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Floquet engineering flat bands for bosonic fractional quantum Hall with superconducting circuits
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The quest to realize novel phases of matter with topological order is an important pursuit with implications for
strongly correlated physics and quantum information. Utilizing ideas from state-of-the-art coherent control of
artificial quantum systems such as superconducting circuits, we present a proposal to realize bosonic fractional
quantum Hall physics on small lattices by creating nearly flat topological bands using staggered flux patterns.
Fingerprints of fractionalization through charge pumping can be observed with nearly perfect quantization using
as few as 24 lattice sites (two photons). We suggest an implementation using a finite lattice of superconducting
qubits with cylindrical connectivity on both triangular and square lattices.
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I. INTRODUCTION

Engineered quantum systems have galvanized the search
for novel phases of matter that are not readily realized in
conventional solid-state systems. Topological insulators, for
instance, have been extended from their original realization
in electronic materials near their ground state [1,2] to dis-
tinct topological classes in Floquet [3–5] and non-Hermitian
systems [6–9]. Such nontraditional Hamiltonians are often
demonstrated in artificial quantum systems like ultracold
atoms in an optical lattice [10,11] or superconducting cir-
cuits [12,13], where state-of-the-art coherent control allows
terms that do not otherwise arise naturally.

The complex pattern of entanglement in topologically
ordered systems makes their realization particularly chal-
lenging. The archetypal example of topological order is the
fractional quantum Hall effect [14–17]. Despite being real-
ized in two-dimensional electron gases more than 30 years
ago, it continues to inspire new ideas and methods to this
day [18–20]. An essential ingredient in quantum Hall physics
is breaking time reversal symmetry. In engineered quantum
systems, it has been accomplished through different schemes
such as rotation [21,22], Raman scattering [23–27], and lattice
shaking [28–30], which play the role of magnetic field in con-
ventional quantum Hall systems. Compared to the solid state,
however, these artificial systems are more versatile, allowing
greater addressability and control over external fields and
different observables to be detected. Furthermore, engineered
quantum systems can operate with fermionic or bosonic de-
grees of freedom, allowing avenues to bosonic fractional Hall
states that are not readily available with electrons [31,32]. Be-
sides the fundamental questions of what phases of matter are
possible, it is expected that these topologically ordered phases
will have applications in quantum devices and topologically
protected quantum computation [19,33].

There has been a long theoretical history of analyzing
finite-size effects in fractional quantum Hall physics on small
lattices [34,35]. These theoretic ideas have been revived in

recent attempts to realize fractional quantum Hall states in
engineered quantum systems [31,36,37], inspired by rapidly
advancing technology for fabrication and control. Recently, a
state-of-the-art superconducting qubit architecture known as
the “gmon” was developed, combining the long coherence
time from the transmon qubit with fast, high-fidelity control
of qubit-qubit coupling [12]. Synthetic magnetic fields have
been engineered in this platform by periodically modulat-
ing the coupler junctions among the qubits [30]. Combined
with strong on-site interaction and well-developed control and
measurement techniques, these advances have paved the way
to achieve quantum simulations of exotic interacting many-
body phases [38,39].

In this paper, we present an experimental proposal to real-
ize bosonic fractional quantum Hall physics employing gmon
qubits on small two-dimensional lattices. The key insight
is that, by employing a staggered flux configuration—made
possible by the novel control axes in engineered quantum
systems—a nearly flat topological Chern band can be re-
alized. By fractionally filling this band and emulating a
Laughlin-type charge pump, nearly perfect fractional quanti-
zation of topological transport may be observed for lattices
as small as 6 × 4 sites. Furthermore, the timescales and
Hamiltonian parameters used to demonstrate it are on par
with those in state-of-the-art superconducting circuits [12].
We explicitly show that such fractional charge pumping is
compatible with recent realizations of Floquet engineered
fluxes in superconducting gmon qubits [12], which com-
bine long coherence time with time-dependent control over
hopping parameters and thus can be used to emulate hard-
core bosons with complex hopping. While a handful of
theoretical papers have proposed realizing bosonic fractional
quantum Hall physics (cf. [31,40,41]), its physical realization
has yet to be confirmed; we expect that within the cur-
rent experimental capacity for the gmon qubits, by pushing
the required system size down to such small values (with
only two to three photons involved), our proposal will be
an important step in the experimental endeavor to achieve
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the bosonic fractional quantum Hall physics in the near
future.

II. MODEL AND EXPERIMENTAL CONFIGURATION

Our model Hamiltonian generalizes the periodically driven
gmon system realized in [30]. The gmon system is based on
the same planar design technology as used in Xmons, which
hence inherits the long coherence time of the latter (longer
than 40 μs). Unlike the Xmon or other transmon-based qubits,
neighboring gmons are connected by Josephson junctions,
which are operated as tunable inductors. The Josephson junc-
tions enable a tunable inductive coupling between the qubits,
whose amplitude can be made positive, negative, or zero. The
advantage of the ability to completely turn off this coupling
is avoiding the frequency crowding problem [12], suggesting
gmons are a useful platform for scaling up current small-scale
quantum devices.

For any two qubits m and n, the Hamiltonian of the system
realized in experiment is [30] Hmn = ∑

ωin̂i + ∑ Ui
2 n̂i(n̂i −

1) + Jnm(t )(a†
nam + H.c.), where a†

i (ai ) are the creation (an-
nihilation) operators of the photon mode of the ith qubit,
n̂i = a†

i ai, ωi ∼ 3–5 GHz are the frequencies of the qubits,
and Ui ∼ −300 MHz is a strong on-site nonlinear interaction
of qubit excitations due to the anharmonic potential of the
qubit. At leading order the system may be approximated as
hard-core bosons (Ui = ∞). The essence of the hard-core
boson limit is that the subspace without doubly occupied
sites decouples effectively from the rest of the Hilbert space
due to an energy mismatch. In the strong-attraction limit, the
high-energy manifold without doubly occupied sites is well
isolated, so the bosons are effectively hard core even though
one has attractive interactions, U < 0. A time-dependent cou-
pling Jmn(t ) = 2J0 cos(�mnt + φmn) (J0 ∼ [−50, 5] MHz) is
applied by modulating the external flux via the tunable in-
ductance of the connecting junction [30]. The frequency of
modulation is chosen as �mn = δωmn. In the rotating frame
with respect to this drive, the effective Hamiltonian is

H̃mn =
∑ Ui

2
a†

i ai(a
†
i ai − 1) + J0(a†

nameiφmn + H.c.), (1)

where we have ignored the fast oscillation terms. For sim-
plicity we will denote the Hamiltonian of the system in the
rotating frame as H̃ → H .

In addition to fast control, the gmon design allows widely
variable connectivity of the system [42]. Furthermore, cru-
cially for our proposal, the phase factors on each bond can be
controlled independently [30], allowing arbitrary flux patterns
that are not readily realizable in conventional condensed-
matter systems. Experimentally, a one-dimensional Bose-
Hubbard model on the order of 10 qubits was already achieved
a few years ago [43]. Recently, a finite two-dimensional (2D)
lattice geometry with a different size, as large as 3 × 7, was
shown in experiment [44]. As a result, 2D lattice structures
with 24–48 qubits are reachable in principle with the current
experiment.

Therefore, we start our analysis from the following Hamil-
tonian for gmon qubits in a two-dimensional array:

H0 = −
∑ (

Jmn
1 a†

m+1,nam,n + Jmn
2 a†

m,n+1am,n

FIG. 1. Illustration of the staggered flux lattices. (a) A triangular
lattice with flux pattern ψ/0 in neighboring triangles shows (b) a
butterfly band structure with a nearly flat topological band at ψ =
π/2. Coloring of bonds in (a) indicates hopping phases to realize
this flux pattern. The inset in (b) shows the triangular lattice with
uniform flux ψ for comparison, and φ0 = 2π . (c) Staggered square
lattice with flux pattern ζ/0, yielding (d) a topological flat band near
ζ = 2π/3.

+ Jmn
3 a†

m,n+1am+1,n
) + U

2

∑
n̂m,n(n̂m,n − 1). (2)

This form is chosen to allow easy generalization to square
or triangular lattices. Jmn

1,2,3 = |Jmn
1,2,3|eφmn

1,2,3 are the complex
nearest-neighbor tunneling coefficients, with Jmn

3 = 0 for the
square lattice, and we have neglected a uniform on-site chem-
ical potential; n̂m,n = a†

m,nam,n is the number operator at site
(m, n), with a†

m,n being the creation operator. For simplicity,
we will first assume hard-core particles (on-site interaction
U → ∞ since it is generally 1 order larger than the hopping
amplitude), after which we show that the relevant physics
survives at finite interaction strength. For specificity, we
choose |Jmn

1,2,3| = J = 30 MHz, commensurate with current
experimental parameters for superconducting circuits [12].
Importantly, the phases of the hopping terms Jmn

1,2,3 will be
carefully designed to give desired flux patterns as explained
above.

III. RESULTS AND DISCUSSION

Triangular lattice. We first consider a triangular lattice with
the flux configuration shown in Fig. 1(a), with flux being ψ

and zero in adjacent triangles, respectively. Experimentally,
this can be achieved by having Jmn

1 = J , Jmn
2 = J exp[imψ],

and Jmn
3 = J exp[i(m + 1)ψ]. In order to optimize the work-

ing parameters to achieve the fractional quantum Hall states,
we first obtain the band structure in the absence of interactions
(analogous to the Hofstadter butterfly [45]) as a function of
flux ψ . The results, shown in Fig. 1(b), indicate significant
band flattening compared to uniform flux [Fig. 1(b), inset]. We
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are most interested in the bottom band since it will dominate
the many-body (interacting) ground state. At ψ = π/2, we
consider a figure of merit for band flatness given by the ratio
of the gap � to the bandwidth W [36]: M ≡ �

W ≈ 33.84. This
large M indicates that the band is very flat. For ψ = 2π/3
as chosen in [31], M ≈ 7.29; as a result, we will work with
ψ = π/2.

We first consider the lattice on a torus with twisted bound-
ary conditions to understand the topology of the states. We
calculated the many-body Chern number [46,47],

C = 1

2π

∫
dφ1dφ2Tr

[
∂A2

∂φ1
− ∂A1

∂φ2

]
, (3)

where Aα
mn = −i〈mφ1,φ2 |∂φα

|nφ1,φ2〉 is the Berry connection
matrix calculated within the degenerate ground state sector.
At half filling, ν = 1/2, for a 6 × 4 lattice we have three
particles, and the ground state manifold is two-dimensional.
The calculation gives C = 1 = 1

2 + 1
2 for the ground state

manifold, consistent with a fractional ν = 1/2 bosonic quan-
tum Hall state [48]. Further calculations confirm that this
topological band is robust for most other system sizes at half
filling, and for the noninteracting case we find C = 1 in the
thermodynamic limit.

Experimentally, the hallmark of the fractional quantum
Hall effect is conductance in a Hall bar geometry, but
measuring such a response is not practical in such small,
isolated quantum systems. Instead, we consider the theoret-
ically proposed Laughlin charge pump [49,50], which we
argue is actually realizable in engineered settings. When
a quantum Hall state (at thermodynamic limit) is pre-
pared on a ring or cylinder and a single quantum of
magnetic flux is adiabatically inserted through the cen-
ter, an electric field will be induced around the cross
of the cylinder (see below), and some effective (fractionally)
charge will be pumped from one side to the other, which gives
the quantized Hall conductivity. In this case, the quantized
charge Q2π is expected to be equal to the filling factor ν [16].
We note that a similar drift idea was exploited to detect
the fractional quantum states in a cold atomic system [51]
recently.

We test quantized transport by placing the system on a
cylinder with periodic boundary conditions in the J2 direction
and open boundary conditions in the J1 direction, as shown in
Fig. 1(a). The system is initially prepared in the ground state
when no flux (φ = 0) is injected through the cylinder. Then
the flux is ramped up uniformly at a finite speed by modulating
the phase across the circumference of the cylinder. The charge
transported as a function of the injected flux is obtained as

〈Qφ〉 = 1

L

∫ φ

0
∂φ′P(φ′)dφ′, (4)

where L is the length of the cylinder in the open (J1; open
boundary) direction and P(φ) = 〈∑i xin̂i〉φ is the many-body
polarization in the J1 direction, with 〈· · · 〉φ indicating the
average over the evolving state of the system at flux φ. In an
experiment, at the end of the flux pumping, φ = 2π , all the
coupling between the qubits can be turned off, which makes
it easy to measure the charge distribution. We consider flux

FIG. 2. Observation of fractional quantum Hall transport for 24
sites and filling factor ν = 1/2 on a triangular lattice. (a) Schematic
showing flux insertion for a finite triangular lattice on a cylinder.
(b) Charge transport during flux insertion as shown in (a) starting
from the ground state. For J = 30 MHz, the curves correspond to
T = 0.5, 1, 1.32, and 2 μs.

which is injected at a constant rate φ̇ = 2π/T , which is equiv-
alent to adding a small transverse electric field Ey = −φ̇/Ly.

Our numerical calculations show that for a lattice as small
as 24 sites, the ν = 1/2 fractional pumping survives with
quantization accurate to 99.6%, as shown by the blue dots in
Fig. 2(b). Importantly, these data correspond to finite pump-
ing time T ∈ 15 − 60J−1, rather than adiabatic flux insertion
(T → ∞). The relevant physics can be understood from the
many-body band structure shown in Fig. 4(b) in the Appendix.
Due to finite-size effects, a nonvanishing coupling between
the topological ground state and an excited state is observed at
certain nonzero flux, as indicated by the circled anticrossing.
Consequently, in order to drive the system along what would
be the adiabatic path in the thermodynamic limit, a finite speed
is required to cross these finite-size gaps diabatically. Numer-
ically, we have confirmed that the results are not significantly
affected by changing T within about 50% of the optimal value,

0 2 4 6
-0.6

-0.4

-0.2

0

0 2 4 6

FIG. 3. Realizing fractional quantum Hall physics with a fi-
nite square lattice using gmon qubits with cylindrical connectivity.
(a) Fractional charge pumping for hard-core bosons on a square
lattice (U ′ = 0). (b) Fractional charge pumping for non-hard-core
bosons with finite interactions between sites in the y direction [see
Eq. (5)].
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FIG. 4. Twenty-four-site triangular lattice on a cylinder with half
filling ν = 1/2 (hard-core bosons). (a) Deviation from the fractional
quantized charge transport (Q2π = 1/2) when the flux-pumping pe-
riod T is too small or large compared to the optimum value, as shown
in the main text. (b) Many-body band structure of the lattice on the
cylinder as a function of the flux φ along the axis of the cylinder.
The blue dots indicate the desired ground state that we want to
adiabatically track. The black circle shows the finite-size gap which
must be crossed diabatically. The shortest timescale for doing so is
consistent with the optimum T .

Topt ∼ 40/J , which is estimated to be maximally diabatic with
respect to the ground state manifold and adiabatic with respect
to excitations out of this manifold. The observed quantized
charge pumping breaks down when the pumping time T
deviates significantly from this optimal value, as can be seen
in the Appendix [Fig. 4(a)].

Square lattice. While triangular lattices have certain advan-
tages, square lattices are often more natural experimentally.
Therefore, we attempt to find the same physics on square
lattices, employing the flux configuration shown in Fig. 1(c).
The single-particle energy spectrum [Fig. 1(d)] shows flat,
low-energy bands near ζ = 2π/3 with M ≈ 27.88. The first
two bands are well separated from the higher-energy bands,
and we find that they together yield C = 1, suggesting that
they are amenable to fractional Hall physics at partial filling.

Our numerical simulations confirm this prediction. For
ν = 1/2, the fractional Hall effect survives to a system size as
small as 2 lattice sites in the y (periodic) direction and 18 sites
in the x direction [Fig. 3(a), red stars]. A well-defined quan-
tum charge pump (Q2π = 0.5, indicated by the magenta solid
line) could be observed for a relatively large time window
([0.5, 3.5] μs for J = 30 MHz), and the result shown is for
T = 84J−1 which is 2.8 μs for J = 30 MHz. The evolution
of the energy as a function of φ shows a minimal gap (similar
Tc) similar to that for the triangular lattice.

By changing the system size, we can achieve other frac-
tional quantum Hall states on the square lattice as well. For
Lx × Ly = 6 × 8 or 8 × 6 and filling ν = 3/8, a robust Q2π =
0.375 (shown by the magenta crosses) pumping is observed
[Fig. 3(a)]. This state may be understood with the compos-
ite fermion picture [16,31] in the continuum limit, in which
three vortices are bound to a boson with n = 3 fully filled
Landau levels, ν = n

3n−1 . The solid black shows the result
for a size of 6 × 8 with T = 1.1 μs (|J| = 30 MHz); the
green dashed line is a single calculation for a size of 8 × 6.
Other fractional fillings give well-quantized transport, such as
ν = 1/2 for 2 × 18, ν = 3/8 for 6 × 8 or 8 × 6, and ν = 1/4

for 4 × 12, as shown in Fig. 3(a). For fractions and lattice sizes
that did not give strong fractional Hall signals, a key issue
is the lack of separation between the “small” gap between
topological and nontopological states due to finite-size effects
and the “large” gap to other excited states, preventing the ex-
istence of a wide time window for quantized pumping. These
gaps are due to complex and difficult to unravel finite-size
effects, which has prevented us from obtaining any further
insight into the exact conditions for quantized pumping to
occur.

With gmons, one would directly create the lattices and
complex hoppings by doing time-dependent shaking of the
potentials, as realized experimentally in [30]. The qubit
excitations are known to be well approximated by tunnel-
ing hard-core bosons and have long coherence time (T1

is around a few tens to a few hundreds of microsec-
onds, much larger than the time window used to observe
the quantized pumping). System sizes proposed on the or-
der of 20–40 qubits are commensurate with state-of-the-art
experiments [52,53].

We point out that the same idea can be applied to ultracold
atoms in an optical lattice. A synthetic dimension consisting
of four atomic hyperfine levels could be employed to cre-
ate the cylindrical geometry. Synthetic dimensions have been
successfully used to demonstrate noninteracting topological
phases, including many of the key ingredients of our proposal
such as using artificial gauge fields—created by a pair of
Raman beams—to break time reversal symmetry [23–25].
Adding and controlling these particular flux patterns require
additional control fields. A detailed proposal and analysis
are beyond the scope of this paper but will be presented in
forthcoming work.

To demonstrate the stability of our proposed topological
response, here we consider a simplified model of the cold-
atom system on a 4 × 12 square lattice. A length-4 cycle is
formed in the synthetic dimension (y), with hopping phases
controlled to give flux patterns as described above. Unlike
real dimensions, synthetic dimensions have interspecies inter-
actions between atoms on the same physical site. We model
this effect here by adding isotropic interactions between the
distinct hyperfine levels:

HAd = U ′ ∑
n �=n′

n̂m,nn̂m,n′ . (5)

Figure 3(b) shows that for finite on-site Hubbard interaction
and weak adjacent interaction, U/J = 8/3,U ′/J = 1/3, the
near-perfect quantized pumping remains.

IV. CONCLUSION

In summary, we have presented an experimental pro-
posal to observe the bosonic fractional quantum Hall effect
physics employing superconducting circuits on both trian-
gular and square lattices with a relatively small lattice size.
Only nearest-neighbor tunneling is required in our proposal,
and the phases required for the nearest-neighbor tunneling are
within existing experimental capability. For gmon qubits, the
nontrivial tunneling phase is obtained by periodically mod-
ulating the coupling strength J0

i . Since the frequency of the
modulation ω is much larger than the coupling strength |J0

i |, at
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the short or medium time limits considered here, the dynam-
ics is well approximated by the effective Hamiltonian used
in this work. Similar experiments are possible by exploiting
synthetic dimensions made from hyperfine levels of 87Rb in a
one-dimensional optical lattice.

We demonstrated experimentally bosonic fractional Hall
physics and fractional Chern insulators, bosonic or fermionic,
in engineered systems. We note that the flat bands demon-
strated here by Floquet engineering are not special to bosonic
systems, so we expect that similar topologically ordered
phases should be achievable in fermionic systems as well.

ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with
P. Roushan. This work was performed with support from
the National Science Foundation through Award No. DMR-
1945529 and the Welch Foundation through Award No.
AT-2036-20200401. We used the computational resources of
the Lonestar 5 cluster operated by the Texas Advanced Com-
puting Center at the University of Texas at Austin and the
Ganymede and Topo clusters operated by the University of

Texas at Dallas’s Cyberinfrastructure and Research Services
Department.

APPENDIX

Figure 4(a) shows the deviation from the quantized charge
transport Q2π for the 24-site triangular lattice at half filling
when the flux-pumping time is too small (T = 0.05 μs, red
stars), T = 0.1 μs (blue dots, for J = 30 MHz) or too large
(T = 10 μs) compared to the optimum time, which is around
T = 1.32 μs. For very fast ramping speed the system will be
excited out of its ground state manifold, which breaks the
quantized transport.

For these relatively small finite-size systems, a large time
also causes issues because one then adiabatically crosses non-
topological gaps that are opened due to finite-size effects. This
can be seen in the many-body level diagram in Fig. 4(b).

Following the general wisdom of adiabatic pumping, for
the initial state prepared as the ground state at φ = 0, we
will need to follow the path illustrated by the blue dots; the
first relevant anticrossing is indicated by the black circle. The
timescale required to cross this finite-size gap diabatically is
consistent with the optimum time T = 1.32 μs found numer-
ically for |J| = 30 MHz.
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