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Majorana zero modes in a cylindrical semiconductor quantum wire
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We study Majorana zero-mode properties in cylindrical cross-section semiconductor quantum wires based on
the effective-mass theory and a discretized lattice model. Within this model the influence of disordered potentials
in the quantum wire as well as amplitude and phase fluctuations of the superconducting order parameter are
discussed. We find that for typical wire geometries, pairing potentials, and spin-orbit coupling strengths, coupling
between quasi-one-dimensional subbands is weak, low-energy quasiparticles near the Fermi energy are nearly
completely spin polarized, and the number of electrons in the active subbands of topological states is less than
10.
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I. INTRODUCTION

One-dimensional (1D) p-wave superconductors are topo-
logically nontrivial [1] and, in finite systems, support
end-localized Majorana zero modes [2]. These states have
attracted considerable interest lately [3–9] because of their
non-Abelian exchange properties [10,11] and related poten-
tial utility in quantum information processing systems [3].
Theory has suggested [12,13] that it should be possible
to engineer effective one-dimensional p-wave superconduc-
tors in proximity-coupled semiconductor quantum wires by
combining broken inversion symmetry, and the consequent
Rashba spin-orbit interactions, with external magnetic fields.
Considerable progress has been made in exploring this idea
experimentally [14–42]. There has also been progress to-
ward Majorana-based quantum-state manipulation in other
systems, including magnetic atom chains [43–45], inter-
faces between conventional superconductors and topological
insulators [46,47], iron-based superconductors [48], and
phase-controlled Josephson junctions [49,50].

The Majorana zero modes in semiconductor quantum wires
[51–54] are expected to appear only when external mag-
netic field strengths exceed a critical value beyond which
the proximity-induced superconductor gap vanishes. Early ex-
periments in cylindrical cross-section quantum wires exhibit
many trends consistent with expectations [14–19] based on
Majorana zero-mode properties, although they also consis-
tently exhibit evidence of a soft gap, i.e., of quasiparticle
states within the gap, at all magnetic field strengths. The in-
gap states can be associated with spatially extended Andreev
states [55], disorder [56–58], or Kondo effects [59] and may
influence electron transport experiments and thus poison any
attempt to achieve topologically protected state manipulation.

In this paper we study quasi-one-dimensional cylindrical
quantum wires numerically using experimentally realis-
tic geometry diameters ∼100 nm, as shown in Fig. 1,

experimentally estimated pairing potential and spin-orbit cou-
pling strengths, and a variety of types of experimentally
realistic disorder. (A main reason is that in experiments, the
longest quantum wires have approximate cylindrical cross
sections, longer wires have weaker hybridization between
Majorana zero modes at the ends of quantum wire, and more
electrons having inactive subbands.)

The remaining of our paper is organized as follows. In
Sec. II we introduce a theoretical model for cylindrical quan-
tum wires and discuss its topological-state phase diagram as a
function of Fermi energies and magnetic fields. In Sec. III we
analyze the Andreev states and the tunneling density of states
as a function of magnetic fields, disordered potential, and
pairing-potential (or phase) disorder in infinite quantum wires.
In Sec. IV we address the case of finite quantum wire with
lengths on the scale of experimental samples, discussing the
effects of finite-length Majorana energy splitting and disorder.
In Sec. V we discuss the use of models in which only degrees
of freedom in the semiconductor quantum wire are included vs
models that account explicitly for the superconducting metal.

II. EFFECTIVE-MASS THEORY

When Rashba spin-orbit interactions are neglected, the
cylindrical-coordinate effective-mass theory Hamiltonian for
an n-type semiconductor quantum wire oriented along the x̂
direction (shown in Fig. 1) separates into a free-particle con-
tribution along the wire and a radial confinement contribution
[60,61]. The Hamiltonian is

H0 = h̄2

2m∗

(
k2

x − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

∂2

∂ϕ2

)
+ V (r, x), (1)

where h̄ is Planck’s constant, m∗ is the conduction-band ef-
fective mass, V (r, x) is the confining potential, r = (y, z) =
(r cos(ϕ), r sin(ϕ)) is the position projected to the wire cross-
section, x is position along the wire, and kx is wave vector
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FIG. 1. Cylindrical semiconductor quantum-wire geometry.
Here a labels the radius of the cylindrical quantum wire, b is the
lattice constant used to discretize position along the wire in our
numerical studies, and t is the corresponding hopping strength.
The circles in the cross section schematically represent radial wave
functions labeled by principal axial quantum number n and angular
momentum m.

along the wire. In the absence of disorder, we take V (r, x) to
be 0 inside the wire (|r| < a, where a the radius of the wire)
and +∞ outside the wire.

Cylindrical symmetry implies that eigenstates can be la-
beled by angular momentum m along the wire axis. The
confined radial wave functions are then Bessel functions with
zeros at the wire edge (shown in Fig. 2). The one-dimensional
transverse wave functions are

fn,m(r, ϕ) = An,mJ|m|

(
un,m

r

a

)
eimϕ, m = 0,±1,±2, . . .,

(2)

FIG. 2. Radial distribution of wave functions for different quan-
tum numbers (n, m). The thickened red and blue lines in (a) are
the two subbands whose results are shown in our manuscript. The
yellow and black dashed vertical line labels the magnetic length
corresponding to the magnetic field of 0.3 and 0.6 T, and the related
Zeeman energy is around 2�SC and 4�SC .

where J|m|(un,m
r
a ) is an mth-order Bessel function, un,m

is the nth zero of the mth-order Bessel function, and
An,m = 1/[a

√
πJ|m|+1(un,m)] is a normalization constant. The

one-dimensional subbands are rigidly offset by an energy
which is determined by the principal axial quantum number
n and the azimuthal quantum number m that quantifies the
angular momentum. The dispersion is

En,m(kx ) = h̄2

2m∗ k2
x + h̄2

2m∗
u2

n,m

a2
. (3)

Note that since un,m = un,−m, so |m| �= 0 subbands are always
doubly degenerate.

The mean-field Hamiltonian of a spin-orbit-coupled quan-
tum wire with proximity-induced s-wave superconductivity
and an external magnetic field includes a one-dimensional
subband, Rashba, Zeeman, and pairing contributions:

H = H0 + HR + HZ + HSC . (4)

It is convenient to express this Hamiltonian in the represen-
tation of parabolic band quantum-wire eigenstates. Assuming
that the quantum wire is placed on a substrate with a ẑ direc-
tion surface normal, the quantum-wire Rashba Hamiltonian is

HR = α

[
−i

(
sin ϕ

∂

∂r
+ cos ϕ

r

∂

∂ϕ

)
σx − kxσy

]
, (5)

where α is the Rashba coupling parameter and σα is a Pauli
matrix acting on spin. Note that although the radial and an-
gular momentum operators are not Hermitian in cylindrical
coordinate, the sum of them is in fact Hermitian, as we show in
Appendix B. The matrix elements of the Rashba Hamiltonian
in the representation of unperturbed band states are

〈n, m|HR|n′, m′〉 = −iαkxσyδn,n′δm,m′ − αRnm;n′m′σx, (6)

where

Rnmn′m′ = 〈 fnm|
(

sin ϕ
∂

∂r
+ cos ϕ

r

∂

∂ϕ

)
| fn′m′ 〉 (7)

is nonzero for m = m′ ± 1.
The one-dimensional band structure with quantum num-

bers labeled by (n, m) is illustrated in Fig. 3. These results
were obtained by using parameters that are appropriate for
the a = 50 nm InSb quantum wire (m∗ = 0.015me) studied
in the first Majorana experiment [14] with Rashba coupling
parameter α = 0.02 eV nm. We note that subsequent experi-
ments studied quantum wires with similar properties. Angular
momentum m is not a good quantum number for finite Rashba
coupling strength. Because the Rashba interaction couples
only states that differ by ±1 in angular momentum, the mixing
between m + 1 and m − 1 subbands is second order in the
ratio of the Rashba coupling strength (∼α/a) to the subband
separations, which is small and lifts the ±m degeneracy (as
shown in Fig. 3) at finite kx and lifts the spin degeneracy
within each subband.

In quantum wires with a radius of a = 50 nm, magnetic
orbital effects are inevitably present when the magnetic field
is along the quantum wire. The Hamiltonian arising from the
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FIG. 3. One-dimensional band structure of a cylindrical semi-
conductor quantum wire with radius a = 50 nm, InSb conduction-
band mass m∗ = 0.015me, and Rashba coupling parameter α =
0.02 eV nm. The panels on the right highlight the behaviors near
band minima, which are important for topological superconductivity.

orbital effect is [61]

Horb = h̄2

2m∗
1

l2
x

∂

∂ϕ
, (8)

where lx = √
h̄c/eBx is the magnetic length. This orbital

contribution lifts the degeneracy of the subbands with ±m,
leading to an energy difference of mh̄2/m∗l2

x , which depends
on the angular quantum number and the strength of the
magnetic field. Note that the magnetic orbital effect has no
influence on subbands with angular quantum number m = 0.
According to the experimental parameters, the critical mag-
netic field can lift the degeneracy of subband m = ±1 by
around 1 meV. (This magnetic orbital effect was also found to
be related with the observed large g factor in semiconductor
quantum wire [62].) The Zeeman Hamiltonian can be written
as

HZ = B · σ, (9)

where B is the magnetic field expressed in energy units. In
most experiments the magnetic field is along the x̂ direc-
tion. The proximity-induced s-wave pairing contribution to
the Hamiltonian is

HSC =
∑
n,m

[�∗
SCc†

nm↓kc†
nm↑−k + �SCcnm↑−kcnm↓k], (10)

where �SC = |�SC |eiφ is the proximity-induced gap. The
value of �SC depends on a complex hybridization process
between orbitals in the quantum wire and orbitals in the
surrounding superconductor but can be fit to experimental
observations. The relatively large values of �SC (0.25 meV
in Ref. [14], for example) suggest that the interface between
the quantum wire and the surrounding superconductor is quite
transparent. We will return to his point in the Discussion
section.

Topologically distinct phases are separated in coupling-
constant parameter space by gapless boundary states. In the
case of topological superconductivity in quantum wires, the
coupling constants that are readily varied in experiments are

FIG. 4. Phase diagram of the cylindrical semiconductor quantum
wire as a function of Fermi level and magnetic field. (a) At each
subband there appears Majorana(-like) zero modes when the mag-
netic field exceeds the pairing potential and the Fermi level is tuned
to the bottom of the subbands, of which n = 1, 2 and m = 0, ±1
subbands have the Fermi energy at EF1 ≈ 5.87 meV, EF2 ≈ EF3 ≈
14.9 meV, EF4 ≈ 30.96 meV, and EF5 ≈ EF6 ≈ 50 meV. In the figure
we use roman numerals and color coordination to label the number
of Majorana-like end-localized states. (b)–(e) Phase diagram focused
near the band minima for different (n, m). (f)–(i) Phase diagrams
when magnetic orbit effects are considered.

the position of the Fermi level relative to the conduction-band
minimum, which can be altered by manipulating gate volt-
ages, and the strength of the magnetic field responsible for
Zeeman coupling to the spin degree of freedom. In the ab-
sence of an external magnetic field, all states are topologically
trivial. As the magnetic field strength increases, the energy
gap produced by the proximity-effect pairing potential closes
at critical field. The phase diagram in Fig. 4 was constructed
by tracking these band closings and identifying each with a
phase transition from a topologically trivial to a nontrivial
state. While increasing the magnetic field with the Fermi level
positioned near a subband, the superconductor gap closes
when the system is driven from trivial superconductivity to
nontrivial topological superconductivity. The phase diagram
is obtained by tuning the Fermi level and magnetic field
(shown in Fig. 4).

When the Zeeman energy exceeds the pairing potential, a
Majorana zero mode appears while the Fermi level is tuned to
lie at the bottom of nondegenerate subbands. Pairs of localized
zero modes appear at each end near the population thresholds
of degenerated sub-bands; they are not really Majorana zero
modes as at each end of quantum wires as there are two
or more zero modes, which we called Majorana-like zero
modes. These states survive in quantum wires with small cross
sections in which the magnetic orbital effect is negligible. For
quantum wires with large cross sections, the degeneracy of the
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subbands is lifted by a magnetic orbital effect, and thus these
states are back to Majorana zero modes.

For subbands n = 1, 2 and m = 0,±1 (see Fig. 4), these
six subbands have the Fermi energy of EF1 ≈ 5.87 meV,
EF2 ≈ EF3 ≈ 14.9 meV, EF4 ≈ 30.96 meV, and EF5 ≈ EF6 ≈
50 meV. In the phase diagram we use Roman numerals to
label the number of Majorana (or Majorana-like if there are
more than two modes) end-localized states (I – one localized
state, II – two localized states, etc.). The bottom panel of
Fig. 4 shows the phase diagram for small Zeeman energy,
where we note that more detail can be seen. Due to the lack
of degeneracy of the subbands in Figs. 4(b) and 4(d) we
expect robust Majorana modes, but in Figs. 4(c) and 4(e)
where subbands are nearly degenerate, we expect Majorana-
like modes that are weakly coupled. When magnetic orbital
effects are considered, this degeneracy is lifted for subbands
with nonzero angular quantum numbers. In this case the phase
diagrams are shown in Figs. 4(f)–4(i), where the Majorana-
like states disappear. In contrast to the m = 0 subband, the
phase boundary of the m = ±1 subbands now depends sensi-
tively on the magnetic field strength. The linear dependence
of subband splitting with the magnetic field through the mag-
netic orbital effect subtly adjusts the chemical potential in
order to maintain the topological phase. In what follows we
will ignore the magnetic orbital effect when calculating the
properties of Majorana zero modes for convenience in numer-
ical evaluation.

III. ANDREEV STATES

In contrast to the Majorana modes, zero-bias conduc-
tance peaks (ZBCPs) in transport experiments may also come
from Andreev states which were recently studied experi-
mentally [21]. Here we distinguish between the evolution
of Andreev states and Majorana zero modes by varying
the magnetic field. From the discussion of Sec. II, we
see that there are degenerate subbands which are weakly
coupled by Rashba interactions for nonzero angular momen-
tum, while the zero-angular-momentum subbands are not
degenerate. To find the energy spectrum for finite wires,
we use a quantization and discretization scheme that takes
kx → −i∂/∂x and ∂2c(x)/∂x2 ≈ (ci+1 + ci−1 − 2ci )/b2 and
∂c(x)/∂x ≈ (ci+1 − ci−1)/2b, where b is the effective lattice
constant shown in Fig. 1.

With a periodic boundary condition, i.e., cN+1 = c1, there
is no Majorana zero mode and only Andreev states appear, as
shown in Fig. 5, where we set the length of quantum wire to be
1 μm. We find that numerical convergence in the spectrum of
the quantum-wire Majorana and Andreev states begins when
b is less than 100 nm. We have chosen a stringent convergence
condition of b = 5 nm throughout the manuscript to also
account for converged bulk states. (See Appendix A for more
details.)

In Figs. 5(a)–5(c) we show the density of states (DOS) of
the subbands with quantum numbers of (n, m) = (1,0), (1,±1),
and (2,0). The DOS is calculated via the following definition:

D(E ) =
∞∑

n=1

δ(E − En). (11)

FIG. 5. Evolution of Andreev states and Majorana zero modes
vs magnetic field. (a)–(c) DOS of the infinite wire when the Fermi
level is tuned at the bottom of subbands with different quantum
numbers. The magnetic field changes from 0 to B = 4�SC where
�SC = 0.25 meV. The lines are separated by Zeeman energy of
0.02 meV. (d) DOS for finite quantum wire with Fermi level tuned to
the bottom of the (n, m) = (1,0) subband. The pair of Andreev states
evolves into the Majorana zero modes when the Zeeman energy
exceeds the pairing potential in this case.

In the numerical calculations, δ(E − En) is replaced by a
Gaussian smearing function:

g(E − En) = 1√
2πw

e− (E−En )2

2w2 , (12)

in which w is that width of the smearing. In our calculations
w is set to 0.02 meV. We reiterate that the subbands with
quantum number (1,±1) are weakly coupled through coupling
to other subbands, as previously discussed. The DOS when
the Fermi level is tuned at the bottom of the lowest subband
[that with quantum number of (n, m) = (1,0)] is shown in
Fig. 5(a), with the Zeeman energy varying from 0 to 4�SC .
The edges of the superconducting gap are labeled with red
arrows. When the magnetic field increases, a pair of Andreev
states crosses when the Zeeman energy equals the pairing
potential. Similar crossings happen for (n, m) = (1,±1) and
(n, m) = (2, 0) subbands. When the periodic boundary condi-
tion is removed, i.e., for finite-length quantum wires, this pair
of Andreev states evolves into Majorana zero modes, which
remain at zero energy once the Zeeman energy exceeds the
pairing potential as in Fig. 5(d).

It has been argued that the zero-bias peak observed in
experiments can also be caused by disorder [56–58]. Here
we construct a binary disorder model for the chemical po-
tential and pairing potential and use a Gaussian distribution
model of the pairing phase disorder. When the Fermi level
lies at the lowest sub-band with (n,m) = (1,0), the DOS of
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FIG. 6. The effect of disorder and magnetic field on Andreev
states. (a)–(c) DOS of the infinite wire at the lowest band with
different types of disorder: (a) disorder in the chemical potential;
(b) pairing amplitude disorder; (c) pairing phase disorder modeled
as a normal distribution, with the mean phase as 0 and the variance
of the phase as π/2; (d) polarization n↑ − n↓ of Andreev states
along the quantum wire (here L = 1 μm with periodic boundary
conditions).

the infinite wire with different kinds of disorder is shown in
Figs. 6(a)–6(c). To model a charge disorder in the semicon-
ductor we define a spatially varying chemical potential,

μi = μ + δμi, (13)

where δμi is a trivalued variable which is sampled in
(−δμ, 0, δμ) randomly for each site i. We find that the DOS
is insensitive to the disorder of chemical potential in the cho-
sen disorder strength δμ = �SC for a subband with angular
(n, m) = (1,±1), as shown in Fig. 6(a). However, this is not
the case for disorder in the phase and amplitude of the super-
conducting pairing potential. To model the amplitude disorder
of the pairing potential, we set the amplitude of the pairing
potential as ∣∣�i

SC

∣∣ = |�SC | − δ
∣∣�i

SC

∣∣, (14)

in which δ|�i
SC | is a binary-valued variable that is sampled

randomly in the collection (0,δ|�SC |). We use this binary
model for the assumption that the superconducting metals are
not perfectly deposited on the semiconductor quantum wire.
For the position with perfectly deposited superconducting
metals the proximitized superconducting pairing potential is
|�SC |, while for the position with poorly deposited super-
conducting metals the pairing potential is |�SC | − δ|�i

SC |.
Disorder of the paring potential phase is modeled as

�i
SC = |�SC |ei(φ0+δφi ), (15)

where φ0 is the average phase of the pairing potential, and the
statistics of δφi are sampled from a Gaussian function:

f (δφi ) = (1/
√

2πσ )e−δφ2
i /2σ 2

. (16)

We set the variance of the phase to be bounded by σ =
π/2, which is the largest phase disorder strength. Disorders in
the amplitude and phase of the pairing potential lead to sub-
stantial changes of the superconductivity gap for the chosen
disorder strength, as shown in Figs. 6(b) and 6(c), decreasing
the size of the superconductor gap at the value of disorder
strength we used.

IV. MAJORANA ZERO-MODE PROPERTIES

In the previous section, it was shown that disorder in the
pairing potential substantially changes the size of the super-
conductor gap. We now extend this discussion—using the
same model and model parameters [14]—to describe a finite
quantum wire with a length of 1 μm. Further details of the
convergence of energies of Majorana states vs the effective
lattice constant is shown in Appendix A.

Figures 7(a)–7(c) show the DOS vs the Zeeman en-
ergy for disorder in the chemical potential, superconducting
order-parameter amplitude, and pairing phase. The supercon-
ductivity gap is robust to disorder in the chemical potential
but decreases with disorder in the superconducting order-
parameter amplitude and phase at the chosen disorder strength
for the (n, m) = (1, ±1) subband.

FIG. 7. DOS at the lowest subband with quantum number
(n, m) = (1,±1) in the finite quantum wire. The magnetic field
changes from 0 at the bottom of the plots in increments of 0.02 meV
up to B = 4�SC at the top of the plots. Again, the pairing potential is
�SC = 0.25 meV. (a) Disorder in the chemical potential; (b) disorder
of pairing amplitude; (c) disorder of pairing phase; and (d) po-
larization of Majorana zero modes along the quantum wire (with
L = 1 μm).
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FIG. 8. Dependence on disorder strength for energies of fermionic excitations combined by two Majorana end modes (or Andreev modes)
2ε0 = E 0

+ − E 0
− (solid curves) and for lowest-lying bulk energy level 2ε1 = E 1

+ − E 1
− (dotted curves). In the plots the x axis is the disorder

strength, and different colors represent different Zeeman energy. For solid and dotted lines with the same color, they label the same Zeeman
energy. (a)–(c) Plots for subbands (n, m) = (1,0), while (d)–(f) are for the subbands (n, m) = (1,±1).

This sensitivity to magnetic fields found in the finite system
is not only a symptom of disorder. The Majorana modes in
the finite system are more sensitive to magnetic field than the
Andreev states seen in the infinite system, even in the absence
of disorder. The polarization of the two states closest to zero
energy, calculated as n↑ − n↓ as in Fig. 7(d), shows that the
Zeeman energy needed to polarize the Majorana modes is
the size of the pairing potential. This can be compared to
Fig. 6(d), showing the same quantity in the infinite wire where
the Zeeman energy required to polarize these states is a factor
of ≈2 times the pairing potential. With these results we find
that the Andreev bound states in the infinite wire require
a larger Zeeman energy to polarize than the Majorana zero
modes, even in the absence of disorder.

For finite quantum wires, the Majorana end modes fuse
into fermionic excitations at a finite energy ε0 [63]. To study
the disorder effect in the general case, we have plotted the
energies of fermionic excitations (2ε0 = E0

+ − E0
−) combined

by two Majorana end modes (or Andreev modes if the quan-
tum wire is in the trivial superconducting phase) and the
lowest-lying bulk energy level (2ε1 = E1

+ − E1
−) with var-

ied disorder strengths. This is shown in Figs. 8(a)–8(c) for
(n, m) = (1,0) subband and in (d)–(f) for (n, m) = (1,±1)
subbands. The energies of fermionic excitations are shown
in solid curves, while the lowest-lying bulk energy levels
are labeled with dotted curves, and different colors represent
different Zeeman energies. For (n, m) = (1,0) subbands, the
energies of fermionic excitations are insensitive to chemical
potential disorder up to the strength of δμ ≈ �SC . Similar
dependence happens for the (n, m) = (1,±1) subband. The
critical disorder strength, which depends on superconducting
coherence length and topological coherence length [63–66], is
thus around δμ ≈ �SC and varies with the Zeeman energy.

However, there is a different dependence on disorder
strength of pairing potential for (n, m) = (1,0) and (n, m) =
(1,±1) subbands. In the range of disorder strength δ|�SC | <

0.5�SC and σ < π/4 for pairing potential amplitude and
phase disorder case, energies of fermionic excitations for the
(n, m) = (1,0) subband have a monotonically decreasing de-
pendence on the disorder strength when Zeeman energies are
small. Beyond this disorder strength, the energies of fermionic
excitations and lowest-lying bulk energy levels increase. Note
that the disorder of pairing potential amplitude and phase have
a similar dependence on the strength. For (n, m) = (1,±1) sub-
bands, however, the energies of fermionic excitations always
decrease in the range of disorder strengths we calculate.

In Fig. 9 we show the energies of fermionic excita-
tions (solid lines) and lowest-lying bulk energy level (dashed
lines) vs Zeeman splitting with varied disorder strengths.
In the plots the x axis is the Zeeman splitting, and differ-
ent disorder strengths are represented by different colors.
Figures 9(a)–9(c) are the plots for subbands (n, m) = (1,0),
while Figs. 9(d)–9(f) are for the subbands (n, m) = (1,±1).
Solid and dashed lines with the same color label the same
disorder strength. In the absence of magnetic field, the pairing
potential behaviors are insensitive to the strength of chemical
potential disorder; however, the disorder of pairing potential
and phase do reduce the superconducting gap. When the
magnetic field is applied, the critical magnetic field for the
fermionic excitation gap does not appear to show significant
changes until the strength of disorder exceeds the critical
value discussed above.

In tunneling experiments on proximitized quantum-wire
systems, the local density of states at the end of the quantum
wire is probed. The DOS at the edge of the superconducting
gap is found to be larger than the zero-biased peak associated
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FIG. 9. Energies of fermionic excitations 2ε0 = E 0
+ − E 0

− (solid curves) and lowest-lying bulk energy level 2ε1 = E 1
+ − E 1

− (dotted curves)
vs Zeeman splitting with various disorder strengths. In the plots the x axis is the Zeeman splitting, different colors represent different disorder
strengths. (a)–(c) Plots for subbands (n, m) = (1,0), while (d)–(f) are for the subbands (n, m) = (1,±1). For solid and dashed lines with the
same color, they label the same disorder strength.

with Majorana modes. We can probe this feature in our model
by calculating the projected DOS for different length scales
measured from the end of the wire. Figures 10(a) and 10(b)
show the projected DOS parameterized by the Zeeman energy
for states projected within 50 and 250 nm from the end of the

FIG. 10. Projected DOS at the end of the quantum wire. (a) Re-
sults of DOS projected at the end within 50 nm and (b) the results of
DOS projected at the end within 250 nm.

wire (the length of the wire in this simulation is 1 μm). In
this way we can compare states at the end of the wire with the
bulk system. While we find the DOS near the edge of the gap
is small when we focus on the end of the wire [Fig. 10(a)],
this becomes comparable with the zero-bias peak when we
include more bulk states [Fig. 10(b)]. The size of the DOS
at the superconducting gap energy relative to the zero-bias
peak found in experiments thus cannot be accounted for by
this model.

V. DISCUSSION

In this paper we have studied the properties of cylin-
drical semiconducting quantum wires proximity coupled to
a superconductor. Topological states occur in the presence
of an external magnetic field for Fermi levels just above
the population thresholds of all angular momentum m = 0
quasi-one-dimensional subbands. Majorana zero modes are
localized near wire ends at m = 0 subband population thresh-
olds. In contrast, pairs of localized Majorana-like states
appear at each end near the population thresholds of degen-
erated subbands when magnetic orbital effects are negligible.
These states can give rise to zero-bias anomalies in transport.
Furthermore, we studied the influence of disorder of chemical
potential and pairing potential amplitude with a binary model.
However, this binary model does give a similar dependence of
superconducting gap on disorder compared with the disorder
based on Gaussian distribution [67] in the one-dimensional
lattice model.

The DOS measured in experiments strongly depends on
not only the Majorana zero-mode spectrum but also the super-
conducting element which donates its superconductivity to the
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TABLE I. Extracted experimental parameters. The ratio of the
superconducting pairing potential � to the spin-orbit energy Eso,
the number of electrons in the quantum wire Nqw , and the ratio of
the number of electrons in the superconductor Nsc to the number of
electrons in the quantum wire.

Materials �/Eso Nqw Nsc/Nqw

InSb/Nb [14] 0.8 5.0 2.0 × 105

InSb/Nb [19] 0.6 1.4 2.3 × 104

InAs/Al [16] 0.8 0.4 1.3 × 104

Nb/InSb/Nb [15] 0.3 3.0 1.4 × 105

InSb/NbTiN [17] 1.4 0.6 2.3 × 105

InAs/NbN [18] 16.5 1.9 4.8 × 104

InAs/Al [20,21] 2.1 0.6–2.5 9.3 × 102

semiconductor quantum wire. We clarify this point by estimat-
ing the semiconductor and metal (superconductor) electron
density for direct comparison (see Appendix C for details). We
find that the number of electrons in the metal/superconductor
Nsc greatly outnumbers the number of electrons in the semi-
conductor Nqw (Nsc � Nqw), with their ratio ranging from
∼103 to ∼105 depending on the specific materials. Summa-
rized in Table I, which includes semiconductor quantum wires
with various cross sections including cylindrical and hexago-
nal quantum wires, are the estimates of the electron count.
The number of electrons in the superconducting metal is many
orders of magnitude larger than the number of electrons in the
semiconductor quantum wire.

This shows that electrons in the superconducting metals
will play an important role in understanding measurements
of Majorana zero modes in proximatized quantum wires. An
indirect evidence is that the superconducting gap measured
in semiconductor quantum wires (typically 0.15–0.2 meV
for aluminum, for example) is very close to the bulk super-
conducting gap (which is ∼0.2 meV, a summary of these
parameters can be found in Ref. [7]). A complete model that
includes both electrons in semiconductor quantum wires and
superconducting metal explicitly [9] is thus necessary.

The present proximitized semiconductor quantum-wire-
based Majorana systems may be in fact treated as a super-
conducting metal perturbed by magnetic field and spin-orbit
interaction proximitized by semiconductor quantum wires.
The main contribution to the tunneling DOS comes from
the electrons in superconducting metal instead of the semi-
conductor quantum wire. Ultra-thin-film metals with strong
spin-orbit coupling [68] are thus a prospective platform to
realize topological superconductors if the g factor is large
enough and effective tools are found to tune the Fermi level.
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APPENDIX A: CONVERGENCE WITH EFFECTIVE
LATTICE CONSTANT

For quantum wires with infinite length (that with periodic
boundary condition), the energies of Andreev states vs ef-

FIG. 11. Selected eigenenergies close to the chemical potential
vs the effective lattice constant b for quantum wires with infinite
length. The periodic quantum-wire length is set to 1 μm. In the
plots the energies of Andreev states are already converged at the
effective lattice constant of b ≈ 100 nm. The bulk states (red dashed
lines), the two Andreev states (green dotted lines) in (a), and the four
Andreev states (green lines and blue dots) in (b) are well converged
at b = 5 nm, the value used in this work.

fective lattice constant b are shown in Fig. 11, in which we
may see that the energies are converged at the effective lattice
constant of b ≈ 100 nm. Note that in Fig. 11(a) the two modes
are labeled with green dotted solid lines, while in Fig. 11(b)
there are four modes which are labeled with blue dots and
green solid lines. To get reliable results, b = 5 nm is used in
our calculations.

The convergence of energies of Majorana states vs the
effective lattice constant is shown in Fig. 12(a), where the
two modes are labeled with green dotted solid lines, and in
Fig. 12(b), where four Majorana modes are shown and labeled
with blue dots and green solid lines.

FIG. 12. Selected eigenenergies close to the chemical potential
vs the effective lattice constant b for quantum wires with finite length.
The quantum-wire length is set to 1 μm. The energies of Majorana
states are converged at an effective lattice constant of b ≈ 160 nm.
The bulk states (red dashed lines), the two Majorana states (green
dotted lines) in (a), and the four Majorana states (green lines and
blue dots) in (b) are well converged at b = 5 nm, the value used in
this work.
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TABLE II. Summary of parameters of semiconductor quantum wires.

Materials Geometry L [nm] α [eV nm] m∗ [me] kso [nm−1] λF [nm] ree [nm] Eso [meV] Nqw

InSb/Nb [14] Cir ∼2000 0.02 0.015 0.0079 127 399 0.315 5
InSb/Nb [19] Ret ∼600 0.019 0.015 0.0075 134 420 0.284 1.4
InAs/Al [16] Cir ∼150 0.0113 0.03 0.0089 112 353 0.201 0.4
Nb/InSb/Nb [15] Cir ∼740(680) 0.032 0.015 0.0126 79 250 0.806 3(2.7)
InSb/NbTiN [17] Cir ∼250 0.02 0.015 0.0079 127 399 0.315 0.6
InAs/NbN [18] Cir ∼1000 0.01 0.023 0.006 166 520 0.121 1.9
InAs/Al [20,21] Hex 330–1500 0.008 0.025 0.0052 190 598 0.084 0.6–2.5

APPENDIX B: RADIAL AND ANGULAR
QUANTUM NUMBERS

Although −i sin ϕ ∂
∂r or −i cos ϕ

r
∂
∂ϕ

is not Hermitian, the
sum of them is in fact Hermitian, as we show below. In the
cylindrical coordinate we have

x = r cos ϕ, y = r sin ϕ, (B1)

with r =
√

x2 + y2. We may separate the Rashba term into
two parts:

∂

∂y
= −i

(
sin ϕ

∂

∂r
+ cos ϕ

r

∂

∂ϕ

)
≡ p̂′

r + p̂′
ϕ, (B2)

which is composed with a radial momentum operator p̂′
r and

an angular momentum operator p̂′
ϕ . For the radial momentum

operator, the matrix elements are

〈p̂′
r〉i j = −i

∫ 2π

0
dϕ sin ϕ

∫ ∞

0
rdr�∗

i (r, ϕ)
∂� j (r, ϕ)

∂r

= 〈p̂′
r〉∗ji + i

∫ 2π

0
dϕ sin ϕ

∫ ∞

0
dr�∗

i (r, ϕ)� j (r, ϕ).

(B3)

For the angular momentum operator,

〈p̂′
ϕ〉

i j
= −i

∫ ∞

0
rdr

∫ 2π

0
dϕ

cos ϕ

r
�∗

i (r, ϕ)
∂� j (r, ϕ)

∂dϕ

= 〈p̂′
ϕ〉∗ − i

∫ ∞

0
dr

∫ 2π

0
dϕ sin ϕ�∗(r, ϕ)�(r, ϕ).

(B4)

Note that in the above equations the non-Hermitian parts of
the radial and angular momentum operators cancel. We thus
have

〈p̂′
r + p̂′

ϕ〉
i j

= 〈p̂′
r + p̂′

ϕ〉∗
ji
. (B5)

APPENDIX C: ESTIMATION OF EXPERIMENTAL
PARAMETERS

To estimate the electrons involved in Majorana zero modes
in a semiconductor quantum wire, we consider the active sub-
band and model it with the following quasi-one-dimensional
Hamiltonian,

Hk = h̄2

2m∗ k2 + αkσy, (C1)

where h̄ is the reduced Plank constant, m∗ is the effective
mass of electrons in the semiconductor, and α is the Rashba

coupling. The band energy can be solved to be

Ek = h̄2

2m∗ k2 ± αk. (C2)

To estimate the number of electrons in the semiconductor
quantum wires Nqw, we take advantage of the quasi-1D nature
of the wires and find Nqw = ksoL

π
(see Table I). Here kso = 2αm∗

h̄2

is the spin-orbit wave vector and L is the length of the quantum
wire. This assumes that the chemical potential has been tuned
to Eso by the gate voltage. The spin-orbit wave vector and
spin-orbit energy Eso = α2m∗

2h̄2 = α
4 kso are estimated from the

extracted experimental effective electron mass m∗ and Rashba
coupling α. The estimation of the experimental parameters in
the semiconductor quantum wire are shown in Table II.

Via the proximity effect, the Cooper pairs tunnel into the
quantum wire, and the DOS in aluminum is

D(EF ) = m∗

π2h̄3

√
2m∗EF = 2m∗

h̄2k2
F

h̄2k2
F

2π2

√
2m∗

h̄2 EF , (C3)

since EF = h̄2k2
F

2m∗ , then

D(EF ) = 1

EF

k2
F

2π2

√
1

EF
k2

F EF = 1

EF

k3
F

2π2
, (C4)

while the density of free electrons in the three-dimensional

system is n = 2·4πk3
F

(2π )3 → k3
F = 3π2n. Then the DOS is

D(EF ) = 3n

2EF
. (C5)

To calculate the number density of free electrons (n),

n = z
NA

VA
, (C6)

where z is the valency, NA is the Avogadro’s constant, and VA

is the molar volume. To calculate the molar volume,

VA = Mr × 10−3

ρ
, (C7)

where Mr is the relative atomic mass (the 10−3 is to convert
Mr from grams to kilograms) and ρ is the density. We then get

n = zρNA

Mr × 10−3
. (C8)

For aluminum z = 3 and Mr = 27, while for niobium z = 5
and Mr = 93, and the Avogadro constant is 6.02 × 1023; then
n = 1.8 × 1029 m−3 for aluminum and n = 2.8 × 1029 m−3

for niobium.
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The number of electrons in the superconducting metal is
estimated by

Nso = D(EF )EsoVsc = 3n

2

Eso

EF
Vsc, (C9)

where Vsc is the volume of the superconducting shell. This
expression for Nsc assumes that the DOS is constant on the
scale of Eso and that only electrons near Eso contribute. The
corresponding parameters estimated from experiments are
shown in Table III.

TABLE III. Summary of parameters of superconducting metals.

Materials VSC [106 nm3] � [meV] Nsc [104]

InSb/Nb [14] 40 0.25 99.46
InSb/Nb [19] 1.44 0.18 3.23
InAs/Al [16] 1.18 0.15 0.55
Nb/InSb/Nb [15] 6.65(6.11) 0.25 42.33(38.89)
InSb/NbTiN [17] 5.89 0.45 14.65
InAs/NbN [18] 9.64 2 9.19
InAs/Al [20,21] 0.264–1.2 0.18 0.05–0.23
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