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Fractional boundary charges with quantized slopes in interacting one- and two-dimensional systems
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We study fractional boundary charges (FBCs) for two classes of strongly interacting systems. First, we study
strongly interacting nanowires subjected to a periodic potential with a period that is a rational fraction of the
Fermi wavelength. For sufficiently strong interactions, the periodic potential leads to the opening of a charge
density wave gap at the Fermi level. The FBC then depends linearly on the phase offset of the potential with a
quantized slope determined by the period. Furthermore, different possible values for the FBC at a fixed phase
offset label different degenerate ground states of the system that cannot be connected adiabatically. Next, we
turn to the fractional quantum Hall effect (FQHE) at odd filling factors ν = 1/(2l + 1), where l is an integer.
For a Corbino disk threaded by an external flux, we find that the FBC depends linearly on the flux with a
quantized slope that is determined by the filling factor. Again, the FBC has 2l + 1 different branches that
cannot be connected adiabatically, reflecting the (2l + 1)-fold degeneracy of the ground state. These results
allow for several promising and strikingly simple ways to probe strongly interacting phases via boundary charge
measurements.
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I. INTRODUCTION

The emergence of fractional charges in topologically non-
trivial systems is a recurring theme in modern condensed
matter physics that has been discussed in several different
contexts. In the fractional quantum Hall effect (FQHE), for
example, strong electron-electron interactions lead to the
emergence of exotic quasiparticles carrying only a fraction of
the electronic charge e [1–4]. On the other hand, well-defined
fractional charges can also emerge in the ground state of topo-
logical insulators. Early examples include the Jackiw-Rebbi
[5,6] and Su-Schrieffer-Heeger [7,8] models, where domain
walls between topologically nonequivalent phases bind frac-
tional charges that are quantized due to symmetry. Generally,
fractional boundary charges (FBCs) can accumulate at the
boundaries of an insulator. Importantly, the possible presence
of edge states influences the total boundary charge only by
an integer number, while the fractional part of the boundary
charge contains contributions from all extended states and is
directly related to bulk properties via the Zak-Berry phase
[9–15]. FBCs of this type have been studied in a large variety
of systems, including different types of one-dimensional (1D)
models [15–39], topological crystalline insulators [40–44],
higher-order topological insulators [45–52], and the integer
quantum Hall effect (IQHE) [31]. While the presence of sym-
metries leads to a quantization of the FBC in rational units
[35], certain universal features of the FBC persist even in the
absence of symmetries. For generic 1D tight-binding models
with periodically modulated on-site potentials, it was shown

that the FBC is a sharp quantity [53] that changes linearly with
the phase offset of the modulation with a universally quantized
slope even in the presence of disorder [15,28,31,34]. Further-
more, this slope can be directly related to the Hall conductance
in the 2D IQHE [31].

Motivated by these results on noninteracting systems, the
aim of this paper is to study the universal properties of the
FBC in strongly interacting systems, see Fig. 1. First, we
consider a 1D nanowire with a periodic potential of the form
Vm(x) = 2Vm cos(2mkF x + α), where kF is the Fermi momen-
tum, m an integer, and α a phase offset. For m = 1, it is well

FIG. 1. Corbino disk in the FQHE regime threaded by an exter-
nal flux �. The FBC is measured in the red region, which extends
into the bulk on the order of a few edge-state localization lengths
ξ . In the presence of a constriction, indicated by the dashed line,
tunneling of fractional charges between the chiral edge states (blue
lines) is allowed.
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known that a charge density wave (CDW) gap is opened at the
Fermi level [54] with an FBC that depends linearly on α with
a quantized slope 1/2π [28,31]. In the presence of strong in-
teractions, additional gaps can be opened for m > 1. We show
that in this case the FBC depends again linearly on α with
a fractional slope 1/2πm. Perhaps even more interestingly,
we find that there are now m degenerate ground states labeled
by m different branches of the FBC that cannot be connected
under adiabatic evolution of α.

Next, we extend our considerations to a two-dimensional
electron gas (2DEG) in the FQHE regime at odd filling factors
ν = 1/(2l + 1), where l is an integer. For a Corbino disk
threaded by an external flux � as shown in Fig. 1, we find that
the FBC depends linearly on � with a slope determined by the
filling factor. From this the standard Hall conductance follows.
Further, the FBC has 2l + 1 distinct branches labeling 2l + 1
degenerate ground states that cannot be adiabatically con-
nected unless fractional charges are allowed to tunnel between
the two boundaries due to, e.g., a constriction, see again Fig. 1.
We outline how these results open up a strikingly simple way
to probe strongly interacting systems via boundary charge
measurements.

II. FBC IN ONE DIMENSION

We first study the FBC in a 1D nanowire of spinless elec-
trons subjected to a spatially modulated potential Vm(x) [55].
The single-particle Hamiltonian reads

H =
∫

dx �†(x)

[
− h̄2∂2

x

2m∗ + Vm(x)

]
�(x), (1)

where �†(x) [�(x)] creates [annihilates] a spinless elec-
tron of mass m∗ at the position x. Without interactions,
the onsite potential opens a CDW gap at the Fermi level
only for m = 1 [54]. To study the more general case of
an interacting system, we linearize the spectrum around the
Fermi points and write �(x) = R(x)eikF x + L(x)e−ikF x, where
R(x) and L(x) are slowly varying right- and left-moving
fields, respectively. Next, we introduce chiral bosonic fields
R(x) ∝ eiφ1(x) and L(x) ∝ eiφ1̄ (x) satisfying standard com-
mutation relations [56] [φr (x), φr′ (x′)] = irπδrr′sgn(x − x′).
This ensures the correct anticommutation relation between
fermionic operators of the same species, while the re-
maining commutation relations can be ensured by Klein
factors, which we do not include explicitly. It is also use-
ful to define local conjugate fields φ = (φ1̄ − φ1)/2 and
θ = (φ1̄ + φ1)/2 with [φ(x), θ (x′)] = iπ

2 sgn(x − x′). Small-
momentum interactions are now included via the standard
kinetic term H0 = v

2π

∫
dx {K[∂xθ (x)]2 + 1

K [∂xφ(x)]2}, where
v is the velocity and K the Luttinger liquid parameter
[56]. Furthermore, momentum-conserving multielectron pro-
cesses involving backscatterings can lead to the opening of
gaps when relevant in the renormalization group (RG) sense
[56–61]. In our case, to lowest order in the interaction, the
corresponding term reads

Hm
CDW = Ṽm

∫
dx [(R†L)meiα + H.c.], (2)

where we have neglected rapidly oscillating contributions.
Here, Ṽm ∝ Vmgm−1

B , where gB is the strength of the

backscattering term induced by interactions and Vm > 0. In
terms of the bosonic fields, the CDW term takes the form
Hm

CDW = ∫
dx Hm

CDW(x) with

Hm
CDW(x) = −2|Ṽm|

(2πa)m
cos (2mφ(x) + α − α0), (3)

where a is a short-distance cutoff and α0 an irrelevant phase
shift. The above term is of sine-Gordon form and opens a full
gap at the Fermi level whenever relevant in the RG sense. This
can be achieved if K < 2/m2 (which generally requires long-
range interactions) or if the bare coupling constant is already
of order one compared to the Fermi energy. From now on, we
therefore focus on the case where Hm

CDW is relevant.
We now consider a semi-infinite system with a single

boundary at x = 0. In the semiclassical limit of infinitely
strong pinning, the bosonic field φ takes a constant bulk value
in order to minimize the cosine term. Explicitly, we find
−φ(∞) = (α − α0)/2m + pπ/m, where p is an integer. At
the edge of the system at x = 0, on the other hand, we impose
vanishing boundary conditions by demanding R(0) + L(0) =
0. This implies φ1(0) − φ1̄(0) = −2φ(0) = π mod 2π . We
then define the FBC QB as the excess charge at the boundary
of the system as compared to a constant bulk contribution.
Using that the electron density is ρ(x) = −∂xφ(x)/π , we have
QB = −[φ(∞) − φ(0)]/π in units of the electron charge e.
Plugging in the bulk and edge values for φ found above, we
obtain for Q1D

B ≡ QB (up to an irrelevant constant),

Q1D
B = α

2πm
+ p

m
mod 1. (4)

This result has several interesting features: Firstly, we see
that the FBC is a linear function of α with a slope 1/2πm.
For m = 1, this agrees with the result that was previously
obtained for noninteracting systems [28,31], but the derivation
presented here also holds in the presence of interactions [62].
Secondly, for fixed α, there are m different values for the
FBC, Q1D

B − α/2πm ∈ {0, 1/m, . . . , (m − 1)/m}. For m > 1,
we therefore find that the ground state is m-fold degenerate.
Thirdly, these different ground states cannot be connected to
one another under adiabatic evolution of α. As such, a given
branch of the FBC is 2πm periodic, while the Hamiltonian
is 2π periodic. Finally, we emphasize that these results are
independent of the exact value of K but hold whenever Hm

CDW
is relevant.

In fact, Eq. (4) can also be understood from more general
arguments without the use of the bosonization formalism. To
see this, let us assume that the bulk is fully gapped by the
backscattering mechanism discussed above. If we shift the
origin of the system by π/mkF ≡ λF /2m, the FBC cannot
change. Furthermore, any shift of the lattice by d can always
be compensated by shifting α. Thus, the FBC is a function
of both of them and necessarily has the form QB(α, d ) ≡
QB(α/2π + 2md/λF ). This is nothing but a form of “Galilean
invariance” in α and d . On the other hand, a shift by d changes
QB by d ρ̄B, where ρ̄B = 2/λF is the average bulk density.
Thus, we find that the FBC is a linear function of not only d
but also α and has the form QB = (α/2π + 2md/λF )/m + C,
where C is a constant. Again, we find that the slope of the
phase dependence is 1/2πm. Simultaneously, there must be
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m different branches of the FBC [corresponding to m values
C = 0, 1/m, . . . , (m − 1)/m] since H is 2π periodic.

III. EFFECTIVE MODEL

To illustrate the m-fold degenerate ground state and the
phase dependence of the FBC [see Eq. (4)], we consider the
following tight-binding model with Ns sites:

H = − t
Ns−1∑
n=1

(a†
nan+1 + H.c.) +

r∑
l=1

Ns−l∑
n=1

Ul ρ̂nρ̂n+l

+
Ns∑

n=1

vex cos

(
2π

Z
n + α

)
ρ̂n , (5)

where ρ̂n = a†
nan, t is the hopping amplitude, vex the ampli-

tude of the potential modulation with period Z and phase α,
and Ul the electron-electron interaction with range r, which
is required to be sufficiently long-ranged. We choose Ul = U
and r = Z (m − 1), where ρ̄B = 1

mZ is the average bulk density
(corresponding to filling ν = 1

m ). For sufficiently large vex

or U , this means that every mth minimum is occupied in
the thermodynamic limit (see Fig. 2). The ground state is
then m-fold degenerate because one could shift all particles
simultaneously to the next minimum.

Next, we investigate the evolution of the FBC with α,
see Fig. 3. We calculate QB with perturbation theory for
U � vex � t , see Appendix B for details, and compare these
results with results obtained from a numerically exact den-
sity matrix renormalization group (DMRG) approach. For an
open system of finite size one gets a larger degeneracy of the
ground state as one can also shift single particles close to the
boundaries. Thus, we do not use an integer number of filling
unit cells of size Z · m but cut some sites at the boundary. The
ground state of the system is then nondegenerate and we can
perform a variational ground-state search. For more details we
refer to Appendix A.

We confirm, in accordance with Eq. (4), that QB shows a
linear slope 1/2πm = 1/6π up to a 2π/Z-periodic function
(with Z = 3) [63]. The inset of Fig. 3 shows a false color
plot demonstrating for which values of vex and U this lin-
ear slope indicated by δQB = QB(2π ) − QB( 4π

3 ) = 1
9 (white

region) is stabilized. We observe that this is already the case
for relatively small vex and intermediate U . The general phe-
nomenology of fractionally quantized slopes in the FBC of
this 1D model is therefore quite general and does not require
fine tuning. The additional modulation by a 2π/Z-periodic

FIG. 2. Pictorial representation of the ground state for m = Z =
3 and a certain phase α in the investigated regime. Every 9th site
is occupied by a particle, which is indicated by the small arrows
pointing up. The ground state is three-fold degenerate as one can
move the particles to the green or blue unit cells.

FIG. 3. FBC QB of the effective model with m = Z = 3 and
t = 1. Main panel: QB as a function of α at vex = 5 and U = 10 cal-
culated with DMRG (crosses) and perturbation theory (solid lines).
For details about the calculation see Appendix A–C. The FBC shows
a linear slope 1/6π up to a periodic function and a jump of size
unity. Inset: False-color plot showing δQB = QB(2π ) − QB( 4π

3 ) for
different vex and U . The expected linear slope (white region) is
observed already for relatively small vex and intermediate U .

function that was not present in Eq. (4) is a consequence
of commensurability between the lattice constant and the
Fermi wavelength and vanishes in the continuum limit [28]. In
Appendix D and E we show that our results are stable against
disorder of the hoppings and the on-site potentials and that
a quantized slope is also present in the case of long ranged
interactions Ul ∝ l−6 or Ul ∝ exp(−γ l ) l−2.

IV. FBC IN TWO DIMENSIONS (FQHE)

Next, we study the FBC in a 2DEG in the FQHE regime at
odd filling factors ν = 1/(2l + 1) for an integer l . To facilitate
the analytical treatment of strong interactions, we make use
of a coupled-wire construction of the FQHE [60,61]. We con-
sider an array of N parallel nanowires, where the individual
wires are oriented along the x axis and the wires are stacked
along the y axis [64,65]. We assume periodic boundary con-
ditions along the latter, realizing the cylinder geometry shown
in Fig. 4. The kinetic term is H0 = ∑

n H0,n with H0,n =
− h̄2

2m∗
∫

dx �†
n (x) ∂2

x �n(x), where �†
n (x) [�n(x)] creates [an-

nihilates] a spinless electron of mass m∗ at the position x in
the nth wire. A magnetic field B (B′) is applied perpendicular
to the surface (along the axis) of the cylinder and the vec-
tor potential is chosen as A = Bxŷ [A′ = (B′R/2)ŷ], where
R = Nay/2π is the radius of the cylinder and ay denotes the
interwire distance. Finally, the tunneling between neighboring
nanowires is described by HT = ∑

n HT,n+1/2 with

HT,n+1/2 = teiϕ
∫

dx eikBx�
†
n+1�n + H.c. (6)

Here, kB = eBay/h̄ and ϕ = e
h̄

�
N , with the total flux through

the cylinder given by � = πR2B′. To treat interactions,
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FIG. 4. An array of nanowires tunnel-coupled by t arranged to
a cylinder threaded by an external flux �. A magnetic field B per-
pendicular to the cylinder surface drives the system into an FQHE
phase. The FBC Q2D

B is calculated in the red region and shown to
vary linearly with �, see Eq. (9).

we again linearize the spectrum around the Fermi points,
�n(x) = Rn(x)eikF x + Ln(x)e−ikF x, and switch to a bosonized
language by writing Rn(x) ∝ eiφ1n (x), Ln(x) ∝ eiφ1̄n(x) with
[φrn(x), φr′n′ (x′)] = irπδrr′δnn′sgn(x − x′). Small-momentum
interactions can then be included in the standard way and lead
to a gapless sliding Luttinger liquid phase [61] that we will not
characterize here. For our purposes, it suffices to note that if
kF becomes commensurable with kB such that 2kF /kB = ν, an
additional momentum-conserving multielectron process can
be constructed such that a gap is opened at the Fermi level
and the FQHE at filling ν is realized [61]. Explicitly, the term
that opens the gap is Hl

T,n+1/2 = ∫
dx Hl

T,n+1/2 with [66]

Hl
T,n+1/2 = tl e

iϕR†
n+1Ln(R†

n+1Ln+1)l (R†
nLn)l + H.c. (7)

Here, tl ∝ tg2l
B . Introducing the fields ηrn = (l + 1)φrn −

lφr̄n, Eq. (7) becomes

Hl
T,n+1/2 = −2|tl |

(2πa)2l+1
cos(η1(n+1) − η1̄n − ϕ + ϕ0), (8)

where ϕ0 is an irrelevant phase shift.
In this representation, it is evident that all fields are pinned

pairwise, such that the system is indeed fully gapped given
that Hl

T,n+1/2 is the leading relevant term. This can always be
achieved for a suitable set of interaction parameters [60]. The
case l = 0 corresponds to the IQHE with ν = 1, where the
gap is opened even without interactions.

We now calculate the FBC in dependence on �. At low
energies, the argument of the cosine term in Eq. (8) is pinned.
Taking the sum over N , this implies −∑

n φn(∞) = Nν(ϕ −
ϕ0)/2 + pνπ in terms of the local fields φn = (φ1̄n − φ1n)/2.
Here, p is an integer. On the other hand, imposing van-
ishing boundary conditions at x = 0 leads to

∑
n φn(0) =

−Nπ/2 mod π . Writing the 2D FBC as Q2D
B = ∑

n Q1D
B,n,

where Q1D
B,n is the FBC in the nth wire, we get (up to an

irrelevant constant)

Q2D
B = �ν

2π

e

h̄
+ pν mod 1. (9)

Thus, the FBC has a linear slope in �, which is quantized
in units of νe/h. At fractional filling ν = 1/(2l + 1) with
l > 0, this slope is (2l + 1) times smaller than in the IQHE
case l = 0. Furthermore, there are 2l + 1 different branches
of the FBC that cannot be connected under adiabatic evolution
of �. Finally, the Hall conductance can be obtained from the

FBC following Ref. [31], yielding σxy = e Q̇2D
B /�̇ = e2ν/h

as expected [67]. Importantly, this result holds for arbitrary
changes of � and therefore extends the well-known Laughlin
argument, where it is assumed that � is changed by an integer
multiple of h/e.

V. EXPERIMENTAL SIGNATURES

The sample geometry described above can be realized by a
Corbino disk [68–74] (see Fig. 1). The FBC is then accessible
in a rather straightforward way using, e.g., STM techniques
[75–79] to measure the charge located at the boundary of
the disk. This allows for several interesting ways to probe
the FQHE: Firstly, observing the slope of the linear flux de-
pendence allows one to probe the filling factor, see Eq. (9).
This can further be corroborated by observing the evolution
of the FBC as � is varied adiabatically. The FBC will then
be (2π/ν) periodic in �, with a jump of size unity occurring
at a particular value of �. Secondly, the different branches of
the FBC can be connected if fractional charges are allowed
to tunnel between opposite boundaries due to, e.g., a con-
striction, see again Fig. 1. By measuring the FBC repeatedly
in the presence of a constriction, one finds that it can take
2l + 1 different values, reflecting the (2l + 1)-fold ground-
state degeneracy. Similarly, if one now observes the evolution
of the FBC with �, also jumps of fractional size s/(2l + 1),
where s = 1, . . . , 2l is another integer, can be observed when
the system switches from one ground state to another. We note
that due to translational invariance it suffices to measure the
FBC along a small part of the boundary rather than along
the entire circumference (see Fig. 1). In this case, instead
of measuring the absolute values of the slopes and jumps of
the FBCs, one should measure their ratios for different filling
factors, which again become universal. Thus, boundary charge
measurements open up a direct way to probe the fractionaliza-
tion of charges in the FQHE and, most importantly, allow for
a direct experimental verification of the ground-state degen-
eracy. We note that the FBC could alternatively be studied in
cold-atom setups with tunable interactions [80].

VI. CONCLUSIONS

We studied FBCs in strongly interacting CDW-modulated
nanowires and in Corbino disks in the FQHE regime at odd
filling factors threaded by an external flux. In both cases, the
FBC displays universal features that do not depend on mi-
croscopic details of the models such as the exact values of the
interaction parameters. In the nanowire (FQHE) case, the FBC
depends linearly on the phase offset (flux) with a quantized
slope that is determined by the filling factor. Furthermore, the
different possible values of the FBC at a fixed phase offset
(flux) label different degenerate ground states that cannot be
adiabatically connected. The observation of these features is
well within experimental reach and opens up a promising
route to probe strongly interacting phases via FBCs.

As an outlook, we note that our findings can readily be ex-
tended to more general filling factors ν = k/(2l + 1), where
k is an integer that is coprime to 2l + 1. A given branch of the
FBC will be 2π (2l + 1)-periodic under adiabatic evolution of
� with k jumps of size unity occurring at specific values of �.
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APPENDIX A: GROUND STATE FOR FINITE
AND OPEN SYSTEM

When calculating the ground state of the effective one-
dimensional model [Eq. (5) of the main text] for an open and
finite system with a fixed number of particles Np, one gets a
huge degeneracy due to the missing particles at the system
boundaries. To avoid this degeneracy we cut the system and
take only Ns = mZNp − (m − 1)Z = 9Np − 6 sites instead of
N̄s = 9Np sites (for Z = 3 and m = 3). The degeneracy is
then lifted and there is only one possible ground state. This
procedure corresponds to forcing the last 6 sites to be empty.
The other two possible ground states that would occur in the
thermodynamic limit can then be found by putting either 3 or
all 6 empty sites to the other boundary of the chain. We will
use this procedure for our DMRG calculations as well as for
the analytical calculations of the boundary charge.

Using this ground-state search, one gets a periodicity of
2π . To get the periodicity of 6π , we calculate all three ground
states. We expect these states to evolve into each other when
executing an adiabatic time evolution in the grand-canonical
ensemble with the chemical potential located in the charge
gap. One then gets the periodicity of 6π , which we show
in the main text. For convenience, we choose the chemical
potential in such a way that the jumps of the adiabatic time
evolution and the ones of the ground-state search occur at the
same position. The positions of the jumps in the adiabatic time
evolution may change slightly when changing the chemical
potential within the gap.

The average of the FBC is given by

QB =
N̄s∑

n=1

fn(ρn − Np/N̄s), (A1)

where N̄s is the number of sites including the 6 empty sites,
Np is the number of particles, and ρn = 〈a†

nan〉. The envelope
function is denoted by fn and needs to decay smoothly from 1
to 0. For our numerical calculations we take a linear slope for
the decay of length lp. The center of this slope has a distance
of Lp to the left boundary. For the calculations shown in Fig. 3
of the main text we use Ns = 174 (N̄s = 180) with Lp = 90
and lp = 90.

APPENDIX B: ANALYTICAL CALCULATION OF THE FBC

In this section we calculate the FBC for the effective one-
dimensional model in dependence of the phase α analytically.
We focus on the case of Z = 3 and m = 3 (other cases can be
treated analogously) and consider the atomic limit with strong
electron-electron (Coulomb) interaction Ul = U � vex � t .
We introduce an effective unit cell of Zeff = Zm = 9, so that
the average bulk density is ρ̄B = 1

Zeff
= 1

9 .
In the atomic limit the problem of finding the FBC in the

given strongly interacting model can be reduced to an effective
single-particle model, in which a particle can occupy one of
the first Z sites of the effective unit cell with Zeff sites. As
shown in Ref. [35] the FBC in this limit is dominantly given
by the polarization contribution deep in the bulk, which has
the form

QB ≈ QP = − 1

Zeff

Zeff∑
j=1

j
(
ρbulk

j − ρ̄B
)

(B1)

= − 1

Zeff

Z∑
j=1

jρbulk
j + Zeff + 1

2Zeff
(B2)

= −1

9

Z∑
j=1

jρbulk
j + 5

9
. (B3)

Depending on the minima of the cosine potential (see
Fig. 5), a particle can sit either on site j = 1 (for 0 < α < 2π

3 ),
or on j = 2 (for 4π

3 < α < 2π ), or on j = 3 (for 2π
3 < α <

4π
3 ). We thus get three plateaus,

QB

(
0 < α <

2π

3

)
≈ −1

9
+ 5

9
= 4

9
, (B4)

QB

(
4π

3
< α < 2π

)
≈ −2

9
+ 5

9
= 3

9
, (B5)

QB

(
2π

3
< α <

4π

3

)
≈ −3

9
+ 5

9
= 2

9
. (B6)

1. Vicinity of α = 0, 2π
3 , 4π

3

At α = 0, 2π
3 , 4π

3 the minima contain two sites with the
same on-site potential. Therefore we consider the first order
degenerate perturbation theory in t in the three different inter-
vals around these values.

FIG. 5. On-site potentials v j (α) = cos( 2π

3 j + α) for j = 1, 2, 3.
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(1) π
3 < α < π : |ψ0〉 ≈ c(1)

1 |1〉 + c(1)
3 |3〉. Then we find

QB

(π

3
< α < π

)
≈ −1

9

(∣∣c(1)
1

∣∣2 + 3
∣∣c(1)

3

∣∣2) + 5

9
(B7)

= −1

9

( − ∣∣c(1)
1

∣∣2 + ∣∣c(1)
3

∣∣2) + 3

9
. (B8)

However, this formula is incorrect, because the hybridiza-
tion between |1〉 and |3〉 is in O(t ) impossible, and we need to
revise the above result.

Consider the two subintervals (1a) π
3 < α < 2π

3 and (1b)
2π
3 < α < π .

(1a) For π
3 < α < 2π

3 the density is mostly located on |1〉,
with a small admixture of |0〉, which replaces |3〉 in Eq. (B8).
Thus the correct expression reads

QB

(
π

3
< α <

2π

3

)
≈ −1

9

(∣∣c(1)
1

∣∣2 + 0
∣∣c(1)

3

∣∣2) + 5

9

≈ − 1

18

(∣∣c(1)
1

∣∣2 − ∣∣c(1)
3

∣∣2) + 1

2
. (B9)

(1b) For 2π
3 < α < π the density is mostly located on |3〉,

with a small admixture of |4〉, which replaces |1〉 in Eq. (B8).
Thus the correct expression reads

QB

(
2π

3
< α < π

)
≈ −1

9

(
4
∣∣c(1)

1

∣∣2 + 3
∣∣c(1)

3

∣∣2) + 5

9

≈ − 1

18

(∣∣c(1)
1

∣∣2 − ∣∣c(1)
3

∣∣2) + 1

6
. (B10)

Comparing Eqs. (B9) and (B10) and taking into account
that |c(1)

1 |2 − |c(1)
3 |2 is a continuous function of α (see below)

vanishing at α = 2π
3 , we observe that at this value of α the

boundary charge value jumps from 1
2 to 1

6 , such that the jump
value is 1

6 − 1
2 = − 1

3 .

(2) π < α < 5π
3 : |ψ0〉 ≈ c(2)

3 |3〉 + c(2)
2 |2〉. This gives us

QB

(
π < α <

5π

3

)
≈ −1

9

(
3
∣∣c(2)

3

∣∣2 + 2
∣∣c(2)

2

∣∣2) + 5

9

≈ − 1

18

(∣∣c(2)
3

∣∣2 − ∣∣c(2)
2

∣∣2) + 5

18
.

(B11)

(3) −π
3 < α < π

3 : |ψ0〉 ≈ c(3)
2 |2〉 + c(3)

1 |1〉, leading to

QB

(
−π

3
< α <

π

3

)
≈ −1

9

(
2
∣∣c(3)

2

∣∣2 + ∣∣c(3)
1

∣∣2) + 5

9

≈ − 1

18

(∣∣c(3)
2

∣∣2 − ∣∣c(3)
1

∣∣2) + 7

18
.

(B12)

The coefficients ca and cb are found from the eigenvalue
problem(

va−vb
2 −t

−t − va−vb
2

)(
ca

cb

)
= −

√(va − vb

2

)2

+ t2

(
ca

cb

)
(B13)

FIG. 6. States that are ground states at t = 0 but can be neglected
at t �= 0. Two of the particles have only a distance of (m − 1) minima.
The energy is higher than for the states where every mth minimum is
occupied as the coupling of the green particle to the right and of the
blue one to the left is much smaller in these cases.

and it follows

cb =
[

va − vb

2
+

√(va − vb

2

)2

+ t2

]
ca

t
, (B14)

c2
a = t2

[
va−vb

2 +
√(

va−vb
2

)2 + t2
]2 + t2

, (B15)

c2
a − c2

b =
t2 − [

va−vb
2 +

√(
va−vb

2

)2 + t2
]2

[
va−vb

2 +
√(

va−vb
2

)2 + t2
]2 + t2

(B16)

= −(va − vb)
va−vb

2 +
√(

va−vb
2

)2 + t2

[
va−vb

2 +
√(

va−vb
2

)2 + t2
]2 + t2

.

(B17)

The results are shown in Fig. 7 for certain parameters,
where we also compare them to DMRG data.

When we made the ansatz that we only need one particle
in a cell of Zeff = 9 sites, we assumed that there are always
two empty minima between the particles due to the repulsive
electron-electron interaction. However, it is possible to have
configurations where there is only one empty minimum be-
tween two particles. Then, both particles need to be located

FIG. 7. Boundary charge as a function of α for the effective
model calculated with DMRG and perturbation theory. The other
parameters are m = 3, Z = 3, t = 1, vex = 5, and Ul = U = 10
for l = 1, . . . , 6. We used Ns = 174 and Lp = 90, lp = 90 for the
envelope function to get the DMRG results. The dash-dotted line
shows the results calculated in the vicinity of α = π

3 , π, 5π

3 , while
the dashed line was calculated in the vicinity of α = 0, 2π

3 , 4π

3 .
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on the outer site of their minimum as shown in Fig. 6. In this
case they also do not “see” each other’s Coulomb interaction
and it would be a ground state for t = 0.

However, we do not need to consider them for the case
with t �= 0. Indeed, the neglected states are not coupled to
the used ones in the orders that we look at. So there are
no neglected couplings. Additionally, all states that have a
contribution of those new states should have a larger energy
than the calculated ground state because the coupling to the
adjacent site is much smaller for the configurations shown in
Fig. 6 due to the Coulomb interaction. Therefore, these states
cannot contribute to the ground state for t �= 0.

Using this degenerate perturbation theory, we find some
discontinuities at α = π

3 , π, 5π
3 (see Fig. 7) because in the

vicinity of these points, there are not two sites in the mini-
mum. In the next section we will remove these discontinuities
by treating the vicinities of these points in second order in t
with a nondegenerate perturbation theory.

2. Vicinity of α = π
3 , π, 5π

3

In the vicinity of these points we can use nondegenerate
perturbation theory where, up to first order in the perturbation,
the ground state is given by

|�〉 = |n〉 +
∑
m �=n

Vmn

En − Em
|m〉 . (B18)

Here, |n〉 denotes the ground state for t = 0, and Vmn are the
matrix elements between the ground state and the excited
states m, which are given by the hopping in our model.

In the given regions there is one site in each minimum of
the on-site potential. We will call this site b, while the two
adjacent sites will be called a and c. We then get

|�0〉 = |b〉 + t

vc − vb
|c〉 + t

va − vb
|a〉 (B19)

for the ground state. Taking into account that this state is not
normalized, we get

|cb|2 = 1 −
( t

va − vb

)2

−
( t

vc − vb

)2

+ O(t3), (B20)

|ca|2 =
( t

va − vb

)2

+ O(t3), (B21)

|cc|2 =
( t

vc − vb

)2

+ O(t3). (B22)

The boundary charge in the three different regions can then
be calculated as follows:

QB

(
0 < α <

2π

3

)
≈ −1

9

(
0
∣∣c(1)

3

∣∣2 + ∣∣c(1)
1

∣∣2 + 2
∣∣c(1)

2

∣∣2) + 5

9

≈ ( − |c(1)
3

∣∣2 + ∣∣c(1)
2

∣∣2) + 4

9
, (B23)

QB

(
4π

3
< α < 2π

)

≈ −1

9

(
2
∣∣c(2)

2

∣∣2 + 3
∣∣c(2)

3

∣∣2 + 4
∣∣c(2)

1

∣∣2) + 5

9

≈ ( − ∣∣c(2)
2

∣∣2 + ∣∣c(2)
1

∣∣2) + 2

9
, (B24)

FIG. 8. Boundary charge as a function of α for the effective
model calculated with DMRG and perturbation theory. The other
parameters are m = 3, Z = 3, t = 1, vex = 5, and Ul = U = 10 for
l = 1, . . . , 6. We used Ns = 174 and Lp = 90, lp = 90 for the enve-
lope function to get the DMRG results. The two curves of Fig. 7 are
now combined to one final curve.

QB

(
2π

3
< α <

4π

3

)

≈ −1

9

(∣∣c(3)
1

∣∣2 + 2
∣∣c(3)

2

∣∣2 + 3
∣∣c(3)

3

∣∣2) + 5

9

≈ ( − ∣∣c(3)
1

∣∣2 + ∣∣c(3)
3

∣∣2) + 3

9
. (B25)

We then insert

|cc|2 − |ca|2 ≈
( t

vc − vb

)2

−
( t

va − vb

)2

(B26)

to get the final result that is shown in Fig. 7 together with the
results of the first order perturbation theory calculated above.

3. Uniting the results

In the previous sections we calculated the behavior of the
boundary charge in different regimes of α. To get a final
expected curve, one needs to decide where to change between
those regimes. Basically we have two different functions
for the boundary charge. One should be valid around α =
π/3, π, 5π/3 and the other one around α = 0, 2π/3, 4π/3.
These two results are plotted in the whole interval of [0, 2π ]
in Fig. 7.

As one can see, both results fit a certain part of the nu-
merical curve quite well while there are other parts where
they show useless behavior like jumps and divergences. Nev-
ertheless they coincide very well in the intermediate regions
between the regimes where they were calculated. To get one
final analytical curve the method of calculation was changed
at the points where both curves cross each other. The final
result can be seen in Fig. 8. The numerical and analytical
results lie nearly perfectly on top of each other. Figure 8
corresponds to a zoom into Fig. 3 of the main text, where
we show all three ground states with their periodicity of 6π .
There, we find a jump of unity for each of the ground states
because a particle leaves the system at that point. In Fig. 8 we
see only a jump by 1/3 because the system changes to another
ground state as indicated by the colors. Thereby, all particles
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(a) (b)

(c) (d)

(e) (f)

FIG. 9. Results of DMRG and perturbation theory for t = 1.0
and (vex,U ) = (a) (5.0, 10.0), (b) (4.0, 8.0), (c) (3.0, 6.0), (d)
(2.0, 4.0), (e) (1.0, 2.0), and (f) (0.5, 1.0). The perturbation theory
works quite well for large values of vex and U as expected, while
there are clear drawbacks for smaller vex and U . The DMRG results
are obtained with Ns = 174, Lp = 90, and lp = 90.

are shifted by one minimum to get into the new real ground
state of our system. As already mentioned above, the other
two ground states can be found by forcing other sites to have
zero occupation. For the analytical calculation this means that
sites 4,5,6 or 7,8,9 are occupied instead of sites 1,2,3. The
boundary charge is then changed by −1/3 or −2/3.

4. Limits of our perturbation theory

As we performed the perturbation theory in the regime
U � vex � t , we expect it to fail when U and vex are not
large enough. In Fig. 9 we calculate the boundary charge
in dependence of α for different U and vex with constant
U/vex = 2. For large values of U and vex the results coincide
very well with our numerical DMRG results. For smaller
values of U and vex the curves start to differ. When U and
vex are of the order of t the perturbation theory does not even
give us a smooth curve. For those parameters the results of the
different regimes of α do not agree in the intermediate region
and cannot be united in a satisfying way.

APPENDIX C: DEPENDENCE ON ENVELOPE FUNCTION

In the thermodynamic limit the boundary charge needs to
be independent of the details of the envelope function. How-
ever, the boundary charge can slightly depend on the envelope
function for finite system sizes as shown in Fig. 10.

To be as close as possible to the thermodynamic limit, we
choose the envelope function with Lp = N̄s/2 and lp = N̄s/2
(orange curve in Fig. 10) for our calculations, where N̄s =
Ns + 6 denotes the system including the sites that we forced to
be empty. With this choice already systems of relatively small
size give us a value of QB(2π ) − QB( 4π

3 ) that coincides with
the one in the thermodynamic limit.

FIG. 10. QB(2π ) − QB( 4π

3 ) for different system sizes and differ-
ent envelope functions. N̄s = Ns + (m − 1)Z = Ns + 6 describes the
system size including the blocked sites where the density is forced
to be zero. For N̄s → ∞ all curves tend to 1/9. The other parameters
are t = 1, vex = 3, and U = 3.

APPENDIX D: DISORDER

To prove that our results are stable against disorder, we
investigate small random perturbations of the on-site potential
and the hopping terms. Therefore, we study the boundary
charge in dependence of the phase α averaged over different
disorder configurations. The added terms are of the form

−
Ns−1∑
n=1

wn(a†
nan+1 + H.c.) and

Ns∑
n=1

znρ̂n (D1)

for hopping and on-site disorder, respectively. Either the pa-
rameter wn or zn is uniformly distributed in [−d/2, d/2),
while the other ones are set to zero. The results for a certain
set of parameters and 20 disorder configurations are shown in
Fig. 11. For small disorder strengths d = 0.1 the curve lies on
top of the nondisordered one. The quantized slope is therefore
stable against small perturbations. Even for stronger disorder
d = 0.5 the average still coincides well with the results of
the clean system although there are some differences visible.
We see that the jump by −1/3 gets smoother because its
exact position now depends on the disorder configuration.
Therefore the standard deviation around the mean value of the
disorder average is also larger in that region. At transitions

FIG. 11. Boundary charge in dependence on α with included
(a) hopping and (b) on-site disorder averaged over 20 disorder config-
urations. The error bars show the size of the uncertainty of the mean
value for every second data point in the main panels and for all points
in the insets. For d = 0.1 the error bars are only shown in the left
inset as they are smaller than the line width in the other subplots. The
other parameters are m = 3, Z = 3, t = 1, vex = 5, Ul = U = 10 for
l = 1, . . . , 6, Ns = 174, Lp = 90, and lp = 90.
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FIG. 12. Approximated interaction profile compared to the exact
functions (a) l−6 and (b) exp(−γ l ) l−2 with γ = 0.1 (blue), 0.3
(orange), and 0.5 (green) on a double logarithmic scale. We use
the prefactor (a) U0 = 1 and (b) U0 = 2, N = 10 and lcutoff = 20 to
determine the parameters of the exponential functions.

between different plateaus, we also find an enhancement of
the standard deviation, while within each plateau the standard
deviation is small.

APPENDIX E: OTHER LONG RANGED INTERACTIONS

In the main text and in the previous sections we always
considered a constant interaction Ul = U , which drops to zero
after l = (m − 1)Z sites. Here, we will show that we find the
same results for other long ranged interactions. Thereby, we
will investigate a power law of the form Ul = U0 l−6 (as ex-
perimentally realized in Ref. [80]) and a Yukawa potential of
the form Ul = U0 exp(−γ l ) l−2. We approximate these long
ranged interactions by using a sum of exponential functions
(
∑N

i=1 αiβ
l
i ). The parameters are fitted by minimizing

lcutoff∑
l=1

(
ln

(
N∑

i=1

αiβ
l
i

)
− ln (Ul )

)2

. (E1)

Using the logarithm ln corresponds to changing the weights of
the different data points in the fitting procedure. This assures
that the approximation works well even at larger ranges as we
know that an interaction is needed on the first Z (m − 1) sites.
For all functions we only fit the parameters once and rescale
them with the prefactor U0. We show the approximations
compared to the exact functions in Fig. 12.

The results of the power-law interaction are shown in
Fig. 13 for Z = m = 3. With a sufficiently large U0 and vex

FIG. 13. Results for an interaction of Ul = U0 l−6 and Z = m =
3. (a) Boundary charge in dependence on the phase α with U0 =
60000 and vex = 3. (b) False color plot of δQB = QB(2π ) − QB( 4π

3 )
as a function of vex and U . The fractional slope is stabilized for large
U0 and intermediate vex (white region).

FIG. 14. False color plots showing δQB = QB(2π ) − QB( 4π

3 ) for
an interaction of Ul = U0 exp(−γ l ) l−2 with (a) γ = 0.1, (b) γ =
0.3, and (c) γ = 0.5. The other parameters are Z = m = 3. The
phase transition is located at larger U0 for larger values of γ .

we find the fractional slope of 1/2πm up to a 2π/Z-periodic
function as shown in Fig. 13(a). In Fig. 13(b) a false color plot
is shown, where the region with δQB = 1/9 (white) is where
one finds the quantized fractional slope. We find a similar
phase boundary compared to the case discussed in the main
text. The phase transition occurs at a large prefactor U0 due to
the rapid decay of the power-law function.

In Fig. 14 we show false color plots for the Yukawa po-
tential at different values of the screening γ . Again, we see
a phase transition similar to the cases discussed so far. For
larger γ , the phase boundary is situated at larger U0 because
the Yukawa potential decays faster.

APPENDIX F: INTERFACE BETWEEN TWO CDWs

In this section, we show how the analytical arguments
presented in the main text can be extended to describe the
charge located at the interface between two CDWs in a 1D
nanowire.

We consider an interface between two CDWs described by
a spatially modulated potential of the form

Vm(x) =
{

2Vm cos(2mkF x + α<), x < 0,

2Vm cos(2mkF x + α>), x > 0,
(F1)

where α< (α>) describes the phase offset of the CDW in the
domain x < 0 (x > 0). We can now follow the same argu-
ments as in the main text for x ∈ (−∞, 0) and x ∈ (0,+∞)
separately. In terms of the conjugate bosonic fields φ and θ ,
the CDW term then takes the form Hm

CDW = ∫
dx Hm

CDW(x)
with

Hm
CDW(x) =

{ −2|Ṽm|
(2πa)m cos(2mφ(x) + α< − α0), x < 0,

−2|Ṽm|
(2πa)m cos(2mφ(x) + α> − α0), x > 0,

(F2)

where α0 is again an irrelevant overall phase shift. The CDW
term is minimized for the pinning values

φ(x) =
{−(α< − α0)/2m + lπ/m, x < 0,

−(α> − α0)/2m + nπ/m, x > 0,
(F3)
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where l and n are integers. Therefore, the charge located at the
interface is given by

QD = −
∫ +∞

−∞
dx

∂xφ(x)

π

= − 1

π
[φ(+∞) − φ(−∞)] (F4)

= (l − n)/m + (α> − α<)/2πm mod 1.

We thus find that the fractional charge changes linearly
with the phase difference α> − α< with a slope of 1/2πm.

Finally, we note that analogous considerations allow us
to recover the fractional charge of the excitations in the
2D case. Indeed, a bulk excitation in the 2D FQHE corre-
sponds to a kink (domain wall) in the pinned combination
of the fields η1(n+1) − η1̄n for a given n, see Eq. (8) in the
main text, while the uniform phase ϕ drops out. By using∑

n(η1(n+1) − η1̄n) = −2(2l + 1)
∑

n φn and using that the
charge density of a single wire is given by ρn = −∂xφn(x)/π
in units of the electron charge e, we find that a kink
between two adjacent minima of the cosine carries the
charge e/(2l + 1).
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