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Gross-Neveu-Heisenberg criticality from competing nematic and antiferromagnetic
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We study the phase diagram of an effective model of competing nematic and antiferromagnetic orders
of interacting electrons on the Bernal-stacked honeycomb bilayer, as relevant for bilayer graphene. In the
noninteracting limit, the model features a semimetallic ground state with quadratic band touching points at
the Fermi level. Taking the effects of short-range interactions into account, we demonstrate the existence of
an extended region in the mean-field phase diagram characterized by coexisting nematic and antiferromagnetic
orders. By means of a renormalization group approach, we reveal that the quantum phase transition from nematic
to coexistent nematic-antiferromagnetic orders is continuous and characterized by emergent Lorentz symmetry.
It falls into the (2 + 1)-dimensional relativistic Gross-Neveu-Heisenberg quantum universality class, which has
recently been much investigated in the context of interacting Dirac systems in two spatial dimensions. The
coexistence-to-antiferromagnetic transition, by contrast, turns out to be weakly first order as a consequence of the
absence of the continuous spatial rotational symmetry on the honeycomb bilayer. Implications for experiments
in bilayer graphene are discussed.
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I. INTRODUCTION

Since its experimental realization [1], the low-temperature
physics of bilayer graphene has attracted significant attention.
However, despite considerable experimental and theoretical
efforts, the actual nature of the material’s zero-temperature
ground state has not been unambiguously identified to date.
The problem is that many competing states, which are very
close in energy, appear in the system [2]. Already slight
changes in the experimental setup or conditions can therefore
lead to qualitatively different low-temperature ground states.
In the simplest tight-binding model for the thermodynami-
cally stable Bernal-stacked configuration of bilayer graphene
[3], the valence and conduction bands touch quadratically
at two isolated points in the Brillouin zone, with the Fermi
level being locked at the band touching point in the undoped
system. In contrast to monolayer graphene, the single-particle
density of states in the bilayer model hence remains fi-
nite at the Fermi level, such that the semimetallic state
is prone to instabilities at low temperatures [4–6]. Trans-
port and spectroscopic experiments have indeed observed an
interaction-driven reconstruction of the fermionic spectrum
at temperatures below around 10 K [7–14]. However, while
some of the experiments indicate an insulating ground state
with a full bulk band gap [11–14], others suggest only a partial
gap opening in which four isolated Dirac cones remain gapless
in the bulk spectrum [10]. A partial gap opening would imply
a low-temperature ground state that breaks part of the lattice
rotational symmetry spontaneously. In fact, such an electronic
nematic order had indeed previously been predicted on the
basis of perturbative renormalization group (RG) analyses
[5,15]. Later theoretical studies [16–23] have shown, however,

that an antiferromagnetic state, characterized by finite and
opposite net magnetizations within the two layers [20,24],
is at least comparable in energy and in fact prevails over a
large section of parameter space. This layer antiferromagnet
features a full gap in the electronic spectrum, and among the
different candidate ground states it appears to be the one that
is most consistent with the measurements on the samples that
become insulating at low temperatures [11].

In this work, we revisit the problem of the low-temperature
ground state in bilayer graphene. We investigate the phase
diagram of a model of short-range-interacting electrons on
the honeycomb bilayer by means of mean-field and RG anal-
yses. We focus on the competition between the nematic and
antiferromagnetic orders, which appear to be the most promis-
ing candidate ground states consistent with the experiments
[10,11]. In particular, we study the possibility of coexisting
orders, which was only insufficiently addressed in previous
work [17]. We find that the nematic and antiferromagnetic
phases at small to moderate coupling are generically separated
by an intermediate coexistence phase, which features both
layer antiferromagnetism and nematicity; see Fig. 1. In the
coexistence phase, the fermionic spectrum exhibits a full but
rotationally anisotropic band gap. We also discuss the quan-
tum transitions in and out of the coexistence phase, the nature
of which may have nontrivial consequences for various exper-
imental observables. The fact that the rotational symmetry on
the honeycomb bilayer is restricted to 120◦ rotations allows a
cubic invariant in the effective potential for the nematic order
parameter. We show that the presence of this term renders
the transition between the gapped antiferromagnet and the
coexistence phase weakly first order. By contrast, we find the
transition from the nematic phase to the coexistence phase
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FIG. 1. Mean-field phase diagram of interacting electrons on
the Bernal-stacked honeycomb bilayer as a function of short-range
couplings g and g′ defined in Sec. II. Blue and red color codings
indicate the magnitudes of the nematic and antiferromagnetic orders,
respectively. The electronic spectra near the corners of the hexagonal
Brillouin zone are depicted for the different states in the insets. The
gray rectangle shows a zoom into the weakly interacting regime,
with the dotted gray line indicating the phase boundary between ne-
matic and antiferromagnetic orders in the fermionic RG calculation
(Sec. III). The dashed black line indicates the cut used in Fig. 2.
The antiferromagnetic-to-coexistence transition (thick white curve)
is weakly first order (Sec. IV). The nematic-to-coexistence transition
(thin white curve) is continuous and falls into the Gross-Neveu-
Heisenberg universality class (Sec. V).

to be continuous as a consequence of an emergent relativis-
tic space-time symmetry realized at large length scales. At
this transition, the electronic band gap closes at four isolated
Fermi points in the Brillouin zone with linear band dispersions
in their vicinities. We characterize this quantum critical point
within two complementary approaches: (i) a 2 + ε expansion
around the lower critical space-time dimension of two within
the purely fermionic theory, and (ii) a 4 − ε expansion around
the upper critical space-time dimension of four within the cor-
responding Hubbard-Stratonovich-decoupled fermion-boson
model. The consistent result of the two approaches is that
the nematic-to-coexistence transition falls into the relativis-
tic Gross-Neveu-Heisenberg universality class. This quantum
universality class has recently been much investigated in
models of interacting electrons on monolayer honeycomb or
π -flux lattices [25–39]. It was also proposed in the context
of the Hubbard model on the Bernal-stacked honeycomb bi-
layer, in which a fully symmetric Dirac semimetal phase is
stabilized in the weakly interacting regime as a consequence
of a trigonal warping term arising from fermion self-energy
effects [21,40]. The mechanism proposed here is different
from these latter works in that it applies to the ordered regime,
in which the role of the interaction-induced trigonal warping

becomes subdominant [17,22,41]. The background nematic
order present throughout this transition gaps out half of the
Dirac cones of the symmetric Dirac semimetal state, leading
to a smaller number of low-energy fermion degrees of free-
dom and critical power laws with different exponents. The
exponents are also different from those of the Hubbard model
of spin-1/2 fermions on the monolayer. As each quadratic
band touching point in the noninteracting fermion spectrum
splits into two mini-Dirac cones in the nematic state, the
number of fermion degrees of freedom is doubled in com-
parison with the monolayer case. As an aside, we note that
the nontrivial quantum transitions we find require that the
model feature the full symmetries of bilayer graphene on
the microscopic level, with the spatial and/or spin rotational
symmetry being broken only spontaneously. This is in contrast
to previous work on the coexistence of nematic and gapped
states in bilayer graphene, which assumed explicit breaking of
microscopic symmetries, e.g., by external strain and/or gate
voltage [42].

The remainder of the paper is organized as follows: In
Sec. II, we describe our model of interacting electrons on
the honeycomb bilayer. Section III discusses the mean-field
phase diagram for the competing nematic and antiferromagnet
orders. Our results for the antiferromagnet-to-coexistence and
nematic-to-coexistence transitions are presented in Secs. IV
and V, respectively. We conclude in Sec. VI. Technical details
are deferred to three Appendices.

II. MODEL

Since a fully satisfactory microscopic model of the elec-
tronic interactions in bilayer graphene is currently not agreed
upon,1 we employ in this work a minimal theoretical de-
scription that allows us to study the competition between
nematic and antiferromagnetic orders and the possibility of
a coexistence phase on the honeycomb bilayer. Our approach
may be viewed as a simple phenomenological modeling that
captures the physics of two most prominent candidate or-
dered states discussed in the experimental works [10,11]. It
restricts the multidimensional parameter space discussed in
previous more comprehensive works [17,18,45] to a sim-
ple two-dimensional subspace. Explicitly, we consider the
low-energy continuum action S = ∫

dτd2xLQBT in imaginary
time τ and two-dimensional space x = (x, y)� with

LQBT = �†[∂τ + da(−i∇)(�a ⊗ 12)]�

− g

2
[�†(�z ⊗ σα ) �]2 − g′

2
[�†(�a ⊗ 12)�]2, (1)

where a = 1, 2 and α = x, y, z. In the above and the following
equations, the summation convention over repeated indices is
implicitly assumed. The da functions are � = 2 real spherical
harmonics given by

d1(−i∇) = −∂2
x + ∂2

y , d2(−i∇) = −2∂x∂y, (2)

1See, nevertheless, Ref. [43] for ab initio results for monolayer
graphene and bulk graphite, as well as Ref. [44] for an overview of
band structure model parameters for bilayer graphene.
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and transform under spatial rotations as components of a
second-rank tensor [46]. The spinors � and �† have eight
components, corresponding to the layer, valley, and physical
spin degrees of freedom [5]. The 2×2 Pauli matrices σα ,
α = x, y, z, act on the physical spin index and transform as
a vector under SU(2) spin rotations. The 4×4 matrices �x,
�y, and �z realize a four-dimensional representation of the
Clifford algebra, and are given explicitly as

�x = 12 ⊗ μx, �y = τz ⊗ μy, �z = 12 ⊗ μz, (3)

where in the above tensor products the first (second) factors
act on the layer (valley) indices. Here, the 2×2 Pauli ma-
trices that serve as building blocks for the � matrices have
been denoted by τα and μα to distinguish them from those
acting on the physical spin index. While �x and �y trans-
form as components of a second-rank tensor, �z is a scalar
under spatial rotations [40]. In this representation, the time-
reversal operator is given as T = (τx ⊗ 12) ⊗ σy K, where
K denotes complex conjugation. The first factor of the uni-
tary part essentially represents interchanging the two valleys,
while the second factor represents spin flip. In our model
(1), we have assumed particle-hole symmetry and a contin-
uous spatial rotational symmetry. The effects of perturbations
that break the continuous rotational symmetry down to 120◦
rotations on the honeycomb bilayer will be discussed later
in the paper. In particular, our model neglects the effects of
trigonal warping that are expected to play a dominant role
only in the weakly interacting regime [17,21,22,40,41]. We
use units in which the isotropic effective band mass is set to
m∗ = 1/2. The spectrum of the noninteracting Hamiltonian
H0(p) = da(p)(�a ⊗ 12) then is simply ε±

0 (p) = ±p2, where
p denotes the deviation from the corners K and K ′ of the
hexagonal Brillouin zone. It describes a nonrelativistic two-
dimensional “Luttinger” semimetal [47] in which the valence
and conduction bands touch quadratically at the two Fermi
points at K and K ′.

The four-fermion interactions parametrized by the cou-
plings g and g′ in Eq. (1) are chosen such that they stabilize
antiferromagnetic and nematic long-range order, respectively.
This can be seen as follows: The three-component fermion
bilinear φ ∼ �†(�z ⊗ σ)�, associated at the mean-field level
with the four-fermion coupling g, is even under time reversal,
a scalar under spatial rotations, and a vector under SU(2) spin
rotations. Assigning a finite vacuum expectation value to φ

hence breaks spin-rotational symmetry while leaving spatial
rotational symmetry and time reversal intact. It describes the
layer antiferromagnet, in which the two honeycomb layers
feature finite and opposite magnetizations [17,24]. Impor-
tantly, the corresponding operator �z ⊗ σ anticommutes with
the single-particle Hamiltonian H0, and hence a vacuum ex-
pectation value of φ opens a uniform gap in the fermionic
spectrum, of size ∝|〈φ〉|. Microscopically, the four-fermion
term parametrized by g can be understood to arise from an
interlayer interaction that couples spin densities on the two
honeycomb layers [16,17]. On the other hand, the bilinear
corresponding to the coupling g′, na ∼ �†(�a ⊗ 12)�, trans-
forms as the components of a second-rank tensor under spatial
rotations, while being even under spin rotations and time
reversal. When na obtains a finite expectation value, the spatial
rotational symmetry on the honeycomb bilayer is sponta-

neously broken while all other symmetries are left intact. The
bilinear na corresponds to the nematic order parameter [5,17].
Its components commute with one of the matrices appearing
in the single-particle Hamiltonian, while anticommuting with
the other. A gap in the electronic spectrum is therefore not
opened up in the state with nematic order alone; instead,
each quadratic band touching point splits into two mini-Dirac
cones located in close vicinity of the corners K and K ′ of
the hexagonal Brillouin zone, along the axis chosen by 〈na〉.
On a microscopic level, the coupling g′ can be thought of as
parametrizing intervalley scattering processes between the K
and K ′ points [5,16,17].

The symmetry of the noninteracting Hamiltonian allows
a number of further short-range interactions [16], which are
neglected here for simplicity. These may change some of our
results on a quantitative level, such as the size of the phases
and the location of the phase boundaries in parameter space.
However, our main conclusions, including the existence of a
coexistence phase and the nature of the transitions into and
out of this phase, are expected to be robust upon the inclusion
of these further interactions, as long as these become not too
large. The same holds for the long-range tail of the Coulomb
interaction, which may be included as well, but is expected to
be screened at low energies [18].

III. PHASE DIAGRAM

In this section, we explore the phase diagram of the
model (1) as a function of the coupling parameters g and
g′ on the level of mean-field theory. We restrict ourselves
to positive interactions g, g′ > 0, which allows us to obtain
an equivalent order-parameter field theory by means of a
Hubbard-Stratonovich transform,

LHST = φ2

2g
+ n2

2g′ + �†[∂τ + da(−i∇)(�a ⊗ 12)]�

− φα�†(�z ⊗ σα )� − na�
†(�a ⊗ 12)�, (4)

where φ2 ≡ φαφα , α = x, y, z, and n2 ≡ nana, a = 1, 2. The
collective fields φα and na are related to fermion bilinears
via the equations of motion φα = g�†(�z ⊗ σα )� and na =
�†(�a ⊗ 12)�. We integrate out the fermions by performing
the path integral of � and �† in LHST in order to obtain
an effective description in terms of the two order parameters
alone,

LOP = φ2

2g
+ n2

2g′ − Nf

4
Tr ln[∂τ + da(−i∇)(�a ⊗ 12)

− φα (�z ⊗ σα ) − na(�a ⊗ 12)]. (5)

In the above, we have inserted a parameter Nf which counts
the number of valley and spin degrees of freedom, with Nf = 4
corresponding to the present case of spin-1/2 fermions on the
honeycomb bilayer. In the limit Nf → ∞, bosonic fluctuations
freeze out and mean-field theory becomes exact. We can then
replace φα , na with corresponding classical fields and perform
the trace in momentum space. Evaluating the frequency inte-
gral, we find the familiar sum over energy of filled states for
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the mean-field effective potential

VMF(φ, na) = φ2

2g
+ n2

2g′ + Nf

∫
|p|�


d2 p
(2π )2

ε−
φ,n(p), (6)

where

ε±
φ,n(p) = ±

√
p4 + φ2 + n2 − 2nada(p) (7)

denotes the fermion spectrum in the presence of a constant
bosonic background, and 
 is a ultraviolet momentum cut-
off. In the following, we assume na = (n, 0) without loss of
generality. The momentum integration and subsequent energy
minimization is performed numerically. The resulting phase
diagram assuming φ, n � 
2 is shown in Fig. 1. If the inter-
action is predominantly g (g′), the antiferromagnetic (nematic)
state is preferred. While the electronic spectrum in the antifer-
romagnetic phase is fully gapped, in the nematic phase each
quadratic band touching point splits into two gapless mini-
Dirac cones. In between, however, a state in which both 〈φ〉
and 〈n〉 are nonvanishing is stabilized—a coexistence phase.
This phase is characterized by an anisotropic but fully gapped
electronic spectrum; see inset in Fig. 1.

In the limit g, g′ → 0, the coexistence phase shrinks and is
located around the line described by g′ = 2g (dotted gray line
in Fig. 1). The latter can be understood from an RG perspec-
tive: The pertinent β functions at one-loop order essentially2

follow from the Nf → ∞ limit of Eqs. (7) and (8) of Ref. [5].
They are given by

βg = 2g2, βg′ = (g′)2, (8)

where we have rescaled (g, g′)Nf/(4π ) �→ (g, g′) and dropped
any terms that vanish for Nf → ∞. The g axis, the g′ axis, and
the line g′ = 2g are invariant subspaces of the RG flow.3 We
use conventions in which a positive β function corresponds
to an infrared relevant direction. Hence, for positive initial
couplings, the flow always diverges as (g, g′) → (∞,∞) in
the infrared. In fact, this occurs within finite RG time and sig-
nifies spontaneous symmetry breaking. In the RG approach,
the usual strategy to determine the nature of the symmetry-
breaking ground state is based on comparing susceptibilities
of the corresponding order parameters [5,16–18,48,49]. We
emphasize that such an analysis does not allow one to identify
possible coexistence phases in a controlled way [17]. For the
present large-Nf flow equations (8), the susceptibility analy-
sis becomes particularly simple, as the ratio g′/g approaches
either zero or infinity in the infrared, depending on the initial
values of the couplings: For g′/g > 2, we find that g′/g → ∞
and the nematic susceptibility has the strongest divergence.

2Note that in the strict mean-field limit Nf = ∞, all that matters
are the (anti)commutation properties of the matrices appearing in the
four-fermion interaction with the free fermion propagator. Hence,
the fact that we are actually studying the spin counterpart of the
rotationally invariant gapped state considered in Ref. [5] does not
change the β functions in this limit.

3The RG invariance of these subspaces may be understood by rec-
ognizing that they correspond to rays joining the Gaussian fixed point
with certain (bi)critical fixed points in 2 + ε spatial dimensions; see
Ref. [47].

FIG. 2. (a) Nematic order parameter 〈n〉 (blue) and antiferromag-
netic order parameter 〈φ〉 (red) along the cut through parameter space
indicated by the dashed black line in Fig. 1, in the mean-field approx-
imation. In the model with continuous spatial rotational symmetry,
both transitions into and out of the coexistence phase are continuous.
(b) Nematic order parameter in the vicinity of the antiferromagnet-
to-coexistence transition, showing the effects of the f3 term defined
in Eq. (10), which breaks the continuous spatial rotational symmetry
down to 120◦ rotations on the honeycomb bilayer. Here, the antifer-
romagnetic order parameter 〈φ〉 = 0.678
2 has been held constant
for simplicity. The inset shows a zoom into the region very close to
the transition (gray rectangle), illustrating the fact that finite f3 �= 0
renders the transition weakly first order.

For g′/g < 2, on the other hand, g′/g → 0 and the antifer-
romagnetic susceptibility dominates. The RG invariant line
g′/g = 2 hence represents the transition line between nematic
and antiferromagnetic orders in the weakly interacting limit,
in agreement with our mean-field analysis; see Fig. 1. For
finite short-range couplings, however, the mean-field calcu-
lation shows that the transition line is “smeared out” into an
extended coexistence phase. Upon increasing g and g′, the
higher-order corrections incorporated in this calculation shift
the location of the coexistence phase toward smaller ratio g′/g.

Figure 2 shows the evolution of the nematic and antifer-
romagnetic order parameters along the cut indicated by the
dashed black line in Fig. 1. In our simple model with con-
tinuous spatial rotational symmetry, both transitions into and
out of the coexistence phase are continuous; see Fig. 2(a).
In the vicinity of the nematic-to-coexistence transition, the
antiferromagnetic order parameter develops an expectation
value as 〈φ〉 ∝ g − gc1 for g � gc1, where gc1 denotes the
critical coupling. The linear behavior is consistent with Gross-
Neveu-type quantum criticality in the large-Nf limit [50]. Near
the antiferromagnetic-to-coexistence transition at gc2 > gc1,
across which the fermionic spectrum retains a finite gap, the
corresponding nematic order parameter has a square-root be-
havior, 〈n〉 ∝ √

gc2 − g for g � gc2. While this is consistent
with the mean-field expectation for a purely bosonic transi-
tion, it turns out to be an artifact of our simple modeling,
which assumes a continuous rotational symmetry. In fact, as
shown in Fig. 2(b) and discussed in detail in Sec. IV, the
antiferromagnetic-to-coexistence transition becomes weakly
first order when perturbations, which break the continuous
spatial rotational symmetry down to 120◦ rotations on the
honeycomb bilayer, are taken into account. The nematic-
to-coexistence transition, by contrast, is expected to remain
continuous upon the inclusion of such perturbations; see
Sec. V.

The present mean-field analysis represents the leading or-
der of a systematic 1/Nf expansion. To incorporate the effects
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FIG. 3. Simplest order-parameter fluctuation correction to the
effective potential. The dashed (solid) lines refer to boson (fermion)
propagators.

of order-parameter fluctuations on the effective potential at
finite Nf, one would need to evaluate higher-loop vacuum
diagrams, the simplest of which is shown in Fig. 3. Such
an analysis was performed in Ref. [47] for a single-order-
parameter effective potential. Alternatively, order-parameter
fluctuations could be incorporated within a RG analysis along
the lines of the works on competing orders in the mono-
layer case [51,52]. Fluctuation effects may shift the phase
boundaries in parameter space, but are expected to not alter
our main conclusions concerning the existence of the coex-
istence phase and the order of the transitions into and out
of this phase. They do, however, play an important role for
the critical behavior at the nematic-to-coexistence quantum
critical point. Instead of a comprehensive analysis of the full
phase diagram, in this work we therefore restrict our study
of the effects of order-parameter fluctuations to the vicinity
of the nematic-to-coexistence transition. This is discussed in
Sec. V. We also note that we have assumed φ, n � 
2 in the
above calculation, so that the integral in Eq. (6) is dominated
by universal logarithms such as ln(
4/φ2) and ln(
4/n2).
For larger interactions, this assumption no longer holds and
nonuniversal effects that are beyond our effective analysis
may become important. This is left for future work.

IV. ANTIFERROMAGNET-TO-COEXISTENCE
TRANSITION

In the antiferromagnetic phase with φ �= 0 and n = 0, the
fermion spectrum is completely gapped out,

ε±
φ,0(p) = ±

√
p4 + φ2, (9)

and the gap remains finite at the transition into the coexistence
phase. Consequently, the antiferromagnet-to-coexistence tran-
sition can be understood entirely within Ginzburg-Landau
theory. The spontaneous breaking of spatial rotational sym-
metry is described by fluctuations of the two-component
nematic order parameter na, a = 1, 2, which transforms as
a second-rank tensor under spatial rotations, and acquires a
vacuum expectation value across the transition. However, it
is important to note that the actual point group on the hon-
eycomb bilayer includes only discrete C3 rotations by 120◦
around a lattice site. On general grounds, therefore, we should
expect the effective potential to also include terms that are
invariant only under the smaller discrete symmetry group
C3. The simplest such term is given by the cubic invariant
(n1 + in2)3 + (n1 − in2)3, which is power-counting relevant
compared to the quartic self-coupling.

While this term would ultimately be generated under RG
flow, we can in fact show more: By including explicit ro-
tational symmetry breaking at the level of the fermionic

spectrum, we can derive the cubic invariant to appear in the
effective potential explicitly. To this end, let us amend the
fermionic Lagrangian (1) by the irrelevant (in the usual power-
counting sense) term

LQBT → LQBT + f3�
†∇2i∂̄a(�̄a ⊗ 12)�, (10)

where (∂̄a) = (∂x,−∂y), a = 1, 2, and �̄a = (τz ⊗ 12)�a. This
term follows naturally from the next-to-leading order expan-
sion of the tight-binding dispersion near the K points in the
Brillouin zone [21]. Identifying for simplicity the ultraviolet
momentum cutoff 
 with the inverse of the lattice constant
a0 as 
 ∼ π/a0, we obtain f3 ∼ π/(2

√
3
) in our units [40].

The term parametrized by f3 is C3 invariant, but not symmetric
under the continuous rotation group in two spatial dimensions.
Let us now consider the mean-field effective potential for
small na � φ in a finite antiferromagnetic background φ �= 0
and for finite f3 �= 0. Since the fermions are already gapped
out, we run into no infrared divergences when Taylor expand-
ing in na. Using polar coordinates (na) = (n cos 2ϑ, n sin 2ϑ ),
we can write the effective potential for na at the mean-field
level in the form

V (φ)
MF (n, ϑ ) = n2

2g′ + Nf

16π

∞∑
k,l=0

[Ckl,+(φ; f3) cos(2kϑ )

+ Ckl,−(φ; f3) sin(2kϑ )]nl+2, (11)

with coefficients Ckl,± that only depend on φ and f3. In
Eq. (11), we have subtracted all n-independent offsets com-
pared to Eq. (6), which are irrelevant for the present analysis.
Following standard practice in Landau theory, we keep all
terms up to and including O(n4) (i.e., the lowest nontrivial
order) in the effective potential. The coefficients Ckl,±(φ; f3)
can be expanded in f3, which allows us to evaluate all mo-
mentum integrals analytically to leading nontrivial order in
f3. This way, we finally arrive at the explicit result

V (φ)
MF (n, ϑ ) � Nf

16π

{[
8π

Nfg′ + 1

4

(
ln

1

4
φ2 − 2

)
+ 1

8
f 2
3

]
n2

+ f 2
3

(
1

24
+ 1

64
ln

1

4
φ2

)
n3 cos(6ϑ )

+
(

3

32φ2
+ 1

64
+ 9

128
f 2
3

)
n4

}
, (12)

where we have rescaled V (φ)
MF /
4 �→ V (φ)

MF , φ2/
4 �→ φ2,
n2/
4 �→ n2, f3
 �→ f3, and have kept only the leading- and
subleading-order terms assuming the hierarchy n � φ � 1.
The latter assumption is consistent with small to intermediate
g, since 〈φ〉 � e−2π/(gNf ) in mean-field theory [4,40,47]. We
note that higher orders in f 2

3 also come with higher powers of
φ for dimensional reasons; this defines a posteriori the regime
in which the expansion in f3 is justified purely on grounds
of its canonical dimension and independently of its value at
the ultraviolet scale. To be more precise, insertions of the f3

term into the one-loop fermion bubble render the integral in-
creasingly ultraviolet divergent and infrared convergent; since
finite φ is precisely what cures infrared divergences in this
theory, the faster a given loop integrand vanishes in the limit
of vanishing loop momenta, the faster its integral vanishes for
φ → 0.
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The middle term in Eq. (12) manifests the explicit sym-
metry breaking at the level of the effective potential for
na: cos(6ϑ ) is only invariant under ϑ �→ ϑ + πk/3, k ∈ Z.
Minimizing the potential with respect to ϑ , we find that the
orientation of the vector na locks on to ϑ = 0 at the minimum
for sufficiently small φ, while ϑ = π/6 for larger values of
φ. Importantly, the presence of the cubic term renders the
antiferromagnetic-to-coexistence transition first order, with
the jump discontinuity at the phase boundary working out to

δ〈n〉 = 1

12
f 2
3 〈φ〉2

(
ln

1

4〈φ〉2
− 8

3

)
+ O(〈φ〉4 ln〈φ〉2). (13)

Note that the above implies the emergence of a hierarchy
among the order parameters, δ〈n〉 ∼ 〈φ〉2 ln〈φ〉−2 � 〈φ〉 in
the limit of small interaction strengths. Technically, the small-
ness of δ〈n〉 justifies expanding its effective potential in
powers of n, as well as treating φ as a background field
with no backreaction from n, even though the transition itself
is not continuous. Physically, δ〈n〉 measures how badly the
transition fails to be continuous. Since δn → 0 for g → 0, the
transition is only weakly first order for small to intermedi-
ate four-fermion coupling, as also illustrated numerically in
Fig. 2(b).

V. NEMATIC-TO-COEXISTENCE TRANSITION

In the nematic phase, the low-energy excitations are mass-
less Dirac fermions. They acquire a full gap in the coexistence
phase. At the transition, the antiferromagnetic order pa-
rameter φ becomes critical. The Gross-Neveu-Heisenberg
(= chiral Heisenberg) universality class [26–30,53] is there-
fore a natural candidate to describe the continuous nematic-to-
coexistence transition. The purpose of this section is to con-
firm this scenario. This Gross-Neveu-Heisenberg universality
class is characterized by a dynamical critical exponent z = 1
and a relativistic symmetry in (2+1)-dimensional space-time.
In the noninteracting limit, our model has z = 2, reflecting
the nonrelativistic dispersion in the Luttinger semimetal state
[47]. As a consequence of the finite background nematic or-
der present across the nematic-to-coexistence transition, the
system does not even feature explicit discrete C3 rotational
symmetry near the transition. Nevertheless, in this section, we
demonstrate that not only a continuous rotational symmetry,
but even a full relativistic symmetry in 2+1 space-time dimen-
sions becomes emergent at the quantum critical point at low
energy. To this end, we systematically study the fate of pertur-
bations that break both rotational and space-time symmetries
of the relativistic subspace of theory space. In particular, we
show that such symmetry-breaking perturbations are always
RG irrelevant near the Gross-Neveu-Heisenberg fixed point.
The nematic-to-coexistence transition on the honeycomb bi-
layer therefore falls into the same family of phase transitions
known from the monolayer system. There is, nevertheless, one
important difference: As each quadratic band touching point
on the bilayer splits into two mini-Dirac cones in the nematic
phase, the number of fermion flavors is doubled in comparison
to the semimetal-to-antiferromagnetic transition on the mono-
layer. In the physical situation for spin-1/2 fermions on the
Bernal-stacked honeycomb bilayer, we have Nf = 4 flavors
of two-component Luttinger fermions in the noninteracting

limit. In the nematic phase, this then leads to Nf = 4 flavors
of four-component Dirac fermions (in other words, the total
number of Dirac spinor components is 4Nf = 16).

This section is divided into three parts: In Sec. V A, we
demonstrate the emergence of relativistic symmetry within an
ε expansion around the lower critical space-time dimension
of Dlow = 2. Section V B contains an analysis using an ε

expansion around the upper critical space-time dimension of
Dup = 4, with a consistent result. These two approaches com-
plement each other, as the least-irrelevant symmetry-breaking
perturbations are of different natures near the lower and upper
critical dimensions. The resulting Gross-Neveu-Heisenberg
critical exponents relevant for the present situation are dis-
cussed in Sec. V C.

A. Emergent Lorentz symmetry: Expansion near
lower critical dimension

Unlike the Gross-Neveu-Ising case, in the Gross-Neveu-
Heisenberg universality class, the renormalization of the
pertinent four-fermion interaction is not closed. Already at the
one-loop level, a spin current interaction is generated, which
in turn generates further interactions. The upshot is that the
renormalization of the chiral Heisenberg universality class in
the vicinity of the lower critical space-time dimension Dlow =
2 has so far not been systematically studied, even at one loop.
Before investigating its stability with respect to perturbations,
we hence need to first identify the Gross-Neveu-Heisenberg
fixed point in the multidimensional space of four-fermion
couplings.

1. Minimal four-fermion model

As a first step, we aim at establishing a basis in the
space of four-fermion couplings. To this end, we classify
all possible four-fermion interactions in terms of symmetry.
In order to retain the spinor structure relevant to the phys-
ical situation in bilayer graphene, we devise the minimal
four-fermion model in fixed D = 2 + 1 space-time dimen-
sions. The dimensional continuation to noninteger dimensions
will be discussed in the context of the loop integration in
Sec. V A 2. In accordance with previous works [5,54], we
employ a four-dimensional reducible representation of the
Clifford algebra {γμ, γν} = 2δμν14 with μ, ν = 0, 1, 2. In ad-
dition, there exist two anticommuting matrices {γ3, γμ} =
{γ5, γμ} = {γ3, γ5} = 0. Finally, a customary shorthand is
γ35 := iγ3γ5.

The Gross-Neveu-Heisenberg four-fermion interaction can
then be written as [ψa(14 ⊗ σα )ψa]2, where 14 acts on the
layer and K-point degrees of freedom and the Pauli matrices
σα , α = 1, 2, 3, act on the spin degree of freedom of the eight-
component spinor ψa. Furthermore, the flavor index a = 1, 2
corresponds to the two mini-Dirac cones that develop at both
K points due to the background nematic order. For simplicity,
we restrict ourselves to interactions that have a singlet struc-
ture with respect to the flavor index a. There are then a priori
64 independent four-fermion interactions,∑

M∈B
GM (ψaMψa)2, (14)
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where M are complex 8×8 matrices and
B = Bs ∪ Bv is a basis of C8×8, with Bs =
{14, γμ, γ3, γ5, γμγ3, γμγ5, γ35, γμγ35} ⊗ 12 cor-
responding to the scalar spin sector and Bv =
{14, γμ, γ3, γ5, γμγ3, γμγ5, γ35, γμγ35} ⊗ σα to the vector
spin sector, with μ = 0, 1, 2 and α = x, y, z. Following the
procedure outlined in Ref. [54], the number of independent
interactions may be whittled down systematically as follows:

a. Lorentz and SU(2) spin symmetry. The four-fermion
interactions may be grouped according to their behavior under
Lorentz and SU(2) spin transformations. To be precise, if
the subset A ⊂ B is invariant under combined Lorentz and
SU(2) transformations, then GK = GL for all K, L ∈ A. The
decomposition of B into disjoint subsets A is almost entirely
taken care of automatically above by grouping them according
to Lorentz and SU(2) indices. The grouping is almost exhaus-
tive: For a final symmetry reduction, we need to take into
account that (γ3, γ5) is a vector under the U(1) chiral sym-
metry generated by γ35, which corresponds to translational
invariance [54]. There are hence at most twelve symmetry-
independent couplings.

b. Fierz identities. To further reduce the number of cou-
plings, we need to exploit Fierz identities [54–56]. Given an
orthonormal basis Tr(MN ) = δMN Tr 1, we have for Grass-
mann fields

(ψaMψa)2 =
∑
N∈B

−1

64
Tr(MNMN )(ψaNψa)2. (15)

Gathering the symmetry-independent interactions into a
twelve-dimensional vector u, the above may be recast into the
form Fu = 0 with a 12×12 Fierz matrix F . It turns out that
the Fierz matrix F thus constructed has six zero eigenvalues;
there are hence only six independent couplings after symme-
try and Fierz reduction. We thus arrive at

LGNH = ψa(γμ ⊗ 12)∂μψa − G1

2Nf
[ψa(14 ⊗ σα )ψa]2

− G2

2Nf
[ψa(γμ ⊗ σα )ψa]2 − G3

2Nf
[ψa(γ35 ⊗ σα )ψa]2

− G4

2Nf
(ψaψa)2 − G5

2Nf
[ψa(γμ ⊗ 12)ψa]2

− G6

2Nf
[ψa(γ35 ⊗ 12)ψa]2 (16)

as a minimal four-fermion theory in which to embed the
Gross-Neveu-Heisenberg fixed point. Note that we have re-
instated the flavor number Nf, corresponding to the number
of four-component Dirac spinors, with a = 1, . . . , Nf/2 for Nf

even. We reiterate that the case relevant for the nematic-to-
coexistence transition of spin-1/2 fermions on the honeycomb
bilayer corresponds to Nf = 4.

2. Gross-Neveu-Heisenberg fixed point

To obtain the RG flow of the couplings G1, . . . , G6 in
Eq. (16), we have to perform the loop integration. Here,
we evaluate the angular integrals in fixed D = 2 + 1 space-
time dimensions, while the dimensions of the couplings are
counted in general dimension [48,57]. This allows us to re-
tain the spinor structure of the physical system in d = 2

spatial dimensions. We have obtained the flow equations at
one-loop order by applying the general formula given in
Ref. [56]. In addition, we have performed a large-Nf expan-
sion of the one-loop flow equations, for three reasons: (i)
tractability, in that solutions of fixed-point equations can be
found analytically in its entirety, with human-readable results;
(ii) transparency, in that relations to mean-field theory (Nf →
∞) become more readily apparent; and (iii) simplicity, in that
the fixed point pertaining to the SU(2)-symmetry-breaking
transition is unambiguously identifiable. Let us expand on
this last point a little: At general Nf, a fixed point generically
has many nonzero four-fermion couplings. Determining un-
ambiguously which one among the many fixed points pertains
to the Gross-Neveu-Heisenberg universality class for arbitrary
Nf is typically a laborious exercise, entailing the computation
of scaling dimensions of every conceivable bilinear at every
fixed point. In the large-Nf limit, however, this is unambiguous
(and essentially known already from mean-field theory): the
Gross-Neveu-Heisenberg universality class is governed by the
fixed point satisfying G1 = O(1) and Gi �=1 = O(1/Nf ). We
expect this large-Nf argument to be sufficient for the present
case Nf = 4 and leave the full investigation for arbitrary Nf to
future work.

For the Gross-Neveu-Heisenberg fixed point in D = 2 + ε

dimensions, we obtain the fixed-point couplings

G1,� =
(

2

3
− 2

3Nf
+ 2

9Nf
+ 274

81N3
f

)
ε + O

(
ε2, 1/N4

f

)
, (17)

G2,� =
(

− 4

9Nf
+ 76

81N2
f

− 860

729N3
f

)
ε + O

(
ε2, 1/N4

f

)
, (18)

G3,� = − 40ε

9N3
f

+ O
(
ε2, 1/N4

f

)
, (19)

G4,� = − 8ε

3N3
f

+ O
(
ε2, 1/N4

f

)
, (20)

G5,� = 8ε

9N3
f

+ O
(
ε2, 1/N4

f

)
, (21)

G6,� = − 8ε

3N3
f

+ O
(
ε2, 1/N4

f

)
. (22)

We have explicitly checked that this fixed point indeed
features precisely one infrared relevant direction in the six-
dimensional theory space parametrized by G1, . . . , G6, hence
corresponding to a quantum critical point. Note that starting
with the Heisenberg channel, a second channel is immedi-
ately generated at first subleading order, O(1/Nf ). This is the
four-fermion interaction [ψa(γμ ⊗ σα )ψa]2, the SU(2)-vector
counterpart of the conventional [SU(2)-scalar] Thirring inter-
action. From O(1/N3

f ) onward, all channels get involved.

3. Fate of rotational symmetry breaking

We are now in the position to study the fate of rotational
anisotropies under the RG flow. Since the background nematic
order respects inversion and lattice translational symmetries,
it is sufficient to restrict the discussion to perturbations that
leave discrete symmetries intact and break explicitly only
the continuous rotational symmetry of the Gross-Neveu-
Heisenberg fixed point. Rotational-symmetry-breaking terms
in the quadratic part of the fermionic Lagrangian, such as
anisotropic Fermi velocities, are marginal within the one-loop
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expansion considered here. Their relevance (or lack thereof)
will be studied within the Gross-Neveu-Yukawa-Heisenberg
model discussed in Sec. V B. Here, we focus on perturbations
in the interacting quartic part of the Lagrangian. Restricting
ourselves to small deviations away from the Gross-Neveu-
Heisenberg fixed point, we may use the Fierz identities of
Eq. (15) to write an arbitrary rotational-symmetry-breaking
four-fermion interaction as a linear combination of four basis
terms parametrized as

L′
GNH = LGNH− 1

2δ1{[ψa(γ1 ⊗ 12)ψa]2−[ψa(γ0 ⊗ 12)ψa]2}
− 1

2δ2{[ψa(γ2 ⊗ 12)ψa]2 − [ψa(γ0 ⊗ 12)ψa]2}
− 1

2δ3{[ψa(γ1 ⊗ σα )ψa]2 − [ψa(γ0 ⊗ σα )ψa]2}
− 1

2δ4{[ψa(γ2 ⊗ σα )ψa]2 − [ψa(γ0 ⊗ σα )ψa]2},
(23)

with couplings δ1, . . . , δ4. Using again the general formula of
Ref. [56], we find the four eigenvalues of the stability matrix
(∂βδi/∂δ j ) at the Gross-Neveu-Heisenberg fixed point as

θ1 =
(

−1 − 1

Nf
+ 7

3N2
f

+ 25

54N3
f

)
ε + O

(
ε2, 1/N4

f

)
, (24)

θ2 =
(

−1 + 1

Nf
− 7

3N2
f

− 7

54N3
f

)
ε + O

(
ε2, 1/N4

f

)
, (25)

θ3 =
(

−1 − 1

9Nf
+ 121

81N2
f

− 3943

1458N3
f

)
ε + O

(
ε2, 1/N4

f

)
,

(26)

θ4 =
(

−1 + 1

9Nf
− 157

81N2
f

+ 4825

1458N3
f

)
ε + O

(
ε2, 1/N4

f

)
.

(27)

For Nf = 4, pertaining to the present case of nematic-to-
coexistence transition on the honeycomb bilayer, all four
eigenvalues are negative. Hence, at the transition, not just
rotational symmetry, but also Lorentz symmetry is emergent
in the infrared.

B. Emergent Lorentz symmetry: Expansion near
upper critical dimension

The above one-loop four-fermion results are a priori valid
only in the vicinity of the lower critical space-time dimension
of two. In 2 + 1 space-time dimensions, corrections from
higher loop orders may be sizable. To check the robustness
of our conclusions, we now consider rotational-symmetry-
breaking perturbations in the opposite limit near the upper
critical space-time dimension Dup = 4.

1. Gross-Neveu-Yukawa-Heisenberg model

The renormalizable field theory in this limit is the Gross-
Neveu-Yukawa-Heisenberg model with Lagrangian

LGNYH = ψa[14 ⊗ (γ0∂0 + vxγ1∂1 + vyγ2∂2)]ψa + 1
2 (∂μφα )2

− hφαψa(14 ⊗ σα )ψa + λ(φαφα )2, (28)

where a = 1, . . . , Nf/2, in agreement with the representation
used in Sec. V A. In Eq. (28), spatial rotational symmetry
breaking is encoded in the direction-dependent Fermi veloc-

ities vx and vy. Their bosonic counterparts cx and cy can be
subsumed into direction-dependent dynamical critical expo-
nents, see below, and we have hence set cx and cy to unity
from the outset. We have replaced the four-fermion interaction
parametrized by G1 in Sec. V A by a Yukawa interaction
between the fermions and the SU(2) order-parameter field φα ,
parametrized by the coupling h, which becomes marginal at
the upper critical space-time dimension Dup = 4. The bosonic
self-interaction with coupling λ is generated by the RG and
has therefore been included as well. It also becomes marginal
at the upper critical dimension.

In order to deal with the spatial anisotropy, we perform
field-theoretic RG, with loop integrals carried out over all
momenta. In the spirit of the ε expansion, we formally extend
the time axis to a (2 − ε)-dimensional Euclidean space, keep-
ing the spatial dimension d = 2 fixed and assuming that all
integrands have been symmetrized in frequency q0 before the
dimensional continuation. The self-energy diagrams, which
are the main subjects of study in this subsection, will turn out
to be infrared divergent after expanding in powers of external
momenta, which we regularize with a cutoff; the renormal-
ization scale μ is introduced thus. The measure of the loop
integration can thus be written as∫

q
:=

∫
|q0|>μ

d2−εq0 d2q
(2π )4−ε

. (29)

The terms in the LagrangianLGNYH are accordingly promoted
to bare quantities, with vi → Zvivi (i ∈ {x, y}) and � →√

Z�� (� ∈ {φ,ψ}). We absorb the running of the bosonic
velocities ci into “inverse dynamical critical exponents,” ∂i →
Zp,i∂i, where the Zp,i parametrize the relative scaling of mo-
mentum coordinates with respect to frequency. In other words,
we measure the Fermi velocities vx and vy in units of cx and cy,
respectively. Finally, since our regularization scheme breaks
Lorentz invariance, we need nonmultiplicative counterterms,
such as

Lrest. = Dψ ψ∂0γ0ψ + 1
2 Dφ φ

( − ∂2
0

)
φ. (30)

These are required to ensure that in the Lorentz-invariant limit
vx = vy = 1 there is no residual breaking of Lorentz symme-
try (which would then solely be a regularization artifact). This
is similar to the treatment of supersymmetric theories, where
the often-used dimensional regularization breaks supersym-
metry, and one has to resort to nonmultiplicative counterterms
to restore it [58]. Just like usual multiplicative counterterms,
these counterterms are often not unique, but can be judiciously
constrained by demanding certain properties of the regulariza-
tion procedure; see Appendix B. Equation (30) represents the
simplest choice that is sufficient for our purposes.

2. Gross-Neveu-Heisenberg fixed point

The theory defined by Eq. (28) features an interacting fixed
point located within the relativistic subspace vx,� = vy,� = 1 at

h2
� = π

Nf + 1
ε + O(ε2), (31)

λ� = π

22

(
−1 + 2 + √

1 + Nf(Nf + 9)

Nf + 1

)
ε + O(ε2), (32)
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FIG. 4. (a) Bosonic and (b) fermionic self-energy Feynman
diagrams.

where ε = 4 − D and we have rescaled μ−εS2−ε (2π )ε−2h2 �→
h2 and μ−εS2−ε (2π )ε−2λ �→ λ, with S2−ε being the surface
area of the unit sphere in 2 − ε dimensions. We note that
the above fixed-point values are regularization dependent and
cannot be obtained by a simple rescaling of the corresponding
values within, say, the Wilson scheme [59]. As is well known
[26–28,59], in the vicinity of the Gross-Neveu-Heisenberg
fixed point, the only relativistic-symmetry-allowed perturba-
tion that is RG relevant toward the infrared is the quadratic
term φαφα , which corresponds to the tuning parameter of the
transition. Within the critical hyperplane, in which this term is
tuned to vanish in the renormalized action by definition, the
Gross-Neveu-Heisenberg fixed point is hence stable. In the
following, we show that the stability holds also when small
perturbations that break the rotational symmetry are taken
into account. The fixed point hence features emergent Lorentz
invariance in the low-energy limit.

3. Fate of rotational symmetry breaking

Within the Gross-Neveu-Yukawa-Heisenberg model, the
fate of rotational symmetry breaking is determined by the
flows of the Fermi velocities vx and vy in units of the boson
velocities cx and cy. The corresponding self-energy diagrams
at one-loop order are shown in Fig. 4. Details of the evalua-
tion of these diagrams are deferred to Appendix B. Defining
βvi ≡ −μdvi/dμ in terms of the RG scale μ, we find

βvx = h2

2π

{
1 − v2

x

vy
Nf + [4π I211(vx, vy)

−4π I210(vx, vy) + 1

4

]
vxNb

}
, (33)

βvy = h2

2π

{
1 − v2

y

vx
Nf + [4π I211(vy, vx )

−4π I210(vy, vx ) + 1

4

]
vyNb

}
, (34)

where I211(vx, vy) and I210(vx, vy) are functions of the veloc-
ities vx and vy alone. They are defined in Appendix B and
explicit forms are given in Appendix C. In Eqs. (33) and (34),
we have employed the same rescaling of the Yukawa coupling
as stated below Eq. (31). As before, Nf counts the number
of four-component Dirac fermions, with Nf = 4 for the case
relevant for the nematic-to-coexistence transition on the hon-
eycomb bilayer. For generality, we have also introduced a
generic number Nb of boson species, which allows one to eas-
ily adapt the current analysis to Gross-Neveu-Yukawa models
with a different number of order-parameter components. For
the antiferromagnetic order parameter discussed in this work,
we have Nb = 3. Note that Eq. (34) can be obtained from
Eq. (33) by exchanging vx ↔ vy and vice versa.

The constraint vx ≡ vy =: v defines the rotationally sym-
metric subspace, which is invariant under RG flow for
symmetry reasons. The β function for the rotationally invari-
ant Fermi velocity v within this subspace reads explicitly

βv = h2

2π

[
1 − v2

v
Nf + v4 + 4v2 − 5 − 2(1 + 2v2) ln v2

4(1 − v2)2
vNb

]
.

(35)

In the vicinity of the relativistic fixed point at v� = 1, the flow
of the Fermi velocity can be expanded as

βv = −Nfh2

π
(v − 1) + O((v − 1)2). (36)

Within the rotationally invariant subspace, the relativistic
Gross-Neveu-Heisenberg fixed point is therefore stable, in
agreement with previous results for similar models [60,61].

To study whether the rotationally invariant subspace is
stable or not with respect to rotational-symmetry-breaking
perturbations, we set vx = v and vy = (1 + δ)v, and expand
βδ = βvy − βvx to first order in the anisotropy parameter δ. For
small δ � 1, we thus obtain

βδ = − h2

2π

[(
3v − 1

v

)
Nf

−
(

(1 + v2 + 4v4) ln v2

2(1 − v2)3
+ v4 + 10v2 + 1

4(1 − v2)2

)
Nb

]
δ

+ O(δ2). (37)

Near the relativistic fixed point at v� = 1, we find

βδ = − h2

4π
(4Nf + Nb)δ + O(δ2, v − 1). (38)

Importantly, a small rotational anisotropy is therefore ir-
relevant in the sense of the RG. In the vicinity of the
Gross-Neveu-Heisenberg fixed point, the relativistic symme-
try hence remains emergent even when a rotational anisotropy
is symmetry-allowed on the microscopic level. This is illus-
trated in Fig. 5, which shows the RG flow of vx and vy using
the full β functions of Eqs. (33) and (34). All points flow
ultimately to the relativistic fixed point vx,� = vy,� = 1, even
though flow lines initially “fan out” from the rotationally
invariant subspace line for small enough initial values. In
agreement with the result from the 2 + ε expansion discussed
in the previous subsection, we conclude that the nematic-
to-coexistence transition on the honeycomb bilayer features
emergent Lorentz symmetry and is described by the relativis-
tic Gross-Neveu-Heisenberg fixed point.

C. Critical exponents

We conclude this section by providing estimates for the
critical exponents characterizing the nematic-to-coexistence
transition on the honeycomb bilayer. As we have established
above, the transition falls into the Gross-Neveu-Heisenberg
universality class with Nf = 4 flavors of four-component
Dirac fermions. As a consequence of the emergent Lorentz
invariance, the transition is characterized by a unique dynam-
ical critical exponent

z = 1. (39)
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FIG. 5. RG flow of Fermi velocities vx and vy in units of the
boson velocities cx and cy for Nf = 4 and Nb = 3 at one-loop order.
Dark red line represents the rotationally invariant subspace v :=
vx = vy. All points flow ultimately to the relativistic fixed point
v� = 1 (dark red point), even though flow lines initially “fan out”
from the vx = vy line for small enough initial values.

Further, we discuss the correlation-length exponent ν, the
order-parameter anomalous dimension ηφ , and the fermion
anomalous dimension ηψ . Higher-order corrections in pertur-
bation theory are available in the literature for this universality
class to fourth order in the 4 − ε expansion [28] and to second
order in the large-Nf expansion, with the fermion anomalous
dimension known up to third order [30,62]. Furthermore, a
nonperturbative calculation using functional RG in the im-
proved local potential approximation is also available [27].
Here, we perform the necessary postprocessing of these pre-
vious results to provide combined theoretical estimates for the
nematic-to-coexistence transition on the honeycomb bilayer.

First, let us consider the series expansions. In fixed D =
2 + 1 space-time dimensions, the large-Nf expansions of the
exponents are [30]

1/ν = 1 − 8

π2Nf
+ 36π2 + 416

3π4N2
f

+ O
(
1/N3

f

)
, (40)

ηφ = 1 + 4(3π2 + 16)

3π4N2
f

+ O
(
1/N3

f

)
, (41)

ηψ = 2

π2Nf
+ 16

3π4N2
f

+ 378ζ (3) − 36π2 ln(2) − 45π2 − 332

9π6N3
f

+ O
(
1/N4

f

)
,

(42)

where ζ (s) denotes the Riemann zeta function and Nf corre-
sponds to the number of four-component Dirac fermions. On
the other hand, for the case of Nf = 4 relevant here, the four-
loop exponents in D = 4 − ε space-time dimensions read in
numerical form [28]

1/ν = 2 − 1.4051ε + 0.3018ε2 − 0.3032ε3

+ 0.6725ε4 + O(ε5), (43)

ηφ = 0.8889ε + 0.1310ε2 + 0.0136ε3 + 0.0585ε4 + O(ε5),
(44)

ηψ = 0.1667ε − 0.0661ε2 − 0.0697ε3 + 0.0156ε4 + O(ε5).
(45)

We reemphasize that the number of fermion flavors here
is doubled in comparison with the previously much-studied
scenario of spin-1/2 fermions on the honeycomb monolayer.
Since the series expansions are at best only slowly convergent,
we study their Padé approximants, which are defined by

[m/n](x) := a0 + a1x + · · · + amxm

1 + b1x + · · · + bnxn
, (46)

where x ∈ {ε, 1/Nf} for the 4 − ε and large-Nf expansions,
respectively, and m and n are non-negative integers chosen
such that m + n agrees with the order to which a particular
exponent has been calculated. Here, n + m = 4 (n + m = 2)
for 1/ν and ηφ in the 4 − ε (large-Nf) expansion, whereas n +
m = 4 (n + m = 3) for ηψ . For a given choice of m and n, the
coefficients a0, . . . , am and b1, . . . , bn are then determined by
imposing the boundary condition that the approximant [m/n]
produces the correct asymptotics for x � 1 in agreement with
the series expansion. Evaluating [m/n] at finite values of x
yields resummed values of the corresponding observable.

The extrapolated values for the present case of Nf =
4 flavors of four-component Dirac fermions in D = 2 + 1
space-time dimensions are displayed in Table I. The spread
of all admissible Padé approximants yields a measure of
how close to convergence the given series happens to be.
Some Padé approximants cannot mathematically fulfill all
the boundary conditions imposed by the asymptotic expan-
sions at the origin. On one hand, this concerns [0/n]-type
approximants, which cannot describe exponents for which
the zeroth-order terms vanish in the series expansion. This
applies to ηψ in both 4 − ε and large-Nf expansions and ηφ in
4 − ε expansion, as in all other Gross-Neveu-type universality
classes [59]. On the other hand, the [1/1] approximant cannot
satisfy all the boundary conditions for ηφ in large-Nf expan-
sion, because its O(1/Nf ) correction happens to vanish, which
is a peculiarity of the Gross-Neveu-Heisenberg universality
class. All such nonexistent approximants are marked “n.e.” in
Table I.

For the 4 − ε expansion, we can refine the extrapolation
by exploiting superuniversality relations near the lower criti-
cal space-time dimension of two [56]. For Gross-Neveu-type
universality classes in 2 < D < 4 space-time dimensions, we
have

1/ν = (D − 2) + O((D − 2)2), (47)

ηφ = 2 + O(D − 2), (48)

ηψ = O((D − 2)2), (49)

independent of the particular member of the Gross-Neveu
family and the number of fermion flavors Nf. These relations
can be used to impose additional boundary conditions at ε = 2
on Padé approximants to the 4 − ε expansion [27,61,63]. We
note that for ηφ , only the zeroth-order coefficient in D − 2 is
superuniversal, in contrast to 1/ν and ηψ . The resulting Padé
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TABLE I. Critical exponents of the Gross-Neveu-Heisenberg
universality class for Nf = 4 four-component fermion flavors in
D = 2 + 1 space-time dimensions, as relevant for the nematic-to-
coexistence transition on the honeycomb bilayer. We use results
from four-loop 4 − ε expansion [28], second-order 1/Nf expansion
(third-order for ηψ ) [30], and functional RG in the improved local
potential approximation [27]. Besides the naïve extrapolations, we
show different Padé approximants [m/n] of the series expansions.
Those for which it is mathematically impossible to match the original
series expansion to all available orders are marked “n.e.” A dash (–)
in the entry for an approximant signifies either that sufficient terms
are not available in the literature to compute it or that it does not
exhaust all the terms available in the literature. [m/n]2 denote two-
sided Padé approximants, which take superuniversality relations [56]
into account. Here, we have refrained from showing approximants
that exhibit a singularity in D ∈ (2, 4), marked with “sing.” For the
functional RG results, we have used two different cutoff schemes,
marked as “linear” and “sharp” in the table.

1/ν ηφ ηψ

1/Nf expansion [30] naïve 0.96232 1.03902 –
[1/1] 0.88829 n.e. –
[0/2] 0.92700 1.04060 n.e.
naïve – – 0.05306
[1/2] – – 0.05292
[2/1] – – 0.05329
[0/3] – – n.e.

4 − ε expansion [28] naïve 1.26604 1.09193 0.04654
[3/1] 0.80250 1.01575 0.04368
[2/2] 0.79277 1.04180 0.06413
[1/3] 0.88152 1.11866 0.07337
[0/4] 0.88841 n.e. n.e.

Two-sided Padé [5/0]2 – 1.04988 –
[4/1]2 – sing. –
[3/2]2 – sing. –
[2/3]2 – sing. –
[1/4]2 – 1.06238 –
[0/5]2 – n.e. –
[6/0]2 0.89489 – 0.05906
[5/1]2 0.83956 – sing.
[4/2]2 sing. – 0.05949
[3/3]2 sing. – 0.06418
[2/4]2 0.84007 – n.e.
[1/5]2 0.86441 – n.e.
[0/6]2 n.e. – n.e.

Functional RG [27] linear 0.87834 1.00929 0.03824
sharp 0.87187 1.01089 0.03567

approximants are also shown in Table I. Here, some Padé
approximants develop singularities as a function of the ex-
pansion parameter, and are hence unreliable as extrapolators;
these are marked as “sing.” in lieu of any actual numerical
value. For ηφ , various two-sided Padé approximants turn out
to be singular, which may be due to the fact that only the
zeroth-order term in D − 2 is included here. The refinement
using two-sided Padé approximants is especially important for
ηψ , which is a highly nonmonotonic function of ε, vanishing
at both ε = 0 and ε = 2 separately. Such behavior is particu-
larly difficult to capture with a one-sided Padé approximation.
We find it satisfying that the estimates from the different

two-sided Padé approximations appear overall more stable in
comparison with the one-sided approximations.

As a complementary approach to estimate the exponents
for Nf = 4 and D = 2 + 1, we employ the functional RG [64].
To this end, we numerically solve the corresponding fixed-
point equations in the improved local potential approximation
[27] for the present case of Nf = 4. We use two different
cutoff schemes to assess the stability of our numerical results,
namely, a linear cutoff [65], which satisfies an optimization
criterion, as well as a sharp cutoff [66] for comparison. The
corresponding estimates for 1/ν, ηφ , and ηψ are displayed
in the last two rows of Table I. In order to arrive at these
estimates, we have employed a simple Taylor expansion of
the bosonic effective potential up to 16th order in φ for the
linear cutoff and 20th order for the sharp cutoff. These orders
are chosen such that the numbers displayed in the table are
converged within the improved local potential approximation
up to the fourth digit after the decimal point.

To arrive at final best-guess estimates combining the results
of the three complementary approaches, we employ the two-
step averaging procedure outlined in Ref. [67]. The first step
is to average over all well-behaved approximations within a
given approach. This applies to the existent and nonsingular
Padé approximants in the case of the series expansions, and
to both employed regulators in the case of the functional
RG calculations. As the results of the 4 − ε expansion are
included implicitly in the two-sided Padé approximants, we do
not incorporate the single-sided Padé approximants in the case
of the 4 − ε expansion. As for the large-Nf expansion, we in-
clude the naïve extrapolation in the average if it is sandwiched
by two well-behaved proper approximants [m/n] with n � 1.
Note in this context that the two-sided approximants [5/0]2

and [6/0]2 are distinct from the untouched series of hypotheti-
cal five-loop and six-loop, respectively, 4 − ε expansions, and
hence do not count as naïve extrapolations in the above sense.
Having done the “internal” average within each method, the
second step is to take the mean of the three different averages.
We thus arrive at

1/ν = 0.88(6), ηφ = 1.035(23), ηψ = 0.050(12). (50)

In the above, the number in parentheses is the larger of (i) the
spread of the estimates of the three individual approaches and
(ii) the sum of “internal” uncertainties within the methods.
The number can hence be understood as a measure of the
degree of consistency between the different estimates. In the
case of 1/ν and ηφ , we find a particularly good agreement:
The uncertainty due to lack of consistency among the three
methods is much smaller than the sum of the internal un-
certainties. In other words, the three methods “agree within
error bars.” We note that for the large-Nf expansion for ηφ , the
uncertainty in the Padé extrapolation is technically ill-defined,
since there exists only one well-defined nontrivial Padé ap-
proximant in this case. The internal uncertainty of the large-Nf

estimate for ηφ is hence not included in the final error estimate
in Eq. (50). However, given that Nf is quite large and the
naïvely extrapolated result of the large-Nf expansion lies quite
close to the Padé extrapolated value, the uncertainty due to
lack of convergence of the large-Nf expansion is likely small.
The estimate for ηψ has a larger relative uncertainty, which is
likely due to the aforementioned nonmonotonic dependence
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on the space-time dimension within D ∈ (2, 4), as well as the
comparatively small absolute value of the estimate itself.

VI. CONCLUSIONS

In this work, we have studied the competition between
nematic and layer-antiferromagnetic orders on the Bernal-
stacked honeycomb bilayer. These two orders appear to be
the most promising candidate ground states consistent with
experiments in bilayer graphene [10–14]. We have demon-
strated that these orders generically allow a coexistence phase
characterized by both nematicity and antiferromagnetism. As
both signs of nematic [10] as well as antiferromagnetic [11]
orders have been reported in low-temperature experiments on
different samples, we believe that the actual ground state of
bilayer graphene is potentially not too far from the coexistence
phase, or may even be within that phase.

We have mapped out the phase diagram of an effective
model describing the competition between these two orders
and discussed the occurring quantum phase transitions. The
transition between the antiferromagnetic and coexistence or-
ders is weakly first order as a consequence of a cubic term that
is symmetry-allowed in the effective potential. By contrast,
the transition between the nematic and coexistence orders
turns out to be continuous, and we have identified the cor-
responding universality class of this quantum critical point.
In particular, we have demonstrated that Lorentz symmetry
becomes emergent at this transition in the low-energy limit,
despite the fact that the rotational symmetry is spontaneously
broken at an intermediate RG stage as a consequence of
the background nematic order. The transition therefore falls
into the relativistic Gross-Neveu-Heisenberg quantum uni-
versality class, which was previously much studied in the
context of the semimetal-to-antiferromagnetic transition on
the honeycomb monolayer [25–27,31–33,35]. Consequently,
the dynamical critical exponent, describing the relative scaling
of time and space in the quantum critical regime, is z = 1
exactly. However, for spin-1/2 fermions on the honeycomb
bilayer, the number of Dirac fermion flavors is doubled in
comparison with the spin-1/2 realization on the monolayer.
This can be understood as a consequence of the splitting of
each of the two inequivalent quadratic band touching points
in the noninteracting electron spectrum into two mini-Dirac
cones in the nematic state. The universal exponents char-
acterizing the nematic-to-coexistence quantum critical point
on the honeycomb bilayer are therefore generically different
from the monolayer situation. We have exploited previous
results that were originally devised in the monolayer con-
text to obtain estimates for the correlation-length exponent
ν and the boson and fermion anomalous dimensions ηφ and
ηψ in the present case. In particular, we have used a four-
loop ε expansion around the upper critical dimension [28], a
second-order large-Nf expansion (with the fermion anomalous
dimension derived at third order) [30], and a functional RG
approach in the improved local potential approximation [27].
We have obtained reasonable agreement among the results of
these complementary approaches for all exponents calculated.
These predictions may be tested in future numerical simula-
tions of suitable models that realize a nematic-to-coexistence
quantum critical point.

In bilayer graphene, the nematic and layer-
antiferromagnetic states are very close in energy [2,5,15–18],
and the actual low-temperature ground state appears
very sensitive to external perturbations. This suggests
the possibility that bilayer graphene could be tuned
toward or maybe even through the nematic-to-coexistence
quantum phase transition that we have discussed in this
work. The relativistic quantum critical point should then
reveal itself in a broad quantum critical regime at finite
temperatures, characterized by nontrivial scaling behavior
of various observables [68]. For instance, the real-frequency
dynamical spin structure factor should scale in this regime
as S(ω, k) ∝ (ω2 − c2k2)−(2−ηφ )/2 with ηφ ≈ 1.0. The
electronic specific heat should scale as Cel(T ) ∝ T d/z

with d = 2 and z = 1. Within the coexistence phase, the
system develops a full but anisotropic gap in the electronic
spectrum. This should have characteristic consequences
for transport experiments: Due to the nematic order in
this phase, the electrical conductivity, for instance, should
become anisotropic, with a twofold oscillation as a function
of in-plane angle for fixed temperature, but at the same time
also exhibit an activated behavior as function of temperature,
arising from the spectral gap.

In this work, we have employed a simple effective model
that is expected to capture well the universal aspects of the
competition between nematic and antiferromagnetic orders
in bilayer graphene. For the future, it would be desirable to
identify a realistic microscopic model that allows one to study
also nonuniversal aspects of the material. This includes the
question of whether signatures of the nematic-to-coexistence
quantum critical point should be expected to be readily ob-
servable in current experiments. Such an analysis might also
reveal possible external parameters that could drive the system
toward criticality.

A highly tunable and closely related system that has re-
ceived significant interest in recent years is twisted bilayer
graphene. For certain magic angles between the two hon-
eycomb layers [69], it shows correlated insulating [70] or
unconventional superconducting [71] instabilities, depend-
ing on the electronic filling. Furthermore, intertwined phases
featuring nematic order, potentially also coexisting with su-
perconductivity, have very recently been reported [72]. This
suggests that a scenario similar to the one we propose here
for Bernal-stacked bilayer graphene may also be relevant for
the twisted bilayer configuration. This represents an excellent
direction for future investigation.
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APPENDIX A: FIERZ MATRIX FOR GROSS-NEVEU-HEISENBERG THEORY SPACE

We record here for completeness the explicit form of the Fierz matrix used to identify a Fierz-complete basis of four-fermion
interactions in the Gross-Neveu-Heisenberg theory space [Eq. (16)]. It is given by

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 9 1 1
−3 1 −1 −3 1 −1 3 −1 3 3 7 3
−1 −1 1 −1 −1 1 1 1 1 1 1 9

3 −1 −1 3 −1 7 3 −1 3 3 −1 3
0 0 −2 0 8 −2 6 2 −6 6 2 −6
0 0 2 8 0 2 2 −2 −2 2 −2 −2

−1 −1 −1 3 3 3 7 −1 −1 3 3 3
3 −1 1 −9 3 −3 −3 9 −3 9 −3 9
1 1 −1 −3 −3 3 −1 −1 7 3 3 3

−3 1 9 9 −3 −3 −3 1 −3 9 −3 9
0 8 2 0 0 −6 −6 −2 6 18 6 −18
8 0 −2 0 0 6 −2 2 2 6 −6 −6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

which acts in the space of four-fermion interactions. More precisely, the Fierz identity reads Fu = 0, where u = (u1
u2

) with

u1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

[ψa(γ3 ⊗ σα )ψa]2 + [ψa(γ5 ⊗ σα )ψa]2

[ψa(γμγ3 ⊗ σα )ψa]2 + [ψa(γμγ5 ⊗ σα )ψa]2

[ψa(γμγ35 ⊗ σα )ψa]2

[ψa(γ3 ⊗ 12)ψa]2 + [ψa(γ5 ⊗ 12)ψa]2

[ψa(γμγ3 ⊗ 12)ψa]2 + [ψa(γμγ5 ⊗ 12)ψa]2

[ψa(γμγ35 ⊗ 12)ψa]2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A2)

u2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

[ψa(14 ⊗ σα )ψa]2

[ψa(γμ ⊗ σα )ψa]2

[ψa(γ35 ⊗ σα )ψa]2

(ψaψa)2

[ψa(γμ ⊗ 12)ψa]2

[ψa(γ35 ⊗ 12)ψa]2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

By Gaussian elimination, we can bring the matrix F into reduced row echelon form. In terms of u1 and u2, this can be expressed
compactly as

u1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 2 1 2

1 1
2 − 1

2 2 1
2

1
2

0 − 1
2 − 1

2 −1 − 1
2 − 3

2

0 1 0 3 0 3

0 − 1
2

3
2 3 3

2 − 3
2

−1 1
2 − 1

2 0 − 3
2 − 3

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

u2. (A4)

Note that in the setup above, interactions present in the four-fermion Lagrangian LGNH [Eq. (16)] are the entries of u2 by
construction, while those that are not constitute u1. Thus, even if a contact interaction not originally included inLGNH is generated
during RG flow, it can be rewritten in terms of those that were by using Eq. (A4) above.

APPENDIX B: EVALUATION OF SELF-ENERGY DIAGRAMS IN ANISOTROPIC
GROSS-NEVEU-YUKAWA-HEISENBERG MODEL

In this Appendix, we present details of the derivation of the β functions of the Fermi velocities vx and vy in the Gross-Neveu-
Yukawa-Heisenberg model [Eqs. (33) and (34)]. As will be manifest shortly, at one loop, the question of whether anisotropy
perturbations are relevant or not is independent of the fixed-point values (h2

�, λ�) in Eq. (31). At this order, it is therefore
sufficient to consider the self-energy contributions represented by the diagram in Fig. 4. The corresponding loop integrals are

Fig. 4(a) = −h2
∫

q

(
12Nf ⊗ σα

)〈ψψ〉[(1 − w)p + q]
(
12Nf ⊗ σβ

)〈φαφβ〉(wp − q) ≡ �(p), (B1)

Fig. 4(b) = h2
∫

q
tr

[(
12Nf ⊗ σα

)〈ψψ〉(q)
(
12Nf ⊗ σβ

)〈ψψ〉(q + p)
] ≡ �(p)δαβ, (B2)
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where �(p) and �(p) denote the fermion and boson self-energies, respectively, with p = (p0, p1, p2) ≡ (ω, p) as the inflowing
3-momentum in D = 2 + 1 space-time dimensions. We have introduced in the above a momentum-routing parameter w ∈ [0, 1]
for the vacuum polarization, because the limit of standard routing (w → 0 or 1) turns out to be singular in this case. This is
another artifact of the regularization scheme that can be resolved by a judicious choice of symmetry-restoring counterterms, as
shown below. We note in passing that the definition for the vacuum polarization �(p) in Eq. (B2) is well-defined due to the Pauli
matrix relation tr(σασβ ) = 2δαβ .

As mentioned in the main text, to carry out the loop integrals, we first extend the Euclidean time direction to a (D − 2)-
dimensional plane, where D = 4 − ε is the space-time dimension. The spatial dimension d = 2 is held fixed, which allows us
to deal with the spatial anisotropy in a controlled way. Before performing the (D − 2)-dimensional frequency integration, we
rescale the momenta as (vxqx, vyqy) �→ |q0|q̃, where |q0| denotes the radial component of the (D − 2)-dimensional frequency
vector q0. We thus find for the frequency part of the vacuum polarization

∂

∂ p2
0

�(p)

∣∣∣∣
p=0

= 4Nfh2

vxvy

∫
q

[
2(2w2 − 2w + 1)

(
v2

x q2
x + v2

y q2
y

)
(
q2

0 + v2
x q2

x + v2
y q2

y

)3 − 3w2 − 3w + 1(
q2

0 + v2
x q2

x + v2
y q2

y

)2

]

= μ−ε

ε

4Nfh2S2−ε

vxvy(2π )2−ε

∫
d2q̃

(2π )2

[
(2w2 − 2w + 1)q̃2

(1 + q̃2)
3 − 3w2 − 3w + 1

(1 + q̃2)
2

]

= μ−ε

ε

4Nfh2S2−ε

(2π )2−ε

(1 − w)w

4πvxvy
. (B3)

Analogously, for the momentum part we find

∂

∂ p2
1

�(p)

∣∣∣∣
p=0

= μ−ε

ε

4Nfh2S2−ε

(2π )2−ε

1

4π

vx

vy
,

∂

∂ p2
2

�(p)

∣∣∣∣
p=0

= μ−ε

ε

4Nfh2S2−ε

(2π )2−ε

1

4π

vy

vx
. (B4)

To evaluate the fermion self-energy, it is useful to introduce the “master integral”

Inml (r, s) :=
∫
R2

dxdy

(2π )2

(x2)l

(1 + x2 + y2)n(1 + r2x2 + s2y2)m (B5)

with n, m, l ∈ N. In terms of the I functions, we find

1

4Nf
tr

(
γ0

∂

∂ip0
�(p)

)∣∣∣∣
p=0

= Nbh2
∫

q

2q2
0(

q2
0 + q2

x + q2
y

)2(
q2

0 + q2
xv

2
x + q2

yv
2
y

)
= μ−ε

ε

Nbh2S2−ε

(2π )2−ε

∫
dqxdqy

(2π )2

2(
1 + q2

x + q2
y

)2(
1 + q2

xv
2
x + q2

yv
2
y

)
= μ−ε

ε

2Nbh2S2−ε

(2π )2−ε
I210(vx, vy), (B6)

1

4Nf
tr

(
γ1

∂

∂ip1
�(p)

)∣∣∣∣
p=0

= Nbh2
∫

q

2vxq2
x(

q2
0 + q2

x + q2
y

)2(
q2

0 + v2
x q2

x + v2
y q2

y

)
= Nbh2S2−ε

(2π )2−ε

μ−ε

ε
(2vx )

∫
dqxdqy

(2π )2

q2
x(

1 + q2
x + q2

y

)2(
1 + v2

x q2
x + v2

y q2
y

)
= μ−ε

ε

2Nbh2S2−ε

(2π )2−ε
vxI211(vx, vy), (B7)

1

4Nf
tr

(
γ2

∂

∂ip2
�(p)

)∣∣∣∣
p=0

= Nbh2
∫

q

2vyq2
y(

q2
0 + q2

x + q2
y

)2(
q2

0 + v2
x q2

x + v2
y q2

y

)
= μ−ε

ε

2Nbh2S2−ε

(2π )2−ε
vyI211(vy, vx ), (B8)

where we have set w = 1 for simplicity, since standard momentum routing is nonsingular in this case. We have also inserted Nb

as the number of bosonic degrees of freedom, with Nb = 3 corresponding to the present Heisenberg case. The above equations
are valid for general Nb as long as the generators of the symmetry under which φα transform as a vector commute with the
Clifford algebra. Besides the Gross-Neveu-Heisenberg example, this includes the Gross-Neveu-Ising case with Nb = 1, the
Gross-Neveu-XY case with Nb = 2, as well as further members of the Gross-Neveu family with Nb > 3 [59].
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Before extracting renormalization constants from the above results, we need to fix the symmetry-restoring counterterms in
Eq. (30). A minimal prescription would be

Dψ = lim
vx=vy→1

[
1

4Nf
tr

(
γ0

∂

∂ip0
�(p)

)∣∣∣∣
p=0

− 1

4Nf
tr

(
γ0

∂

∂ip0
�(p)

)∣∣∣∣
p=0

]
, (B9)

Dφ = lim
vx=vy→1

[
∂

∂ p2
1

�(p)

∣∣∣∣
p=0

− ∂

∂ p2
0

�(p)

∣∣∣∣
p=0

]
, (B10)

which is precisely what we choose for Dψ . For the bosonic counterterm, we use a slightly modified prescription

Dφ = Dφ[Eq. (B10)]

vxvy
, (B11)

which has the advantage of furthermore canceling all momentum-routing dependence at once (rather than, e.g., at the fixed-point
level). We can then read off the remaining renormalization constants in the usual manner. Using −μd (μ−ε/ε)/dμ = μ−ε , we
then arrive at the β functions quoted in Eqs. (33) and (34).

APPENDIX C: MASTER INTEGRALS FOR ANISOTROPIC GROSS-NEVEU-YUKAWA-HEISENBERG MODEL

The derivation of the β functions of the Fermi velocities vx and vy in the anisotropic Gross-Neveu-Yukawa-Heisenberg model
involves the master integrals Inml (vx, vy) defined in Eq. (B5), more specifically the two functions I210(vx, vy) and I211(vx, vy).
These can be evaluated explicitly, and we record the results here for completeness. For general vx, vy > 0, they work out to

I210(vx, vy) =
(
v2

y − 1
)
(vxvy − 1)

√
1−v2

x
v2

y −1 + (
v2

x + v2
y − 2v2

x v
2
y

)
arcsin

(√ v2
y −1

v2
y −v2

x

) − (
v2
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2
y

)
arcsin

(
vx

√
v2

y −1
v2

y −v2
x

)
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x
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(C1)

I211(vx, vy) = 1

8π (v2
x − 1)

(
v2

y − 1
)
(vx + vy)

√
1−v2

x
v2

y −1

[
2vx

(
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y − 1
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x

v2
y − 1

− 3v2
y (vx + vy) arcsin
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v2

y − 1
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y − v2

x

)

+2(vx + vy) arcsin

(
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√
v2

y − 1

v2
y − v2

x

)
+ (

3v2
y − 2

)
(vx + vy) arcsin

(√
v2

y − 1

v2
y − v2

x

)]
. (C2)

Whenever the argument of a square root obtains a negative value, it is continued analytically as
√−a2 = ai for a ∈ R�0. The

trigonometric functions are then understood to be replaced by hyperbolic functions in the usual manner. The limits vx → 1 or
vy → 1 are removable singularities,

lim
vx→1

I210(vx, vy) = 1 + 2vy

6π (1 + vy)2
, lim

vx→1
I211(vx, vy) = 1 + 2vy

12π (1 + vy)2
, (C3)

lim
vy→1

I210(vx, vy) = 1 + 2vx

6π (1 + vx )2
, lim

vy→1
I211(vx, vy) = 1

4π (1 + vx )2
. (C4)

In the rotationally invariant case v ≡ vx = vy, we obtain the limits

I210(v, v) = 1 − v2 + 2v2 ln v

4π (1 − v2)2 , I211(v, v) = v2 − 2 ln v − 1

8π (1 − v2)2 . (C5)

For v → 1, the singularities are again removable, with the pertinent limits given by

lim
v→1

I210(v, v) = 1

8π
, lim

v→1
I211(v, v) = 1

16π
, (C6)

in agreement with the vy → 1 and vx → 1, respectively, limits of Eqs. (C3) and (C4).
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