
PHYSICAL REVIEW B 104, 035436 (2021)

Asymmetric arms maximize visibility in hot-electron interferometers
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We consider theoretically an electronic Mach-Zehnder interferometer constructed from quantum Hall edge
channels and quantum point contacts, fed with single electrons from a dynamic quantum dot source. By
considering the energy dependence of the edge-channel guide centers, we give an account of the phase averaging
in this setup that is particularly relevant for the short, high-energy wave packets injected by this type of electron
source. We present both analytic and numerical results for the energy-dependent arrival time distributions of
the electrons and also give an analysis of the delay times associated with the quantum point contacts and their
effects on the interference patterns. A key finding is that, contrary to expectation, maximum visibility requires the
interferometer arms to be different in length, with an offset of up to a micron for typical parameters. By designing
interferometers that incorporate this asymmetry in their geometry, phase-averaging effects can be overcome such
that visibility is only limited by other incoherent mechanisms.
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I. INTRODUCTION

The ability to perform interferometry experiments with
electrons opens up new pathways to investigate the funda-
mental mechanisms of relaxation and decoherence in the solid
state [1,2]. The first realization of an electronic Mach-Zehnder
interferometer (MZI) [3] set the template for future electron
quantum optics experiments [4–10] with quantum Hall edge
channels acting as electron waveguides and quantum point
contacts taking the place of beam splitters. In these experi-
ments, electrons were injected from DC sources at energies
close to the Fermi level. The decoherence mechanisms of
such electrons have been discussed extensively [11–13] with
the Coulomb interaction through plasmon emission [14–17]
thought to be the dominant mechanism [18–21].

Mirroring the advent of single-photon sources in quan-
tum optics [22,23], sources of single electrons have also
been developed. Driven mesoscopic capacitors [24,25] have
been used to successfully realize single-electron quantum-
optics experiments [2] such as Hanbury Brown-Twiss [26],
and Hong-Ou-Mandel [27,28]. In this work we consider a
different type of single-electron source: the gate-modulated,
or dynamic, quantum dot [29–31], originally developed for
metrology purposes [32]. In contrast with DC sources or
mesoscopic capacitors, dynamic quantum dots inject electrons
at energies significantly in excess of the Fermi level. The
spatial separation that this produces between injected “hot”
electrons and the bulk is thought to suppress the Coulomb
interactions [33], and this opens up the possibility that differ-
ent mechanisms are important for the loss of coherence of hot

electrons than for “cold” ones. The emission of longitudinal-
optical (LO) phonons is certainly an important relaxation
process [34,35] and emission of acoustic phonons is also
believed to play a role [36–38]. In Ref. [33], these same
phonon processes were also predicted to be dominant in
causing decoherence of hot electrons in an interferometer,
although it was shown that the strengths of these effects could
be minimized by correct parameter choice and deployment of
filtration schemes.

In this paper we focus on the issue of phase averaging
in hot-electron MZIs. While this topic has been discussed
for cold electrons, both from DC [12] and driven-capacitors
sources [39], our analysis here is specifically relevant for
temporally short, high-energy single-electron wave packets.
The short duration of these wave packets makes matching
their arrival at the second MZI beam splitter essential for
observation of interference. Thus, successful interferometer
design relies on a detailed understanding of the arrival times
in this system. The central finding of this work is that, con-
trary to expectations from the optical MZI as well as from
Refs. [12,39,40], for the arrival times to match and thus inter-
ferometric visibility be maximized, the two arms of the MZI
should be of different lengths. Indeed, for typical parameters,
this length offset could be up to 1 μm and thus significant
for interferometer design. The origin of this effect is a com-
bination of two factors. First, the high energy of the electrons
imparts them with a high wave number and thus an enhanced
sensitivity to changes in path lengths. Second, for electrons in
the quantum Hall regime, the position of the electron guide
center (equivalent to the position of optical path) is dependent
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on the energy of the electron, with the result that different
energy components in an electron wave packet travel slightly
different paths in the MZI and thus pick up different phases.
This additional energy dependence of the phases results in a
difference in the travel times of the electrons around the two
arms of the interferometer, and necessitates an offset in the
path lengths to compensate.

In addition to this effect, we also give an analysis of how
the properties of quantum point contact beam splitters can
affect the arrival times of the electrons and show that only
in the case where the beam splitters are energetically narrow
and significantly asymmetric do they become important in
determining the interference patterns.

The paper proceeds as follows. In Sec. II we introduce
our model of the MZI and the scattering approach we use to
describe its properties. Section III describes the phases accu-
mulated by electrons traversing the MZI, and in Sec. IV we
derive analytic expressions for the energy-dependent arrival
time distribution of electrons. From these features such as
electron travel times and the visibility of interference fringes
are determined. In Sec. V, we present numerical results for the
arrival time distributions across a greater range of parameters,
and in Sec. VI we consider the role that delays at the beam
splitters play in determining interference in the MZI. We con-
clude with discussions in Sec. VII. Details of our parameter
choices are given in Appendix A and the scattering properties
of the beam splitters are calculated in Appendix B.

II. MODEL

We consider an electronic MZI with waveguides realized
as described in Fig. 1. We take the transverse confinement in
the edge channels to be harmonic [35,41] with confinement
frequency ωy. Assuming that our electrons are always con-
fined to the lowest Landau level, their dispersion relative to
the subband bottom is

Ek =
(

ωy

�

)2 h̄2k2

2m∗
e

, (1)

where we have defined �2 = ω2
y + ω2

c with the cyclotron fre-
quency ωc = eB/m∗

e in terms of the effective mass m∗
e and

charge e > 0 of the electron, as well as the magnetic field
strength B > 0.

We consider electrons to be injected in a coherent wave
packet with momenta distributed according to a Gaussian
profile [42] with central wave number k0 and with width
parameter α. Just prior to injection into the MZI, the electronic
state is thus

|�(0)〉 =
(

αL2

2π3

)1/4 ∫
dk e−α(k−k0 )2 |0, k〉, (2)

where |0, k〉 is the lowest Landau level eigenstate of wave
number k. In a position representation with x the transport
direction and y transverse to it with y = 0 defined as the
potential minimum, these eigenfunctions read as ψ0,k (x, y) =
〈x, y|0k〉 = 1√

L
eikxχ0,k (y) where L is a quantization length

and χ0k (y) = (π l2
�)−1/4e− 1

2 [y−yG(k)]2/l2
� is the transverse wave

function, which is expressed in terms of the confinement
length l� = √

h̄/(m∗
e�), and the guide center of the electron

BS1 BS2

d
r1

t1

r̃2

t2
δ

YU

YL

X

input

B

φL, τL

φU , τU

A(t)

FIG. 1. Schematic of an electronic Mach-Zehnder interfer-
ometer. Gray represents the relevant areas of depletion of the
two-dimensional electron gas (2DEG) and purple regions represent
beam splitters realized by quantum point contacts. Electrons are
injected on the left and collected on the right, where arrival time
distribution A(t ) is measured. The solid-black and dashed-blue lines
represent the paths taken by electrons with wave number k0 and
k0 + 	k, respectively. For 	k > 0 the path of the electron moves
closer to the sample edge by a distance δ > 0, and this changes the
phases φU and φL accumulated by electrons on the upper and lower
arms. The energy dependence of the phases gives rise to the corre-
sponding travel times of electron wave packets τU/L . Also indicated
are the lengths X , YU , and YL of parts of the interferometer arms, and
d the size of the beam-splitter (BS) regions.

trajectory

yG(k) = − ω2
c

�2

h̄k

eB
. (3)

Here we have worked in the Landau gauge such that the
vector potential reads as A = (By, 0, 0). By considering the
probability density associated with Eq. (2), we find that the
parameter α can be expressed in terms of the energetic width
σE of the initial wave packet as α = (h̄v0/2σE )2 such that
the localization length of the wave packet in the transport
direction is σl = h̄v0/σE .

A. Scattering approach to MZI

We take into account the effect of the MZI on this wave
packet within a scattering approach [12,39,40]. The action of
the two beam splitters i = 1, 2 is described by the scattering
matrices

Si =
(

ri t̃i

ti r̃i

)
=

(√
Rieiρi

√
Tieĩθi

√
Tieiθi

√
Rieĩρi

)
, (4)

where ti, t̃i ri, and r̃i are scattering amplitudes, the sense of
which are shown in Fig. 1, and where we have transmission
Ti and reflection Ri probabilities obeying Ri = 1 − Ti, and
phases obeying the unitarity condition of θi + θ̃i − ρi − ρ̃i =
(2n + 1)π ; n ∈ Z. We note that this scattering matrix, and all
its constituent phases and amplitudes, are functions of k here,
but we leave this dependence implicit to avoid overburdening
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the notation. Assuming that electrons traveling the upper and
lower arms of the interferometer acquire phases φU and φL,
respectively, the total scattering amplitude for transmission
through the MZI is

tMZI
k = √

R1R2ei(ρ1+ρ̃2+φU ) + √
T1T2ei(θ1+θ2+φL ), (5)

where, again, all quantities depend on wave number k. With
the initial state (2) and scattering amplitude (5), the electron
probability distribution at the output of the MZI reads as

P(x, t ) =
√

1

2π3

∫
dy dk dk′ (tMZI

k′
)∗

tMZI
k χ∗

0k′ (y)χ0k (y)

× e−i(Ek−Ek′ )t/h̄+i(k−k′ )xe−α[(k−k0 )2+(k′−k0 )2],

where time t is measured from the injection time and position
x is measured from the exit. With a detector position of xD

and assuming a narrow wave packet such that the velocity
is assumed constant over the wave packet, the arrival time
distribution is approximately A(t ) = v0P(xD, t ) [35], where

v0 = 1

h̄

dEk

dk

∣∣∣∣
k=k0

= h̄ω2
y k0

m∗
e�

2
, (6)

is the velocity of the wave packet [43].
Thus, we obtain

A(t ) = v0

∫
dk dk′ (tMZI

k′
)∗

tMZI
k e− 1

4 μ2(k−k′ )2

× e−i(Ek−Ek′ )t/h̄+i(k−k′ )xD e−α[(k−k0 )2+(k′−k0 )2], (7)

with μ = l�ωc/�.

III. MZI PHASES

Central to the analysis here is the energy dependence of
the phases φU and φL of Eq. (5) picked up by the electron
along the interferometer arms. Here we adopt the rectilinear
geometry of Fig. 1 and take the arms of the interferometer to
exclude the beam-splitter regions. Figure 1 defines the lengths
X , YU , YL, and d of different parts of the interferometer. We
assume that electrons with wave number k0 at the center of
the wave packet are partitioned by the beam splitters into both
channels and that the paths followed by these electrons are
given by the solid black lines in the figure. For electrons with
wave number k = k0 + 	k, we see from Eq. (1) that a change
in wave number results in a shifted guide center such that the
electron follows a slightly different path around the MZI. This
altered path, indicated in the figure by the blue dashed line, is
displaced relative to the k0 path a distance of δ = ( ωc

�
)2 h̄

(eB)	k
which we define being positive for displacements towards the
edge for 	k > 0. Along these paths, the electron accumu-
lates both the dynamical and magnetic phases. The dynamical
phases are given by the product of the wave number with the
path length, but here the above change in guide center means
that the path length is also dependent on k. For the geometry
of Fig. 1, we therefore obtain the dynamical phases

φ(dyn)
p = (k0 + 	k)(2Yp − d + X − 4ξpδ), (8)

where p ∈ {U, L} and where ξp is a sign factor that takes the
value ξU = +1 on the upper path and ξL = −1 on the lower.
Meanwhile, the magnetic phase is proportional to the line

integral of the vector potential along the paths in question.
With Landau gauge as before, we find the phases accumulated
along the two arms to be1

φ(mag)
p = −eB

h̄
(ξpYp − δ)(X − 2ξpδ). (9)

Note that the motion within the beam-splitter regions is ex-
plicitly excluded from the calculation of these phases. All this
has assumed is that the entry and exit points are as in Fig. 1.

IV. TRAVEL TIMES AND VISIBILITY

Analytic progress can then be made by recalling that we
have a narrow wave packet α−1/2 � k0, such that 	k � k0

for all states in the wave packet. A further consequence of this
is that |δ| will be similarly small compared with the dimen-
sions of the interferometer [formally we have |δ| ∼ l2

c /
√

α �
(2YU/L + X ) with lc = √

h̄/m∗
eωc the cyclotron length]. This

then means that the term proportional to (	k)δ in Eq. (8)
can be neglected. To approximate the magnetic phases, we
consider the difference between them, the gauge-independent
Aharonov-Bohm phase [44], which here reads as

φ
(mag)
U − φ

(mag)
L = −eB

h̄
{a0 − δ l0 + 4δ2}, (10)

in terms of the central path difference l0 = 2(YU − YL ) and
area enclosed by the central paths a0 = X (YU + YL ). The first
term clearly recovers the expected Aharonov-Bohm phase of
the MZI loop described in Fig. 1. The quadratic term will be
negligible when |δ| � l0. As we will see shortly, the operating
point that yields the maximum visibility for the interferome-
ter is obtained when l0 ∼ 1 μm, such that for the region of
interest we have |δ| � l0 and we therefore neglect the term
proportional to δ2 in Eq. (9).

Summing Eqs. (8) and (9) and neglecting these terms then,
we obtain total phases picked up along the arms

φp ≈ −ξp
eB

h̄
XYp + k0(2Yp − d + X )

+	k

{
�2 + ω2

c

�2
(2Yp + X ) − d − 4ξp

k0l2
�ωc

�

}
.

We then also assume that, compared with the phases, the
beam-splitter transmission probabilities are slowly varying
functions of k and thus we can evaluate them at the central
wave number k0: Ti → T (k0 )

i and Ri → R(k0 )
i . Then, lineariz-

ing the dispersion Ek � Ek0 + h̄v0	k and integrating, Eq. (7)

1In calculating these magnetic phases, consistency with the wave
functions introduced earlier requires a coordinate offset y0 between
the central electron path and the potential minimum in the horizontal
channels. However, as this essentially corresponds to a redefinition
of the gauge, it cancels in the phase difference between upper and
lower channels and has no observable consequence. We therefore set
y0 = 0 for simplicity.
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evaluates as

A(t )≈
√

v2
0

π (2α + μ2)

{
R(k0 )

1 R(k0 )
2 exp

[
−{xD − v0(t − τU )}2

2α + μ2

]
+ T (k0 )

1 T (k0 )
2 exp

[
−{xD − v0(t − τL )}2

2α + μ2

]

+ 2
√

R(k0 )
1 R(k0 )

2 T (k0 )
1 T (k0 )

2 exp

[
−v2

0 (τU − τL )2

8α
−

{
xD − v0

(
t − 1

2τL − 1
2τU

)}2

2α + μ2

]
cos �0

}
. (11)

Thus, the arrival time distribution shows two moving lobes,
resulting from travel around the upper and lower paths, and
an interference term between them. The travel time of the two
lobes is given by

τp = h̄
d�p

dE

∣∣∣∣
E=E0

= 1

v0

d�p

dk

∣∣∣∣
k=k0

, (12)

where �U = ρ1 + ρ̃2 + φU and �L = θ1 + θ2 + φL. The in-
terference term shows oscillations as a function of the central
phase difference

�0 = [�U − �L]k=k0
= −eB

h̄
a0 + k0l0 + �BS

0 , (13)

where we have separated the beam-splitter contribution

�BS
0 = [ρ1 + ρ̃2 − θ1 − θ2]k=k0

. (14)

Integrating Eq. (11) over time, we obtain the total proba-
bility of detection at the output to be

Ptot = R(k0 )
1 R(k0 )

2 + T (k0 )
1 T (k0 )

2

+ 2
√

R(k0 )
1 R(k0 )

2 T (k0 )
1 T (k0 )

2 D cos (�0), (15)

where D = exp[−v2
0 (	τ )2/(8α)] depends on the difference

in travel times

	τ = τU − τL = v−1
0

d

dk
[φU − φL]k=k0

+ 	τBS (16)

with

	τBS = v−1
0

d

dk
(ρ1 + ρ̃2 − θ1 − θ2), (17)

the contribution due to the beam splitters. The interferometric
visibility of oscillations displayed by Eq. (15) is

V = D ×
2
√

R(k0 )
1 R(k0 )

2 T (k0 )
1 T (k0 )

2

R(k0 )
1 R(k0 )

2 + T (k0 )
1 T (k0 )

2

(18)

such that D is observed to be the nontrivial contribution to the
visibility that arises from phase averaging (for 50:50 beam
splitter, V → D). Writing α = (h̄v0/2σE )2 in terms of the
energetic width σE of the initial wave packet, we can rewrite
this phase-averaging factor as

D = exp

{
−1

2

(
l0 − loffset

�l

)2}
(19)

in terms of the path difference l0, the “offset length”

loffset = �2v0

�2 + ω2
c

[
8ωc

ω2
y

− 	τBS

]
, (20)

and an effective single-particle coherence length of the elec-
tron wave packet

�l = �2

�2 + ω2
c

h̄v0

σE
. (21)

Thus, our theory predicts a modulation of the visibility with
a Gaussian function of the path difference l0 with offset
loffset and characteristic width �l . In a basic quantum-optics
MZI, with no AB phase and a static path for all particles
and energy-independent beam splitters, we would expect a
similar expression for the phase-averaging effects but with
loffset = 0, indicating that the maximum visibility occurs when
the path difference is zero. Here, however, maximum visibility
requires l0 = loffset, indicating that a difference in the length
of the two interferometer arms is necessary for optimal coher-
ence. A further difference from these naive considerations is
that the width of the visibility feature here is determined by the
effective coherence length �l , which in general is different to
the localization length of the initial wave packet. Comparison
of these quantities yields 1

2σl � �L � σl with the right-hand
limit approached in the large-field limit.

Addressing the beam-splitter contribution in the above, if
we make no further assumptions about the beam splitters other
than that they act symmetrically on electrons coming from
different directions, the beam-splitter phases obey

ρi = ρ̃i = θi − π/2 = θ̃i − π/2, (22)

at all wave numbers k. From this it follows that the delay
difference is zero, 	τBS = 0, and the beam splitters do not
affect the phase averaging. The effect of asymmetric beam
splitters is discussed in Sec. VI.

Then, assuming symmetric beam splitters and parameters
typical of hot-electron experiments (see Appendix A) we find
the offset length to assume a value loffset ≈ 700 nm. In con-
trast, the effective single-particle coherence length is �l ≈
34 nm for a wave packet of energetic width σE = 1 meV.
Thus, it is essential that the construction of a hot-electron
MZI be such that the path difference satisfies l0 ≈ loffset at
the injection energy E0 if interference is to be observed. It
is perhaps worth noting that the offset length at high magnetic
field is largely independent of the field strength because the
dependency from the cyclotron frequency cancels with that of
the velocity.

V. NUMERICAL RESULTS

In this section, we evaluate the arrival time distribution of
electrons by numerical integration of Eq. (7) using the MZI
phases of Sec. III and parameters described in Appendix A.
We take it that a typical experiment will look for oscillations
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FIG. 2. The arrival time distributions of electrons after they
travel through an MZI as a function of time and injection energy E0,
calculated through the numerical evaluation of Eq. (7). The arrival
time probability density is highest in the light (yellow) regions, and
lowest (tending to zero) in the dark (blue) regions. The MZI path
difference l0 is set such that l0 = −loffset at an energy of Epeak =
100 meV. Results are plotted about the mean arrival time t at each en-
ergy. (a), (b) Show results for h̄ωBS = 100 meV with V0 = 100 meV
and V0 = 120 meV, respectively (marked with horizontal lines). With
this beam-splitter width, interference is observed around E0 = Epeak

and the position of V0 is unimportant. (c), (d) Show the same but
with h̄ωBS = 20 meV. For this narrower beam splitter, interference is
observed around V0 instead. Parameters as described in Appendix A.

as a function of injection energy with all other parameters
fixed, and we thus recast the above results in terms of energy.
Since the predicted offset loffset in Eq. (20) depends on injec-
tion energy E0 (through v0), for a fixed path difference the
maximum visibility condition l0 = loffset defines an energy at
which phase-averaging effects vanish. Denoting this energy as
Epeak, the phase-averaging factor can be written as

D = exp

{
−1

2

(
E0 − Epeak

�E

)2}
, (23)

where

�E = h̄ω2
y Epeak

4ωcσE
(24)

is the energetic width of the visibility peak. For the results
here we set Epeak = 100 meV such that we obtain an offset of
loffset ≈ 700 nm that we have taken into account in fixing the
lengths of the MZI arms.

Initially we focus on the scenario where the beam split-
ters are symmetric and from now on consider the two beam
splitters to be identical, such that, e.g., T1 = T2 = T . For
concreteness we consider the Fertig-Halperin saddle model
of a quantum point contact [45], the transmission of which
is T = [1 + exp(−πε)]−1, with ε = (E − V0)/E sad; where
E sad = h̄ω2

BS/(2ωc) with h̄ωBS an energy characterising the
curvature of the saddle. In Appendix B, we find the phase
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FIG. 3. The MZI visibility as a function of injection energy E0

for three values of the beam-splitter center, V0 = 100, 110, and
120 meV. (a) Shows results for a beam-splitter width h̄ωBS = 100
meV; (b) for h̄ωBS = 20 meV. Numerical results determined from
Fig. 2 are shown as symbols; the analytic expression of Eq. (18) is
shown as solid lines and the phase-averaging factor D of Eq. (19) is
shown as a dashed line.

associated with transmission through the beam splitter to be

θ = −1

2
ε + XR

√
X 2

R + ε + 1

2
ε ln

( |ε|
2

)
− εg

(
X 2

R

/
ε
) + Im

[
ln �

(
1

2
− i

2
ε

)]
, (25)

where g(x) = ln |√|x| + sgn(x) − √|x||, XR = [(d/lc) −
(2ε (0)lc/d )]/

√
8, and ε (0) = (E0 − V0)/E sad. In this model,

the size d of the beam-splitter region is rather arbitrary,
and here we set d = 3

√
2lc. As explained in the Appendix,

the finiteness of this beam-splitter region means that the
theory is only valid for energies |E − V0| � h̄ω2

BSd2/(4ωcl2
c );

otherwise, a semiclassical trajectory of the electron of energy
E does not enter the beam-splitter region. The other three
beam-splitter phases are obtained through the relation (22) in
the symmetric case.

Figure 2 shows the numerical energy-dependent arrival
time distribution, plotted about the mean arrival time t =∫

dt t A(t ). Figures 2(a) and 2(b) show results for when
the effective width of the beam-splitter transmission E sad is
large compared with the visibility width of Eq. (24) (h̄ωBS =
100 meV giving E sad ≈ 263 meV compared with a width
of �E ≈ 10 meV). In this case, both interferometer paths
contribute to the arrival time distribution across the range
shown and the picture captured by analytic expression (11)
is very much borne out here. We see two lobes in the ar-
rival time distribution that coincide when E0 = Epeak such
that interference takes place. The oscillation period is given
by δE0 ≈ π h̄ω2

y/(2ωc) ≈ 0.6 meV here. Figure 3 shows the
visibility extracted from these numerical data (symbols), in
comparison with the analytic result of Eq. (18) (solid lines).
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For the wide beam-splitter case shown in Fig. 3(a), we see
that the visibility is hardly affected by moderate changes in the
center of the beam-splitter transmission V0. Thus, we see the
whole of the Gaussian visibility feature predicted by Eq. (23).

In contrast, Figs. 2(c) and 2(d) show results for a narrower
beam splitter with h̄ωBS = 20 meV and E sad = 10.52 meV,
which is comparable with the visibility width �E . In this case,
the appearance of fringes is heavily influenced by the beam-
splitter transmission. For the upper and lower energy ranges of
Fig. 2(c), only a single path of the MZI is traversed, and thus
interference is restricted to a narrow range around V0 where
the product T R is significantly different from zero. The energy
at which this occurs changes as we vary the beam-splitter cen-
ter V0, as can be appreciated in Fig. 2(d) where V0 = 120 meV
and the fringes occur at the top of the displayed energy range.
These changes are apparent in the visibility plots of Fig. 3(b),
where we see numerical visibility for three different values of
V0. We note that the phase-averaging factor D (dashed line)
acts as an approximate envelope for the maximum visibilities
as V0 is changed.

VI. ROLE OF THE BEAM-SPLITTER PHASES

The effect of the beam-splitter phases on the MZI proper-
ties can be captured by the two quantities: the mean delay

τBS = 1

2
v−1

0

d

dk
(ρ1 + ρ̃2 + θ1 + θ2), (26)

and the delay difference of Eq. (17). In the symmetric case,
the wave-packet delay given by the phase of Eq. (25) is

τθ = h̄

2E sad

{
ln

|ε|
2

− 2g

(X 2

ε

)
− Re ψ

(
1

2
+ i

2
|ε|

)}
, (27)

where ψ is the digamma function. In this case, since all
beam-splitter delay times are identical, we have τBS = 2τθ

and 	τBS = 0. As noted above then, the beam splitter plays
no role in determining the interference, only in shifting the
overall position of the arrival time distribution.

We now introduce an asymmetry into the action of the
beam splitters by considering them to be described by saddle
potentials with a different curvature on either side. Details
of this model are given in Appendix B. Here it suffices to
say that we assume both saddles to be alike and described
by a parameter η that gives the degree of asymmetry of the
saddle, with η = 0 equivalent to the symmetric case above,
and η → 1 an extreme limit of asymmetry in which the beam
splitter all but closes on one side. The energy range for which
this model of the beam splitter is valid is

|E − V0|
h̄

�
(

d

lc

)2
ω2

BS

2ωc
cos2

[
π

4
(η + 1)

]
. (28)

Thus, as the degree of asymmetry increases, the region of
validity decreases, and goes to zero for η → 1.

With these asymmetric beam splitters, there are two config-
urations: either the two directions of asymmetry are aligned,
or they are opposite. In the former case we have θ1=θ2=θsad,
ρ1 = ρsad, and ρ̃2 = ρ̃sad, where θsad, etc., are the scattering
phases of saddle potential as calculated in Appendix B. In
this case one can show that the delay difference vanishes,
	τBS = 0, as in the symmetric case. Thus, although the arrival
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FIG. 4. The main panel shows the beam-splitter contribution to
the difference in delay times 	τBS as a function of beam-splitter
asymmetry parameter η for various injection energies E0. The inset
shows the corresponding mean beam-splitter delay time τ̄BS. The
cutoff shown by these results arises from Eq. (28). The parameters
are as in Appendix A, with V0 = 100 meV and h̄ωBS = 20 meV.

time distribution will be modified by change in the transmis-
sion and reflection probabilities of the asymmetric model, the
difference from the symmetric case is relatively minor. We
note that this cancellation of 	τBS does require the beam
splitters to be identical; small differences in parameters will
lead to a small residual value for this quantity.

Of greater interest here is the case when the beam-splitter
asymmetries are oppositely aligned. Here we have θ1 = θsad,
θ2 = θ̃sad, and ρ1 = ρ̃2 = ρsad. In this case, the overall contri-
bution of the beam splitters to the travel-time difference does
not vanish. Indeed, Fig. 4 shows the delay-time difference as a
function of asymmetry for typical parameters and for several
different values of E0. The mean delay time of the beam
splitters is also plotted. We see that both these quantities have
a very similar dependence on both η and E0, with the main
difference being that 	τBS → 0 for η → 0 whereas τBS tends
to the finite value of Eq. (27). For a given value of η, the delay
difference is maximized when E0 = V0. As η increases, so
does 	τBS and, for E0 = V0 this time even diverges in the limit
η → 1 as the confinement on one side of the beam splitters
becomes flat.

The size of the delay difference determines the role that the
beam splitters play in the interference pattern. Taking an ex-
ample of η = 1

2 with E0 = V0 = Epeak = 100 meV we obtain
	τBS ≈ 0.1 ps. Since this is small compared with temporal
width of the wave packet, ∼1 ps, this level of asymmetry will
not significantly affect the observed interference. In contrast,
For larger asymmetries, e.g., η = 3

4 , we find 	τBS = 0.7 ps
and since this is comparable with the temporal width, we can
expect beam-splitter phases to be important here.

Figure 5 shows the energy-dependent arrival time distribu-
tion of an electron for two values of asymmetry: (a) η = 1

2
and (b) η = 3

4 , with other parameters that match Fig. 2(c)
(which may be thought of as the η = 0 case in this sequence).
In particular, the path difference l0 is the same as in the
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FIG. 5. As Fig. 2(c) but here with asymmetric beam splitters
with asymmetry parameter: (a) η = 1

2 and (b) η = 3
4 . Increasing

the asymmetry first shifts the position of maximum visibility [as in
(a)] and then at higher levels [as in (b)] modifies the interference
pattern. The energy ranges used here are compatible with keeping the
majority of the wave packet within the window defined by Eq. (28).
The arrival time distribution is greater in the lighter regions.

η = 0 case. Figure 5(a) shows that this level of asymmetry
changes the arrival distribution very little, with the main ef-
fect being that the distribution becomes nonsymmetric about
E0 − V0 = 0. This stems from a corresponding asymmetry
about V0 in the transmission probability of the beam splitters.
Increasing η further, as in Fig. 5(b), we observe that the
interference pattern becomes significantly modified indicating
that the beam-splitter phases here are playing a significant role
in determining the details of the interference. We note that, for
wider saddles [e.g., h̄ωBS = 100 meV such as in Fig. 2(a)], the
magnitude of 	τBS is substantially less than observed here
and the effect on the arrival time distributions for the same
level of asymmetry is negligible.

VII. DISCUSSION

We have presented a wave-packet picture of the in-
terference in a hot-electron MZI, and focused on the
energy-dependent arrival time distribution, as can be read out
in experiment [34,46]. The arrival time distributions clearly
show two lobes, corresponding to the two paths traveled by
the electrons, and the appearance of interference between the
lobes depends on them arriving with overlap at the second
beam splitter. Therefore, the travel time of the partial wave
packets relative to one another is of critical importance.

We have shown here that for electrons an extension to the
usual photon-optics approach of calculating the phase delays
along the arms is required because, in the quantum Hall effect
the position of the edge channels is dependent on energy, and
this affects both dynamical and Aharonov-Bohm phases. By
taking this effect into account we have found that the peak
interference occurs not at a path difference of zero, as it would
in optics and has been discussed in previous analytic treatment
of electronic phase averaging [12,39,40], but rather at a finite
offset. We note that, although in their analytic calculation,
Beggi et al. [40] derived a visibility with a zero offset, in their
full simulations of electron transit through an MZI, they did
find evidence of the maximum visibility being located at path
difference away from zero, and similar in size to that predicted
by Eq. (20) for parameters appropriate to that calculation.

A key feature of the offset is that its size is proportional to
the electron velocity. For electrons injected near the Fermi sur-
face (e.g., E0 = 5 meV), we find loffset ∼ 100 nm. This value is
small compared with typical interferometer dimensions. It is
also small relative to single-particle coherence lengths for cold
electrons, particularly in the case of mesoscopic-capacitor
experiments where the coherence length is of the order of a
micron [39]. This perhaps explains why this effect has not
been considered previously. In contrast, for hot electrons the
value of loff becomes closer to 1 μm. Clearly, such a signif-
icant offset will make a difference to MZI design, with the
geometry of experiments needing to be tailored to a specific
injection energy to ensure optimal visibility.

We have also considered the role of beam splitters in de-
termining interference patterns. For energetically wide beam
splitters, the size of visibility features is essentially deter-
mined by the effective single-particle coherence length �l .
Away from this limit, the transmission properties of the beam
splitters become important for determining the range of en-
ergy over which oscillations can be observed. Concerning
the contribution of the beam splitters to the travel times and
hence to phase averaging, if the beam splitters are symmetric
or if they are asymmetric but alike and aligned, then they
only contribute an overall delay to the arrival times, and no
loss of visibility is observed. On the other hand, opposing
asymmetries in the beam splitters can affect both the quality
and the structure of the interference patterns. However, we
found that this only becomes relevant at rather high degrees
of asymmetry.

Finally, we note that, despite the changes outlined in this
work, the important conclusion from photon optics remains
that, by setting the path length correctly, phase averaging can
be effectively “switched off.” In this case other decoherence
mechanisms, such as phonon emission and electron-electron
interaction, will then dominate [33].
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APPENDIX A: NUMERICAL PARAMETERS

The results discussed in this work were obtained with
magnetic field strength of B = 11 T, transverse confinement
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rsad
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y

d
(−xL,−yL)
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FIG. 6. Beam-splitter region of saddle-point constriction. The
asymmetric saddle potential of Eq. (B1) is centered around the point
(x, y) = (0, 0), and the region defined as the saddle region is indi-
cated by the purple square. Once rotated this matches up with the
beam splitters of Fig. 1 with d = √

2rsad. Indicative trajectories are
shown on the left and the right, marked with the coordinates of where
they enter the beam-splitter region.

of h̄ωy = 2.7 meV [36], and starting wave-packet width of
σE = 1 meV. To determine the offset, we chose a peak energy
of Epeak = 100 meV, which corresponds to an assumed injec-
tion energy in hot-electron experiments. With this fixed, we
chose an MZI geometry with lengths (as defined in Fig. 1) of
X = 5 μm, YL = 2 μm, and YU = YL + 1

2 loffset (Epeak ), where
we calculate the offset in the symmetric beam-splitter limit
[i.e., 	τBS = 0 in Eq. (20)] and obtain loffset ≈ 706.5 nm.
Finally we set the detector position as xD = 0 as it plays
no important role here, and used the effective mass m∗

e =
0.067me for GaAs.

APPENDIX B: SCATTERING PROPERTIES
OF AN ASYMMETRIC SADDLE

Here we extend the work of Ref. [45] to calculate the
transmission properties of the asymmetric saddle-point con-
striction with potential

Vsad(x, y) =
{

V0 + 1
2 m∗

eω
2
L(y2 − x2) for x < 0,

V0 + 1
2 m∗

eω
2
R(y2 − x2) for x > 0,

(B1)

where h̄ωL/R are the confinement energies on either side of the
saddle. We first define the beam-splitter region as the region
enclosed by a square of half-diagonal length rsad centered at
the saddle point (see Fig. 6). In the symmetric case we set
ωL = ωR = ωBS, and the L/R subscript can be dropped. For
the asymmetric parametrization discussed in the main paper,
we set

ωL =
√

2ωBS cos
[

1
4π (1 + η)

]
,

ωR =
√

2ωBS sin
[

1
4π (1 + η)

]
. (B2)

Here 0 � η � 1 is a parameter describing the left-right asym-
metry of the beam splitter chosen such that mean width
1
2 (E sad

L + E sad
R ) = h̄(ω2

L + ω2
R)/(4ωc) = h̄ω2

BS/(2ωc) is inde-
pendent of η and compares directly with the expression E sad

in the symmetric case.
We consider an electron of energy E (measured from the

subband bottom) in the lowest Landau level [42], whose guide
center enters in the beam-splitter region at position of x =
−xL(E ), y = −yL(E ) (see Fig. 6) and exits out of the region
at x = xR(E ), y = −yR(E ) for a transmission event and x =
−xL(E ), y = yL(E ) for a reflection event. The approach fol-
lowed here is only well defined when the classical trajectory of
the incident electron enters and exits the beam-splitter region.
This is satisfied when max[Vsad(−rsad, 0),Vsad(rsad, 0)] <

E < min[Vsad(0−,−rsad),Vsad(0+,−rsad)], equivalently

−min
(
ω2

L, ω2
R

)
2ωc

<

(
E − V0

h̄

)(
lc

rsad

)2

<
min

(
ω2

L, ω2
R

)
2ωc

.

(B3)

To calculate the scattering properties of this model, we apply
the transformation described in Ref. [45] for each region x<0
and x > 0. The transformed system of the one-dimensional
Hamiltonian

H1 =
{

V0 + E sad
L (P2 − X 2) for X < 0,

V0 + E sad
R (P2 − X 2) for X > 0

(B4)

describes the motion of the guide-center energy in a
strong magnetic field. Here E sad

L = h̄ω2
L/(2ωc) and E sad

R =
h̄ω2

R/(2ωc). The dimensionless coordinate X = x/lc describes
the position of the guide center and P in the Hamiltonian H1

is the canonical conjugate of X , namely [X ,P] = i.
The boundary conditions at X = 0 for an energy eigenstate

ψE of Hamiltonian H1 are [47]

ψE (X = 0−) = ψE (X = 0+),

E sad
L

∂ψE

∂X

∣∣∣∣
X=0−

= E sad
R

∂ψE

∂X

∣∣∣∣
X=0+

. (B5)

Using the even and odd solutions for each X < 0 and X > 0
part of H1 [45], we have

ψE (X < 0) = Aφe(X ; εL) + Bφo(X ; εL),

ψE (X > 0) = Cφe(X ; εR) + Dφo(X ; εR), (B6)

where εσ ≡ (E − V0)/E sad
σ , σ ∈ {L, R}, and

φe(X ; ε) = e−iX 2/2F
(

1
4 + 1

4 iε
∣∣ 1

2

∣∣iX 2
)
,

φo(X ; ε) = X e−iX 2/2F
(

3
4 + 1

4 iε
∣∣ 3

2

∣∣iX 2
)
, (B7)

with F (a|b|c) a confluent hypergeometric function of first
kind [48]. Substituting Eqs. (B6) and (B7) into Eq. (B5),
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we obtain

AF

(
1

4
+ 1

4
iεL

∣∣∣∣1

2

∣∣∣∣0)
= CF

(
1

4
+ 1

4
iεR

∣∣∣∣1

2

∣∣∣∣0)
,

BF

(
3

4
+ 1

4
iεL

∣∣∣∣3

4

∣∣∣∣0)
= E sad

R

E sad
L

DF

(
3

4
+ 1

4
iεR

∣∣∣∣3

4

∣∣∣∣0)
. (B8)

Using F (a|b|0) = 1 [48], we find A = C and B = E sad
R

E sad
L

D.
Now we impose a condition that ψE is a scattering state

generated by an incoming wave from X < 0. The asymptotic
approximations for φe and φo at |X | � 1 [45] are

φe(X ; ε) → �
(

1
2

)
�

(
1
4 + 1

4 iε
)e−i π

8 − π
8 ε |X |− 1

2 +i 1
2 εeiX 2/2

+ �
(

1
2

)
�

(
1
4 − 1

4 iε
)ei π

8 − π
8 ε |X |− 1

2 −i 1
2 εe−iX 2/2, (B9)

φo(X ; ε) →X
[

�
(

3
2

)
�

(
3
4 + 1

4 iε
)e−i 3π

8 − π
8 ε |X |− 3

2 +i 1
2 εeiX 2/2

+ �
(

3
2

)
�

(
3
4 − 1

4 iε
)ei 3π

8 − π
8 ε |X |− 3

2 −i 1
2 εe−iX 2/2

]
.

(B10)

The terms proportional to eiX 2/2 (e−iX 2/2) correspond to out-
going (incoming) waves. Requiring that the incoming wave
for X > 0 should cancel, we obtain the condition

C
�

(
1
2

)
�

(
1
4 − 1

4 iεR
)eiπ/8 + D

�
(

3
2

)
�

(
3
4 − 1

4 iεR
)ei3π/8 = 0. (B11)

Applying an asymptotic approximation of Eq. (B9) to
Eq. (B6), we obtain expressions for ψ

(in)
E and ψ

(out)
E , incoming

and outgoing parts of the scattering state, such that (for a
coordinate X0 � 1)

ψ
(out)
E (X0)

ψ
(in)
E (−X0)

= e− π
8 (εR−εL )X

i
2 (εL+εR )

0 eiX 2
0

×
e−i π

4
�

(
1
4 − 1

4 iεR

)
�

(
1
4 + 1

4 iεR

) − e−i 3π
4

�

(
3
4 − 1

4 iεR

)
�

(
3
4 + 1

4 iεR

)
�

(
1
4 − 1

4 iεR

)
�

(
1
4 − 1

4 iεL

) + E sad
R

E sad
L

�

(
3
4 − 1

4 iεR

)
�

(
3
4 − 1

4 iεL

) , (B12)

ψ
(out)
E (−X0)

ψ
(in)
E (−X0)

=X iεL
0 eiX 2

0

×
e−i π

4
�

(
1
4 − 1

4 iεR

)
�

(
1
4 + 1

4 iεL

) + E sad
R

E sad
L

e−i 3π
4

�

(
3
4 − 1

4 iεR

)
�

(
3
4 + 1

4 iεL

)
�

(
1
4 − 1

4 iεR

)
�

(
1
4 − 1

4 iεL

) + E sad
R

E sad
L

�

(
3
4 − 1

4 iεR

)
�

(
3
4 − 1

4 iεL

) .

(B13)

1. Phases and delay times

To make use of the expressions derived above, we express
quantities of interest as the difference of two terms evaluated
asymptotically. Thus, we write the transmission and reflection

phases as

θ = lim
X0→∞

[θ tot − θ ext]; ρ = lim
X0→∞

[ρ tot − ρext].

In these expressions the first term is the total phase ac-
cumulated in traveling from points X = −X0 to X = ±X0

(upper and lower signs describe transmission and reflection,
respectively) far from the beam splitter, and the second terms
represent the phase accumulated along the parts of these paths
that are external to the saddle region. The simplification that
this brings is that, outside of the beam-splitter region, an
electron wave packet moves along a trajectory that be be de-
termined semiclassically with an error at most exp[−πr2

sad/l2
c ]

[45]. Thus, θ ext and ρext may be evaluated semiclassically.
The quantum mechanical contributions to the above are

then evaluated as

θ tot = Im

[
ln

(
ψ

(out)
E (X0)

ψ
(in)
E (−X0)

)]
,

ρ tot = Im

[
ln

(
ψ

(out)
E (−X0)

ψ
(in)
E (−X0)

)]
,

using the asymptotic results of Eqs. (B12) and (B13). Mean-
while, the external phases evaluated semiclassically read as

θ ext(E ) =
∫ −XL(E )

−X0

dX
√

E − V0

E sad
L

+ X 2

+
∫ X0

XR(E )
dX

√
E − V0

E sad
R

+ X 2, (B14)

ρext(E ) = 2
∫ −XL(E )

−X0

dX
√

E − V0

E sad
L

+ X 2. (B15)

These are expressed in terms of the coordinates

Xσ (E ) = xσ

lc
= 1

2

lc
rsad

[(
rsad

lc

)2

− E − V0

E sad
σ

]
. (B16)

Evaluating the integrals and taking the X0 → ∞ limit, we find

θ ext =
∑

σ=L,R

[
1

4
εσ − 1

2
Xσ (E )

√
X 2

σ (E ) + εσ + 1

2
X 2

0

− 1

4
εσ ln |εσ | + 1

2
εσ ln(2X0) + 1

2
εσ g(Xσ (E )2/εσ )

]
,

ρext = 1

2
εL − XL(E )

√
X 2

L (E ) + εL + X 2
0 − 1

2
εL ln |εL|

+ εL ln(2X0) + εLg(XL(E )2/εL), (B17)
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with g(x) = ln |√|x| + sgn(x) − √|x||, such that the complete phases read as

θ (E ) =
∑

σ=L,R

[
− 1

4
εσ + 1

2
Xσ (E )

√
X 2

σ (E ) + εσ + 1

4
εσ ln

|εσ |
4

− 1

2
εσ g(Xσ (E )2/εσ )

]

+ arg

[
e−i π

4
�

(
1
4 − 1

4 iεR
)

�
(

1
4 + 1

4 iεR
) − e−i 3π

4
�

(
3
4 − 1

4 iεR
)

�
(

3
4 + 1

4 iεR
)]

− arg

[
�

(
1
4 − 1

4 iεR
)

�
(

1
4 − 1

4 iεL
) + E sad

R

E sad
L

�
(

3
4 − 1

4 iεR
)

�( 3
4 − 1

4 iεL)

]
, (B18)

ρ(E ) = −1

2
εL + XL(E )

√
X 2

L (E ) + εL + 1

2
εL ln

|εL|
4

− εLg(XL(E )2/εL)

+ arg

[
e−i π

4
�

(
1
4 − 1

4 iεR
)

�
(

1
4 + 1

4 iεL
) + E sad

R

E sad
L

e−i 3π
4

�
(

3
4 − 1

4 iεR
)

�
(

3
4 + 1

4 iεL
)]

− arg

[
�

(
1
4 − 1

4 iεR
)

�
(

1
4 − 1

4 iεL
) + E sad

R

E sad
L

�
(

3
4 − 1

4 iεR
)

�
(

3
4 − 1

4 iεL
)]

. (B19)

The corresponding delay times are obtained by differentiating [as in Eq. (12)] to give

τθ (E ) = h̄

4E sad
L

ln(|εL|/4) − h̄

2E sad
L

g

(X 2
L (E )

εL

)
+ h̄

4E sad
R

ln(|εR|/4) − h̄

2E sad
R

g

(X 2
R (E )
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In obtaining the semiclassical contribution to these expressions, care must be taken to keep the beam-splitter region fixed,
which means ignoring the energy dependency in XL and XR when differentiating Eqs. (B18) and (B19). This is because when
we consider the delay time, we consider a long wave packet (energetically narrow) [49] and the boundary positions of the
beam-splitter region are fixed in the energy window of the packet.

Expressions for the phases θ̃ and ρ̃ and the correspond-
ing delay times when electrons impinge from the right are
obtained by swapping indices L ↔ R in the above.

2. Transmission and reflection probabilities

In Hamiltonian H1, the probability flux of the scattering
state ψE is

J =
{

2E sad
L Im

(
ψ∗

E
∂ψE

∂X
)

for X < 0,

2E sad
R Im

(
ψ∗

E
∂ψE

∂X
)

for X > 0.
(B22)

We therefore obtain the flux for the incoming and outgoing
asymptotic forms (input from the left)
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E (X )|2. (B23)

Then, using Eqs. (B12) and (B13), the transmission and re-
flection probabilities of the saddle are found to be
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