirtinger inequality) We have the inequality

√
det[gi j (k)] � |�12(k)|

2
,

with the equality, for a given k ∈ BZ2, given by at least one of
the following conditions:

(i) Q(k) ∂P
∂k1

(k) = 0,

(ii) Q(k) ∂P
∂k2

(k) = 0,

(iii) ∃λ ∈ C − {0} : Q(k) ∂P
∂k1

(k) = λQ(k) ∂P
∂k2

(k).
The above result is a manifestation of the so-called

Wirtinger inequality for general Kähler manifolds [40]. The
Wirtinger inequality states that on a Kähler manifold, the kth
exterior power of the Kähler form, when evaluated on a simple
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(decomposable) 2k-vector of unit volume, is bounded above
by k!. The case at hand follows with k = 1.

Proof. The inequality has been first noted by Roy [21],
for the case r = 1. A physicist-friendly proof, for r � 1,
can be found in the accompanying paper [24]. Below we
give an alternative proof using the Wirtinger inequality. Be-
fore doing that, we give a few additional remarks here
to the proof of Ref. [24] because the conditions for the
saturation of the inequality are stated here in terms of pro-
jectors. We first observe that conditions (i), (ii), (iii) are
statements about the image of the differential of P at k
because dkP(∂/∂ki ) is given by Q(k)(∂P/∂ki )(k) + H.c.,
i = 1, 2. Moreover, the fact that the Plücker embedding is
an isometry allows us to reduce the proof of the proposi-
tion to the case of r = 1, i.e., for the complex projective
space P (	rCn) ∼= CPm = Gr1(Cm+1) with m = (n

r

) − 1. Ef-
fectively, this amounts to, for each k ∈ BZ2, replacing the
initial rank r projector by the rank 1 projector associated
to the wedge product (Slater determinant) associated to an
orthonormal basis of the image of the former. In this case,
we have a rank 1 projector locally specified by a (normal-
ized) Bloch wave function P(k) = |ψ (k)〉〈ψ (k)|. It follows
from the proof in Ref. [24] that the inequality is saturated if
and only if Q(k)∂/∂k1|ψ (k)〉 = 0 or Q(k)∂/∂k2|ψ (k)〉 = 0
or Q(k)∂/∂k1|ψ (k)〉 = λQ(k)∂/∂k2|ψ (k)〉 = 0 for some λ ∈
C. Additionally, observing that

Q(k)
∂P

∂ki
(k) = Q(k)

(
∂

∂ki
|ψ (k)〉

)
〈ψ (k)|, for i = 1, 2,

(A7)

because Q(k)|ψ (k)〉 = 0, the proof is complete.
Now we consider the relation with the Wirtinger inequality,

which provides an alternative proof. For k = 1, in our par-
ticular setting, this means that if e1, e2 are orthonormal with
respect to gFS , we have

|ωFS (e1, e2)| � 1. (A8)

If e1 and e2 form an orthonormal basis for the image of the
differential dP for some momentum k, then,

ei =
2∑

j=1

a j
i dP

(
∂

∂k j

)
, i = 1, 2 (A9)

for some invertible matrix a = [a j
i ]1�i, j�2. Then,

ωFS (e1, e2) = det(a j
i )ωFS

(
dP

(
∂

∂k1

)
, dP

(
∂

∂k1

))

= det
(
a j

i

)
(P∗ωFS )12 = −1

2
�12 det

(
a j

i

)
.

Next, observe that since gFS (ei, e j ) = δi j , 1 � i, j � 2, we
have that

gi j = (P∗gFS )

(
∂

∂ki
,

∂

∂k j

)
=

2∑
k,l=1

(a−1)k
i (a−1)l

jδkl .

As a consequence, det(gi j ) = det(a−1)2. Thus, the Wirtinger
inequality implies

|ωFS (e1, e2)| = ∣∣− 1
2�12det

(
a j

i

)∣∣ � 1 (A10)

or √
det(g) � 1

2 |�12|, (A11)

as claimed. Concerning the saturation of the inequality, two
cases are to be considered in light of Wirtinger’s inequality.
If at a given point k ∈ BZ2 the mapping is not an immer-
sion the dimension of image of the differential of P at k is
smaller than 2. This implies that

√
det[gi j (k)] = �12(k) = 0

at that point because we can not build an orthonormal basis
with two elements in the image. This covers the cases (i)
and (ii), and also (iii) provided λ is real since they imply
that the differential of P at k is not injective [the vanish-
ing of

∑2
i=1 aiQ(k)∂P/∂ki(k) is equivalent to the vanishing

of the image under the differential of P at k of the tan-
gent vector

∑2
i=1 ai∂/∂ki ∈ TkBZ2 with ai ∈ R, i = 1, 2]. We

are left with the nondegenerate case, i.e., when the image
of the differential of P at k is two-dimensional, in which
we can apply Wirtinger’s inequality and consider the situa-
tion in which it is saturated. We will show in the following
that this is equivalent to the case (iii) with Im(λ) �= 0. Be-
cause (ωFS, JFS, gFS ) is a compatible triple, the saturation of
Wirtinger’s inequality holds if and only if e2 = ±JFS (e1). In-
deed, if e2 = ±JFS (e1) we have |ωFS (e1, e2)| = gFS (e1, e1) =
1. Conversely if |ωFS (e1, e2)| = 1, we have

|ωFS (e1, e2)| = |g(JFS (e1), e2)|
= 1

= gFS (e1, e1) = gFS (e2, e2). (A12)

Furthermore, by skew symmetry, ωFS (ei, ei ) =
0 = gFS (ei, J (ei )), i = 1, 2 and, by compatibility,
gFS (JFS (e1), JFS (e1)) = ωFS (e1, JFS (e1)) = g(e1, e1). It
follows that JFS (e1) is orthogonal to e1 and it has norm 1.
From the saturation of the Cauchy-Schwarz inequality for the
metric gFS

1 = gFS (e2, e2)gFS (JFS (e1), JFS (e1)) � |gFS (e2, JFS (e1))|2

= |ωFS (e1, e2)|2
= 1, (A13)

it follows that J (e1) = ±e2. Now if e1, e2 form an orthonor-
mal basis of the image of dP at k as in Eq. (A9) this in turn
implies that

2∑
j=1

a j
1

(
iQ

∂P

∂k j
− i

∂P

∂k j
Q

)
= ±

2∑
j=1

a j
2

(
Q

∂P

∂k j
+ ∂P

∂k j
Q

)
.

(A14)

Due to P and Q being orthogonal to each other it follows that

2∑
j=1

a j
1iQ

∂P

∂k j
= ±

2∑
j=1

a j
2Q

∂P

∂k j
, (A15)
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which further implies(
ia1

1 ∓ a1
2

)
Q

∂P

∂k1
= ( − ia1

2 ± a2
2

)
Q

∂P

∂k2
. (A16)

Now computing

λ =
( − ia1

2 ± a2
2

)(
ia1

1 ∓ a1
2

) =
( − ia1

2 ± a2
2

)( − ia1
1 ∓ a1

2

)(
(a1

2)2 + (a1
1)2

)
= −a1

1a1
2 − a1

2a2
2 + i

( ∓ a1
1a2

2 ± a1
2a1

2

)(
(a1

2)2 + (a1
1)2

)
= −a1

1a1
2 − a1

2a2
2 ± i det(ai

j )(
(a1

2)2 + (a1
1)2

) , (A17)

which, because det(ai
j ) �= 0 and (a1

2)2 + (a1
1)2 �= 0 (since

e2 �= 0), implies condition (iii) with Im(λ) �= 0. This con-
cludes our proof. �

Theorem 1. Suppose P : BZ2 → Grr (Cn) is an immersion,
then the Cauchy-Schwarz-like inequality is saturated√

det(gi j (k)) = ∓�12(k)

2
, for all k ∈ BZ2,

if and only if the map P is Kähler with respect to the triple of
structures (ω,± j, g).

Proof. By assumption, P is an immersion so the equality√
det(gi j (k)) = |�12(k)|

2
,

implies that condition (iii) of Proposition 3 holds pointwise,
i.e., there exists a function λ ∈ C∞(BZ2) such that

Q(k)
∂P

∂k1
(k) = λ(k)Q(k)

∂P

∂k2
(k), for all k ∈ BZ2.

Observe furthermore that by the fact that P is an immersion
we have that g is nondegenerate and hence Im[λ(k)] �= 0 for
all k ∈ R. Otherwise the quantities Q∂P/∂ki, i = 1, 2, which
represent the images of the tangent vectors ∂/∂ki, i = 1, 2,
would be linearly dependent.

Observe that if we introduce a complex variable z such that

∂

∂z
= 1

2

(
∂

∂k1
− λ

∂

∂k2

)
,

the statement is

Q
∂P

∂z
= 0.

To find z we would have to solve,

∂k1

∂ z̄
= 1

2
and

∂k2

∂ z̄
= −λ

2
,

∂k1

∂z
= 1

2
and

∂k2

∂z
= −λ

2
.

Equivalently, since(
1

2

[
1 1

−λ̄ −λ

])−1

= 1

iIm(λ)

[
λ 1

−λ̄ −1

]
,

well defined since Im(λ) �= 0, we have

dz= 1

iIm(λ)
(λdk1 + dk2)and dz=− 1

iIm(λ)
(λdk1 + dk2).

The resulting partial differential equations are locally inte-
grable (see, for instance, Example 5 of Chapter 1 in Ref. [31]
or Theorem 4.16 of Ref. [41]) because by solving them we
are finding local isothermal coordinates, in two dimensions,
with respect to P∗gFS . These local systems of coordinates then
glue together holomorphically giving the Brillouin zone the
structure of a complex manifold. We now refer to Proposition
2 and one side of the implication is proved. Note, however,
that the new local complex coordinates z can induce the op-
posite orientation with respect to the usual one induced by the
(multivalued) complex coordinate k1 + ik2. This is the case
when the first Chern number is positive. In this case, the map
is Kähler with respect to the complex structure one gets by
rotation of 90 degrees as determined by g and the orientation
opposite to the standard orientation of the Brillouin zone;
namely the almost complex structure is − j, with respect to j
as defined in Sec. II. This follows from the fact that the func-
tion Tr(P ∂P

∂z
∂P
∂z ) determining P∗ωFS = −P∗�0/2 = −�/2 in

the local holomorphic coordinate z is always positive (because
it also determines the metric) and so the integral in an orien-
tation consistent with it will be positive.

Let us now consider the converse, i.e., if P : BZ2 →
Grr (Cn) is Kähler (which automatically implies that P is an
immersion) with respect to the triple of structures (ω,± j, g),
then the inequality

√
det[gi j (k)] = |�12(k)|

2
, for all k ∈ BZ2,

is saturated. The reason is that the Kähler condition
ω(·,± j·) = g(·, ·), with ω = P∗ωFS and g = P∗gFS is locally
given by

∓
2∑

j=1

1

2
�i j (k) j j

k (k) = gik (k),

with ji
j (k) being the matrix elements of the complex structure

j, i.e.,

j

(
∂

∂ki

)
=

2∑
j=1

j j
i

∂

∂k j
, i = 1, 2.

In matrix form

±ω j = ∓ 1
2� j = g.

Taking determinants, we get

1
4�2

12 det( j) = 1
4 |�12|2 det( j) = det(g).

Since the right-hand side has positive determinant it fol-
lows that det( j) > 1 and hence, because j2 = −I we have
det( j)2 = 1 so det( j) = 1. Hence we get the equality

1
2 |�12| =

√
det(g),

as desired. The theorem is, thus, proved. �
Theorem 2. The following inequalities hold

π |C| � volg(BZ2) � vol̃g(T 2
θ ),
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where the left-hand side inequality is saturated if and only if,
for every k ∈ BZ2,

√
det(g) = |�12|

2 and provided �12 does not
change sign over BZ2, and the right-hand side inequality is
satisfied if and only if

gi j (k) = e2 f (k)g̃i j (θ = k), 1 � i, j � 2,

for some function f ∈ C∞(BZ2), i.e., g is related to g̃ by a
Weyl rescaling, implying that, provided P is an immersion,
they share the same complex structure j (and hence the same
modular parameter).

Proof. The left-hand side inequality is a consequence of
Proposition 3 and the definitions of the first Chern number and
the quantum volume. The right-hand side inequality follows
from an L2-Cauchy-Schwarz inequality; a detailed derivation
can be found in the accompanying paper [24]. Here we will
just prove the last additional statement. The saturation of the
inequality volg(BZ2) � vol̃g(T 2

θ ) is shown in Ref. [24] to be
equivalent to the equality

gi j (k) = g11(k)ci j, for every k ∈ BZ2,

for some constants ci j , 1 � i, j � 2. This means that g and
g̃, defined by Eq. (14), differ by a Weyl rescaling – hence,
provided P is an immersion so that g is nondegenerate, they

share the same complex structure. It then follows that

g̃i j (θ ) =
∫

BZ2

d2k

(2π )2
gi j (k) =

(∫
BZ2

d2k

(2π )2
g11(k)

)
ci j .

The result follows immediately, for

e2 f (k) = g11(k)∫
BZ2

d2k
(2π )2 g11(k)

.

�
Theorem 3. For two-dimensional two-band models, there

must exist a point in the Brillouin zone where det(g) = 0.
In other words, the map P : BZ2 → Gr1(C2) = CP1 ∼= S2

cannot be an immersion.
Proof. In this particular case, since Gr1(C2) = CP1 ∼= S2

is the Bloch sphere, we get a map from a torus to the
two-sphere, BZ2 � k 
→ n(k) ∈ S2. If this map were an im-
mersion, then by the inverse function theorem, it would be a
local diffeomorphism. As a consequence it would be a cover-
ing map. Now Proposition 1.3.1. of Ref. [42], tells us that if we
have a covering map then the induced group homomorphism
in fundamental groups is injective. The fundamental group of
the Brillouin torus BZ2 is the Z ⊕ Z Abelian group generated
by the noncontractible loops associated with the k1 and k2

directions. Meanwhile, that of the sphere is the trivial group
since any loop is contractible to a point. As a consequence,
there can be no injective group homomorphism between these
two groups. Hence, we find that there can be no immersion
map from the torus to the sphere and, as a conclusion, the
quantum metric must be degenerate, i.e., noninvertible, some-
where in the Brillouin zone. �
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