
PHYSICAL REVIEW B 104, 035425 (2021)

From nonequilibrium Green’s functions to quantum master equations for the density matrix and
out-of-time-order correlators: Steady-state and adiabatic dynamics
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We consider a finite quantum system under slow driving and weakly coupled to thermal reservoirs at different
temperatures. We present a systematic derivation of the quantum master equation for the density matrix and
the out-of-time-order correlators. We start from the microscopic Hamiltonian and we formulate the equations
ruling the dynamics of these quantities by recourse to the Schwinger-Keldysh nonequilibrium Green’s function
formalism, performing a perturbative expansion in the coupling between the system and the reservoirs. We
focus on the adiabatic dynamics, which corresponds to considering the linear response in the ratio between the
relaxation time due to the system-reservoir coupling and the time scale associated to the driving. We calculate the
particle and energy fluxes. We illustrate the formalism in the case of a qutrit coupled to bosonic reservoirs and
of a pair of interacting quantum dots attached to fermionic reservoirs, also discussing the relevance of coherent
effects.
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I. INTRODUCTION

The study of heat transport and heat–work conversion in
few-level open quantum systems under the action of slow
time-dependent protocols is a subject of active investigation
for some time now. Examples are qubits [1–12], harmonic
oscillators [13–20], and quantum dots [21–26] under slow
cyclic driving, as well as nanomechanical [27–34] and nano-
magnetic [35,36] degrees of freedom in contact to bosonic or
fermionic baths, possibly with a temperature bias.

In the context of open systems the concept “adiabatic dy-
namics” has been introduced to define the evolution of slowly
driven systems through time-dependent parameters [37–42].
It applies to the nonequilibrium regime where the typical
time scale of the dynamics of the frozen Hamiltonian for
the full setup, including the driven system along with the
contact to the reservoirs and the reservoirs themselves is
much faster than the characteristic time for the changes of
this Hamiltonian. This motivates a linear-response treatment
with respect to the rate of change of the time-dependent
parameters [12,23]. Similar ideas are beyond the adiabatic
perturbation theory in closed systems [43–45].

A widely used framework to analyze the nonequilibrium
dynamics of a few-level system weakly coupled to reservoirs
is that based on master equations. The standard approach
is the Lindblad formulation [46] which has been used to
study the dynamics of different systems in the field of

cold atoms, optics, quantum information and condensed mat-
ter [1,4,5,7,8,47–56]. The main strategy of this formulation
relies on the equation of motion for the reduced density matrix
of the quantum system, with the degrees of freedom of the
reservoirs traced away. Another route to derive the master
equation is to calculate the dynamics of the mean values of the
matrix elements of the density matrix by treating the coupling
between the system and the reservoirs in perturbation theory
within a Schwinger-Keldysh contour. This implies consid-
ering a contour that evolves forwards and then backwards
with respect to an initial time t0 → −∞. The procedure was
introduced in Ref. [57] for a metallic island, in Refs. [58,59]
for a single-level quantum dot in the stationary regime, and
extended to time-dependent scenarios in Refs. [60–64]. A
different formalism was also recently proposed [65] and ex-
tended to time-dependent systems [66].

Here, we present an alternative derivation of the master
equations for the density matrix. We rely on the nonequi-
librium Green’s function formalism combined with suitable
analytical continuations [67–70]. We focus on an adiabatically
driven N-level system weakly coupled to thermal reservoirs
at different temperatures, see Fig. 1. We derive the master
equations for the density matrix upto the adiabatic component.
We extend the procedure to the calculation of master equa-
tions for out-of-time-order correlators (OTOC), which are
currently under active investigation in the context of a variety
of physical problems [71–76]. OTOCs are considered as good
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FIG. 1. A N-level adiabatically driven system in contact with
two reservoirs at different temperatures, TL = T + �T and TR =
T − �T .

witnesses of scrambling dynamics in many-body systems.
In the systems described by nonintegrable Hamiltonians,
OTOC’s are expected to grow as a function of time [71–74]. In
the systems coupled to thermal baths, they stabilize after some
time [75,76] and tend to an asymptotic value. The formalism
we describe here enables the analysis of these correlation
functions in nonequilibrium situations, where the system is
under slow driving and the reservoirs have a thermal or a
chemical potential bias.

The paper is organized as follows. In the next section, we
will present the model for a periodically driven quantum sys-
tem. There, we will study the dynamics of the density matrix
and the OTOCs. In Sec. III, we will perform an adiabatic
expansion to obtain full adiabatic master equations for density
matrix as well as OTOCs. We will also derive the frozen and
adiabatic contributions to the charge and energy currents in
terms of the density matrix. In order to illustrate the general
formulation, in Sec. IV, we put forward two different exam-
ples: in the first one we shall study a driven qutrit in contact
with bosonic reservoirs, and in the second example we will
consider a driven quantum dot system attached to fermionic
reservoirs. Section V is devoted to summary and conclusions.
Some technical details are presented in appendices.

II. GENERAL FORMALISM

We present here the derivation of the master equation from
the nonequilibrium Green’s function formalism combined
with the analytical continuation procedure known as Langreth
theorem [67,68].

A. Model

We consider a driven quantum system S, which depends
on time through a set of time-dependent parameters X(t ) =
(X1(t ), . . . , XN (t )), described by the Hamiltonian

HS(t ) ≡ HS(X(t )). (1)

In general, the system Hamiltonian contains one or more
subsystems with multiple degrees of freedom, expressed in
a convenient basis, which expands the N-dimensional Hilbert
state. For example, in Sec. IV, we consider a qutrit (character-
ized by the three levels |0〉, |1〉 and |2〉) with time-dependent
energies and time-dependent transitions between the different
levels. We also consider two coupled quantum dots of spinless

fermions with time-dependent gate voltages and tunneling
elements, as well as interdot Coulomb interaction. In this case,
each quantum dot defines a subsystem, and the degrees of
freedom of each quantum dot are determined by the charge.
The corresponding states of the basis are four and read |s〉 ≡
|0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉.

The system S is coupled to a set of Nr reservoirs described
by the Hamiltonian

HB =
Nr∑

α=1

∑
k

εkα b̂†
kα

b̂kα, (2)

where the operators b̂†
kα

and b̂kα (relative to an excitation in the
bath α with momentum k) may satisfy bosonic or fermionic
statistics. For the case of bosons, we focus on bosonic excita-
tions, like phonons or photons. For the case of fermions, we
focus on electron systems with a finite chemical potential. The
contact between the driven system and the baths is given by
the Hamiltonians

H(I)
C =

∑
s,s′

∑
k,α

Vkαπ̂α
s,s′ (b̂†

kα
+ b̂kα ),

H(II)
C =

∑
s,s′

∑
k,α

(Vkα b̂†
kα

π̂α
s,s′ + H.c.), (3)

where Vkα is the coupling strength between the system and
reservoir α. The structure of the Hamiltonian H(I)

C corresponds
to changing s in the central system while creating or destroy-
ing a quasiparticle in the bath and it is a natural coupling in
the case of reservoirs modeled by harmonic oscillators [77].
Instead, H(II)

C implies the creation of a particle (or quasipar-
ticle) in the bath while changing s of the central system.
Usually, in the case of fermionic systems and reservoirs, such
a term naturally describes a tunneling process where a fermion
is destroyed in the system and created in the reservoir and
vice versa. Albeit, that type of coupling is also used in the
case of N-level systems coupled to bosonic reservoirs. In the
derivation of the master equations we will consider, for the
case of a bosonic bath, the Hamiltonian H(I)

C and we will
indicate how to get from them the corresponding equations
for H(II)

C . For fermionic baths we will consider H(II)
C . The

operators π̂α
s,s′ = ηα

s,s′ |s〉〈s′| are defined on the basis |s〉 asso-
ciated to the degrees of freedom of the system and may be
restricted by selection rules and by the Pauli principle in the
case of fermionic systems. For instance, in the case of the
two coupled quantum dots of spinless fermions that we will
analyze in Sec. IV B, where each quantum dot is connected to
one fermionic reservoir through a tunnel coupling, these are
π̂

(1)
0,1 = [π̂ (1)

1,1]† = ∑
�=0,1 η

(1)
0,1|0, �〉〈1, �| for the quantum dot

(1) and π̂
(2)
0,1 = [π̂ (2)

1,1]† = ∑
�=0,1 η

(2)
0,1|�, 0〉〈�, 1| for the quan-

tum dot (2).
The Hamiltonian for the system at any time t determining

the value X of the time-dependent parameters can be diago-
nalized by a unitary matrix Û (X) as follows:

H̃S(X) = Û (X)HS(X)Û †(X) =
∑

l

εl (X)ρ̂ll (X), (4)

where ρ̂l j (X) = |l (X)〉〈 j(X)| is the density matrix ex-
pressed in the basis of the instantaneous eigenstates of the
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Hamiltonian, being

H̃S(X)|l (X)〉 = εl (X)|l (X)〉. (5)

We stress that this basis depends on time through the time-
dependence of the parameters X. We define π̂α = ∑

s,s′ π̂α
s,s′

and we express the contact Hamiltonian in the instantaneous
basis as follows

H̃(I,II)
C (X) =

∑
k,α

∑
l, j

Vkα[λα,l j (X)b̂†
kα

ρ̂l j + λα,l j (X)ρ̂l j b̂kα],

(6)
where, for the case H(I)

C , we have

λα,l j (X) = λα,l j (X) = [Û (X)π̂αÛ †(X)]l, j, (7)

while for the case H(II)
C , we have

λα,l j (X) = [Û (X)π̂αÛ †(X)]l, j,

λα,l j (X) = [Û (X)π̂†
αÛ †(X)]l, j . (8)

B. Dynamics of the density matrix and of the out-of-time-order
correlator (OTOC)

The derivation of the equation of motion governing the
long-time dynamics of the density matrix and of the out-of-
time-order correlator, in the limit of weak coupling to the
reservoirs, follows similar lines and we will treat the two
cases in parallel. “Long time” refers to the regime beyond
the transient associated to the switching-on of the coupling
between system and reservoirs.

We start by noticing that any observable O, which depends
on the degrees of freedom of the system, can be expressed as
follows:

O(t ) =
∑
l, j

Ol j (t )ρ̂l j, (9)

where Ol j (t ) = 〈l|O(t )| j〉 are the matrix elements of the
operator O(t ) in the instantaneous eigenstates basis. The ex-
pectation value of this observable at a given time t is

〈O〉(t ) = Tr[ρ̂ tot (t )O(t )] =
∑

l j

Ol j (t )ρl j (t ), (10)

where we define the density matrix as

ρl j (t ) = Tr[ρ̂ tot (t )ρ̂l j]. (11)

In Eqs. (10) and (11), ρ̂ tot (t ) is the state of the full system
coupled to the baths, which is described by the Hamiltonian
H(t ) = H̃S (t ) + HB + H̃C(t ). We see that the dynamics of
〈O〉(t ) is determined by the evolution of the matrix elements
of the operator in the basis of the instantaneous eigenstates of
HS (t ) and the dynamics of the density matrix ρl j (t ). The latter
depends on the full Hamiltonian H(t ).

Changing to the Heisenberg representation with respect to
H, ρ̂H

i j (t ) = U†(t, t0)ρ̂i jU (t, t0), the matrix elements of this
operator are written as

ρl j (t ) = Tr
[
ρ̂0 ρ̂H

l j (t )
]
, (12)

with ρ̂ tot (t ) = U (t, t0) ρ̂0 U†(t, t0), ρ̂0 being the state at the

initial time t0, where U (t, t0) = T̂ {exp−i/h̄
∫ t

t0
dt ′H(t ′ )} is the

evolution operator, being T̂ the time-order operator.

We define the OTOC between observables at time t , rela-
tive to a reference time tr , as follows:

K (t ) = 〈
OH

A (t )OH
B (tr )OH

C (t )OH
D (tr )

〉
. (13)

Here OA, OB, OC , and OD are Hermitian operators depend-
ing on the degrees of freedom of the system S expressed in
the Heisenberg picture with respect to H. We expand OA(t )
and OC (t ) as in Eq. (9). The corresponding matrix elements
are denoted, respectively, as OA,l j (t ) and OC,l j (t ). In this rep-
resentation, the OTOC of Eq. (13) reads [75]

K (t ) =
∑
l jl ′ j′

OA,l j (t )OC,l ′ j′ (t )Kl j,l ′ j′ (t ), (14)

where we have introduced the OTOC operator

K̂H
l j,l ′ j′ (t ) = ρ̂H

l j (t )OH
B (tr )ρ̂H

l ′ j′ (t )OH
D (tr ) (15)

and its corresponding mean value Kl j,l ′ j′ (t ) = 〈K̂H
l j,l ′ j′ (t )〉.

We now introduce the definitions of mixed lesser Green’s
functions for time correlations between the bath and the
density/OTOC operators, which we denote with G/G

G<
l j,kα (t, t ′) = ±i

〈
b†H

kα
(t ′)ρ̂H

l j (t )
〉
,

G<
kα,l j (t, t ′) = ±i

〈
ρ̂H

jl (t ′)bHkα (t )
〉
,

G<
kα;l jl ′ j′ (t, t ′) = ±i

〈
T̂K

[
K̂H

l j,l ′ j′ (t
′)
]†

b̂Hkα (t )
〉
,

G<
l jl ′ j′;kα (t, t ′) = ±i

〈
T̂K b̂†H

kα
(t ′)K̂H

l j,l ′ j′ (t )
〉
. (16)

For fermionic systems, the upper/lower sign applies to many-
body states such that |l〉, | j〉, as well as |l ′〉, | j′〉, differ
in odd/even number of particles. For bosonic systems, it
corresponds the lower sign. The operator T̂K denotes time-
ordering along Schwinger-Keldysh contour, which starts at
−∞, evolves forwards towards +∞ and the backwards to
−∞ [67,68]. In the expressions for the OTOC, there are four
operators at the times t and tr . Hence, this contour in extended
in order to include two of these contours [73], as explained in
Appendix D.

Calculating the evolution of ρ̂H
l j (t ), taking the mean value

with respect to ρ̂0 as in Eq. (12) and introducing the definitions
of the lesser Green’s functions given in Eqs. (16), we get

d〈ρ̂l j〉
dt

= i

h̄
[εl (t ) − ε j (t )]〈ρ̂l j〉 ± 1

h̄

∑
k,α

Vkα

×
[∑

m

λα,ml (t )G<
m j,kα (t, t ) −

∑
n

λα, jn(t )G<
ln,kα (t, t )

+
∑

m

λα,ml (t )G<
kα, jm(t, t ) −

∑
n

λα, jn(t )G<
kα,nl (t, t )

]
,

(17)

where ± corresponds to fermionic and bosonic reservoirs,
respectively, the first term in the right-hand side stems from
i
h̄ 〈[H̃H

S , ρ̂H
l j ]〉 and we recall that εl (t ) ≡ ε(X(t )).
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Similarly, the equation of motion for the OTOC reads [75]

∂〈Kl jl ′ j′ (t )〉
∂t

= i

h̄
(εl ′ (t ) − ε j′ (t ) + εl (t ) − ε j (t ))〈Kl jl ′ j′ (t )〉 ± 1

h̄

∑
kα

Vkα

[∑
m

λα,ml (t )G<
m jl ′ j′;kα (t, t ) −

∑
n

λα, jn(t )G<
lnl ′ j′;kα (t, t )

+
∑

m

λα,ml ′ (t )G<
l jm j′;kα (t, t ) −

∑
n

λα, j′n(t )G<
l jl ′n;kα (t, t ) +

∑
m

λ̄α,ml (t )G<
kα; jm j′l ′ (t, t ) −

∑
n

λ̄α, jn(t )G<
kα;nl j′l ′ (t, t )

+
∑

m

λ̄α,ml ′ (t )G<
kα; jl j′m(t, t ) −

∑
n

λ̄α, j′n(t )G<
kα; jlnl ′ (t, t )

]
. (18)

We now proceed with the line of argument presented in
Refs. [57–59] to derive the master equations from Eqs. (17)
and (18) based on the expansion of the coupling term Vkα .
In our case, we find it convenient to define nonequilibrium
Green’s functions for the operators ρ̂l, j and K̂l j,l ′ j′ , in ad-
dition to the ones for the reservoirs and we proceed with
the derivation of the Dyson equation at the lowest order
in the couplings in combination with Langreth theorem.
These steps are similar to those followed in the study of
quantum transport for strong coupling between system and
reservoirs [67,78]. To this end, we introduce the interaction
representation with respect to the uncoupled Hamiltonian h =
H̃S(t ) + HB. Therefore

ρ̂H
i j (t ) = T̂K

[
exp

{
−i/h̄

∫
K

dt ′H̃h
C(t ′)

}
ρ̂h

i j (t )

]
, (19)

where the superscript h denotes the interaction representation
with respect to h and we recall that T̂K denotes time-ordering
along the Schwinger-Keldysh contour. Furthermore, we set
at the initial time t0 = −∞, ρ0 = ρS ⊗ ρB, where ρS, ρB are
the density operators of the uncoupled system and reservoirs,
respectively.

The next step is to evaluate the Green’s functions in
Eq. (17), up to the first order of perturbation theory in Vkα .
It is convenient to introduce the definitions

�
α(0)
m j (t ) = ±

∑
kα

VkαG<
m j,kα (t, t ),

�
α(0)
m j (t ) = ±

∑
kα

VkαG<
kα,m j (t, t ). (20)

As discussed below Eq. (16), the upper/lower sign ap-
plies to fermionic/bosonic systems. Using the “Langreth
rule” [67,68], we obtain the following expressions:

�
α(κ )
m j (t ) 	 ±

∑
u,v

λα,uv (t )
∫ ∞

−∞
dt1

(
gr

m j,vu(t, t1)

× �<(κ )
α (t1, t ) + g<

m j,vu(t, t1)�a(κ )
α (t1, t )

)
, (21)

�
α(κ )
m j (t ) 	 ±

∑
u,v

λα,uv (t )
∫ ∞

−∞
dt1

(
�r(κ )

α (t, t1)

× g<
uv,m j (t1, t ) + �<(κ )

α (t, t1)ga
uv,m j (t1, t )

)
, (22)

where we have extended the definition of Eq. (20),
corresponding to κ = 0, to κ = 1, by introducing the

self-energies

�r,a,<(κ )
α (t, t ′) =

∫
dω

2π
e−iω(t−t ′ )�r,a,<(κ )

α (ω), (23)

which encode the coupling to the baths. In deriving Eqs. (21)
and (22), we consider weak coupling, such that only first order
terms in system-bath coupling strength are kept and all the
other higher order terms are neglected. We can write the lesser
self-energies as follows:

�<(κ )
α (ω) = ±inα (ω)ωκ�α (ω), (24)

which depend on the spectral function

�α (ω) = −2Im
[
�r(0)

α (ω)
] = 2π

∑
kα

|Vkα|2δ(ω − εkα ). (25)

Here nα (ω) denotes the Fermi-Dirac or Bose-Einstein distri-
bution function for the case of fermionic or bosonic baths,
respectively. Importantly, the information on the temperature
and chemical potential of a given reservoir α is only encoded
in these functions. Notice that the index κ in the previous
expressions, denotes the different moments of the spectral
function. In the previous expressions we have used the defi-
nitions of Eqs. (7) and (8) recalling that they depend on time
through X(t ).

In Eqs. (21) and (22), the lesser Green’s functions are
evaluated with respect to the uncoupled Hamiltonian h:

g<
l j,vu(t, t ′) = ±i

〈
ρ̂h

uv (t ′)ρ̂h
l j (t )

〉
,

g>
l j,vu(t, t ′) = −i

〈
ρ̂h

l j (t )ρ̂h
uv (t ′)

〉
, (26)

where ρ̂h
jl (t ) = [ρ̂h

l j (t )]†, hence, g>
ν,ν ′ (t, t ′) = ±[g<

ν ′,ν (t ′, t )]∗.
The corresponding retarded ones are

gr
ν,ν ′ (t, t ′) = θ (t − t ′)[g>

ν,ν ′ (t, t ′) − g<
ν,ν ′ (t, t ′)], (27)

while the advanced Green’s function is given by ga
ν,ν ′ (t, t ′) =

[gr
ν ′,ν (t ′, t )]∗.
In the case of the OTOC, we define

�α,OTOC
l jl ′ j′ (t ) = ±

∑
kα

VkαG<
l jl ′ j′,kα (t, t ),

�
α,OTOC
l jl ′ j′ (t ) = ±

∑
kα

VkαG<
kα,l jl ′ j′ (t, t ). (28)

The evolution along Keldysh contour can be implemented
by considering an augmented contour [73], which leads to a
generalized Langreth rule, as explained in Appendix D. The
counterparts to Eqs. (21) and (22) for the OTOC functions
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read

�α,OTOC
l jl ′ j′ (t ) 	 ±

∫ ∞

−∞
dt1

∑
u,v

λα,uv (t )
[
gr

l jl ′ j′,vu(t, t1)

× �<(0)
α (t1, t ) + g<

l jl ′ j′,vu(t, t1)�a(0)(t1, t )
]
,

(29)

�
α,OTOC
l jl ′ j′ (t ) 	 ±

∫ ∞

−∞
dt1

∑
u,v

λα,uv (t )
[
�r(0)

α (t, t1)

× g<
uv,l jl ′ j′ (t1, t ) + �<(0)

α (t, t1)ga
uv,l jl ′ j′ (t1, t )

]
,

In order to obtain Eqs. (29), we fixed tr = t0, the initial time,
and then we extended t0 to −∞ in the limits of the integrals.
The retarded and lesser Green’s functions for the OTOC are
defined as

g<
l jl ′ j′,vu(t, t ′) = ±i〈T̂K ρ̂uv (t ′)ρ̂l j (t )OB(tr )ρ̂l ′ j′ (t )OD(tr )〉

± i〈T̂K ρ̂l j (t )OB(tr )ρ̂uv (t ′)ρ̂l ′ j′ (t )OD(tr )〉,
(30)

g>
l jl ′ j′,vu(t, t ′) = −i〈T̂K ρ̂l j (t )ρ̂uv (t ′)OB(tr )ρ̂l ′ j′ (t )OD(tr )〉

− i〈T̂K ρ̂l j (t )OB(tr )ρ̂l ′ j′ (t )ρ̂uv (t ′)OD(tr )〉,
(31)

The corresponding retarded Green’s function is

gr
l jl ′ j′,vu(t, t ′) = θ (t − t ′)[g>

l jl ′ j′,vu(t, t ′) − g<
l jl ′ j′,vu(t, t ′)],

(32)

while the advanced one is given by ga
ν,ν ′ (t, t ′) = [gr

ν ′,ν (t ′, t )]∗,
in complete analogy with Eq. (26)

C. Dynamics of the particle and energy current between system
and baths

The time-resolved density matrix ρi j (t ) fully characterizes
the dynamics of the local properties of the system. We are
also interested in evaluating the charge current J (c)

α (t ) (in
the case of the fermionic reservoirs) as well as the energy
current J (E )

α (t ) flowing between the system and the reservoirs.
These quantities can also be calculated by recourse to Green’s
functions as follows:

J (c)
α (t ) = ie

h̄
〈[H,Nα]〉 = ∓ e

h̄

∑
k

∑
m,n

Vkα

× [λα,mn(t ) G<
mn,kα (t, t ) − λα,mn(t ) G<

kα,nm(t, t )],

J (E )
α (t ) = i

h̄
〈[H,Hα]〉 = ∓1

h̄

∑
k

∑
m,n

Vkα εkα

× [λα,mn(t ) G<
mn,kα (t, t ) − λα,mn(t ) G<

kα,nm(t, t )],

(33)

where the upper sign is for fermionic and lower sign for
bosonic reservoirs. Using Eqs. (21) and (22), we can evaluate
these currents to the lowest order in the coupling strength. The

result is

J (c)
α = 1

h̄

[∑
m,n

λα,mn(t )�
α(0)
nm (t ) −

∑
m,n

λα,mn(t )�α(0)
mn (t )

]
,

J (E )
α = 1

h̄

[∑
m,n

λα,mn(t )�
α(1)
nm (t ) −

∑
m,n

λα,mn(t )�α(1)
mn (t )

]
.

(34)

We see that the coefficients �α(0)
mn (t ) and �

α(0)
mn (t ) entering the

equation of motion (17) for the density matrix also enter the
expression for the charge currents. Instead, the energy cur-

rents are determined by the coefficients �α(1)
mn (t ) and �

α(1)
mn (t )

related to the first moment of the spectral function (κ = 1).
Notice that the above expressions for the currents are exact up
to order V 2

kα .

III. ADIABATIC DYNAMICS

So far we have not introduced any assumptions regard-
ing the nature of the time dependence. Here, we focus on
slow (adiabatic) driving, where the rate of change of the
time-dependent parameters is small, which justifies treating
the dynamics at different orders in these parameters. More
precisely, adiabatic driving is the regime where the typical
timescale τ associated to the driving is much larger than
any other timescale associated to the dynamics of the system
coupled to the baths.

A. Green’s function of the isolated system

Here, we follow a treatment to evaluate the Green’s func-
tions of the isolated system along the line of Refs. [12,23],
where linear response in the parameters Ẋ was implemented.
We recall that the Green’s function are evaluated with the
operators expressed in the interaction picture with respect to
h = H̃S(t ) + HB, which, for this particular function, is equiv-
alent to the Heisenberg picture with respect to H̃S(t ).

We consider the expansion of H̃S(t ′) with respect to an
“observational time” t ,

H̃S(t ′) = H̃ f
S + δH̃S(t ′),

δH̃S(t ′) =
∞∑

n=1

(t ′ − t )n

n!

∂H̃S

∂X
· dnX

dtn
=

N∑
k=1

ξk (t ′)ρ̂kk, (35)

where H̃ f
S is the Hamiltonian with the time frozen at

t and ξk (t ′) = −∑∞
n=1 θ (τad − |t − t ′|)(t ′ − t )n/n!dnXk/dtn,

with τad < τ . In the latter expression, we introduce the func-
tion θ (τad − |t − t ′|) to indicate that this expansion holds for
time differences |t ′ − t |, with respect to the observational
time t , which are much smaller than the typical time scale
τ associated to the time-dependent parameters τad � τ .

We then change to the interaction representation with re-
spect to H̃ f

S . We explain below the procedure followed for the
case of the Green’s function

g<
i j,vu(t1, t2) = −iTr

{
ρ̂0T̂K

[
e− i

h̄

∫
K dt ′δH̃ f

S (t ′ )ρ̂
f
l j (t

+
1 )ρ̂ f

uv (t−
2 )

]}
,

(36)
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where t+
1 and t−

2 indicates that the time t1 is on the piece of
the contour that starts in −∞, while t2 is on the piece of the
contour that ends in −∞. All the operators with the label f
are calculated in the Heisenberg representation of the frozen
Hamiltonian H̃ f

S . In particular,

ρ̂
f
l j (t

′) = e
i
h̄ t ′H̃ f

S ρ̂l j e− i
h̄ t ′H̃ f

S = e
i
h̄ εl j t ′

ρ̂l j (37)

with ε
f
j being the eigenenergies of H̃ f

S and εl j = ε
f
l − ε

f
j .

Evaluating Eq. (36) up to linear order in the perturbation H̃ f
S

leads to

g<
l j,vu(t1, t2) 	 g<, f

l j,vu(t1, t2) + δg<, f
l j,vu(t1, t2), (38)

where the first term is the frozen component and reads

g<, f
l j,vu(t1, t2) = ±iδlv

〈
ρ̂

f
u j (t1)

〉
eiεuv (t2−t1 )

= ±iδlv
〈
ρ̂

f
u j (t2)

〉
eiε jv (t2−t1 ), (39)

while the second term is the correction up to linear order in
δH̃ f

S (t ′) (see calculation in Appendix B) and reads

δg<, f
l j,vu(t1, t2) = − i

h̄
g<, f

l j,uv
(t1, t2)

[∫ t1

−∞
dt ′ξ j (t

′)

+
∫ t2

t1

dt ′ξv (t ′) −
∫ t2

−∞
dt ′ξu(t ′)

]
. (40)

Notice that, in spite of the fact that some of the limits of the
integrals are defined to be −∞, the functions ξ j (t ′) are differ-
ent from zero only for |t − t ′| < τad. Also notice that these
functions, through Eqs. (38) and (40), enter the definitions
of the functions of Eqs. (21) and (22) convoluted with the
self-energy of the baths, which decay within the relaxation
time due to the coupling to the bath, τrel = h̄/�α . Hence, we
identify τad 	 τrel.

Therefore the validity of the present treatment in the de-
scription of the finite system coupled to the bath is restricted
to τrel < τ . The adiabatic approximation consists in keeping
the terms ∝ Ẋ in δg<, f

l j,vu(t1, t2) under the assumption that the
changes in X(t ) take place within a time scale that is much
larger than the typical time scale of the dynamics of the frozen
system, hence τrel � τ .

A similar procedure can be followed to evaluate the
Green’s functions for the OTOC. In that case, the counterpart
of Eq. (38) is

g<
l jl ′ j′,vu(t1, t2) 	 g<, f

l jl ′ j′,vu(t1, t2) + δg<, f
l jl ′ j′,vu(t1, t2), (41)

where the frozen term reads

g<, f
l jl ′ j′,vu(t1, t2) = ±i

[
δlv

〈
K f

u jl ′ j′ (t1)
〉+ δl ′v

〈
K f

l ju j′ (t1)
〉]

eiεuv (t2−t1 ),

(42)

while the linear order term in δH̃ f
S (t ′) is given by

δg<, f
l jl ′ j′,vu(t1, t2)

= ±1

h̄

∫ ∞

−∞
dt ′(〈K̂ f

u jl ′ j′ (t1)
〉
δvl × [θ (t1 − t ′)ξ j′ j,l ′v (t ′)

+ θ (t2 − t ′)ξv,u(t ′)] + 〈
K̂ f

l ju j′ (t1)
〉

× δvl ′ [θ (t1 − t ′)ξ j′ j,lv (t ′) + θ (t2 − t ′)ξv,u(t ′)]
)
eiεvu (t1−t2 ),

(43)

where ξ j′ j,l ′v = ξ j′ + ξ j − ξl ′ − ξv and ξv,u = ξv − ξu.
The lesser functions in Eqs. (38) and (41) enter the master

equations through Eqs. (21), (22), and (29), respectively. No-
tice that while the frozen components of these functions lead
to a result ∝ V 2

α for the � functions, the adiabatic corrections
δg< lead to a higher order correction ∝ V 2

α Ẋ. As we will fur-
ther discuss below, this term can be neglected in comparison
to others.

B. Master equations

1. Density matrix

Our aim is to calculate the matrix elements of the density
matrix up to linear order in Ẋ. Hence, we split them as follows:

ρu j (t ) ≡ ρ
f
u j (t ) + ρa

u j (t ). (44)

In the previous equations, ρ
f
u j is the solution of the frozen

master equation for the density matrix, while ρa
u j (t ) is the

corresponding correction ∝ Ẋ.
The diagonal and off-diagonal terms of ρu j are named,

respectively, populations and coherences and are generally
coupled (in what follow we will use the shorthand notation
pu = ρuu for the populations). By substituting Eq. (36) into
Eqs. (21) and (22), with Eq. (39) and the adiabatic approx-
imation of Eq. (40), the master equation that includes both
frozen and adiabatic contributions can be written as

dρl j

dt
= i

h̄
[εl (t ) − ε j (t )]ρl j +

∑
mu,α

[
W ju

ml,α (t )ρmu(t )

+ W̃ ul
jm,α (t )ρum(t )− W mu

jm,α (t )ρlu(t )− W̃ um
ml,α (t )ρu j (t )

]
,

(45)

where we introduced the transition rates

W ju
ml,α (t ) = W ju( f )

ml,α (t ) + δW ju
ml,α (t ). (46)

In deriving Eq. (45), we have neglected the level renormaliza-
tion effects.

The explicit expressions for the frozen rates originated in
the contribution of Eq. (39) are

W ju,( f )
ml,α = λα,ml (t )λα, ju(t )γ f

α (ε ju)/2

+ λα,ml (t )λα, ju(t )γ̃ f
α (εu j )/2, (47)

W̃ ul,( f )
jm,α = λα, jm(t )λα,ul (t )γ̃ f

α (εul )/2

+ λα, jm(t )λα,ul (t )γ f
α (εlu)/2, (48)

where

γ f
α (ε) = h̄−1nα (ε)�α (ε),

γ̃ f
α (ε) = h̄−1(1 ∓ nα (ε))�α (ε). (49)

On the other hand, the adiabatic corrections to the transition
rates δW mu

l j,α (t ), which have their origin in Eq. (40), can be
evaluated in a similar manner (see Appendix B for details).
The latter are ∝ �αẊ within the adiabatic approximation.

As mentioned before, in all the calculations leading to
the master equations (45) we have considered the contact
Hamiltonian in Eq. (6). Such master equations thus hold for
both H(I)

C and H(II)
C . In the former case, the quantities λα,l j and
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λα,l j entering the transition rates (47) and (48) are defined by
Eq. (7), while in the latter they are defined by Eq. (8).

We now introduce the following schematic notation for
Eq. (45):

dρ

dt
= i

h̄
ε ρ + W ρ. (50)

Splitting in this equation the density matrix elements and rates
into their frozen and adiabatic components as in Eq. (44), we
can make use of the fact that the frozen component satisfies

0 = i

h̄
ε ρ f + W f ρ f , (51)

to conclude that the following equation has to be fulfilled
by the adiabatic components (keeping only linear-order terms
in Ẋ),

∂ρ f

∂X
Ẋ = i

h̄
ε ρa + W f ρa + δW ρ f . (52)

These equations must be supplemented by the normalization
of the populations

∑
l pl = 1. Substituting W f from Eqs. (47)

and (48) into Eqs. (51) and (52) gives the frozen and adi-
abatic components of the master equations respectively. For
the frozen case, the master equations obtained are exactly the
same as the ones obtained using the diagrammatic formula-
tion introduced in Refs. [57–59]. Notice that the term in the
left-hand side contains two components. One component is
originated in the variation with respect to X of the matrix M =
iε/h̄ + W f entering Eq. (51), while the other one is due to the
change of the instantaneous eigenstates as X changes [instan-
taneous eigenvalues and eigenstates are defined in Eq. (5)].
The contribution of these two terms in the derivatives of the
matrix elements of ρ f with respect to X reads

∂ρ
f
l, j

∂X
= −

[
M−1 ∂M

∂X
ρ f

]
l, j

+
∑

l ′
{Al ′,lρl ′, j − Aj,l ′ρl,l ′ },

(53)

being

Al ′,l = 〈l ′| ∂HS
∂X |l〉

εl − εl ′
, l �= l ′. (54)

The second term of Eq. (53) is equivalent to the contribution
of the gauge potential in the moving-frame introduced in
the framework of the adiabatic perturbation theory for closed
quantum systems [43] (see details in Appendix G). This term
does not play any role when the master equation is reduced
to a rate equation by taking into account the evolution of the
populations only [12,60–62], but it has been considered in the
adiabatic evolution of open quantum systems described by the
Lindblad master equation [7,11].

On the other hand, as already mentioned in Sec. III A, the
contribution of the terms collected in δW ρ f in the previous
equation are effectively higher order in the parameters defin-
ing the perturbative treatment. In fact, δW is linear order in
the rate amplitude �α (which is in turn second order in the
coupling Vkα) times linear order in the adiabatic expansion
Ẋ. Hence, we neglect these terms in comparison to the ones
containing W f , since these matrix elements are linear in �α

and 0-th order in the adiabatic expansion. Therefore, keeping
only the latter terms and neglecting the former ones, we get
ρa ∼ O(τrel/τ ). This reasoning is basically the same as that
presented in Ref. [60] and the result highlights the fact that the
validity of the adiabatic treatment is restricted to variations of
the driving in a timescale much larger than the relaxation time
of the system with the environment (τ � τrel).

2. OTOC

Similarly, for the OTOC, we introduce the decomposition

Kl j,l ′ j′ (t ) ≡ K f
l j,l ′ j′ (t ) + Ka

l j,l ′ j′ (t ), (55)

where K f
l j,l ′ j′ is the solution of the frozen master equation for

the OTOC, while Ka
l j,l ′ j′ is the corresponding corrections ∝ Ẋ.

The master equation for the OTOC can be derived in a similar
manner as before, by substituting Eqs. (41)–(43) into Eqs. (29)
and (30), obtaining

dKl j,l ′ j′ (t )

dt
= i

h̄
[εl ′ (t ) − ε j′ (t ) + εl (t ) − ε j (t )]Kl j,l ′ j′ (t ) +

∑
mu,α

[
W ju

ml,α (t )Kmu,l ′ j′ (t ) + W j′u
ml,α (t )Km j,l ′u(t )

+ W̃ ul
jm,α (t )Kum,l ′ j′ (t ) + W̃ ul ′

jm,αKlm,u j′ (t ) + W ju
ml ′,αKlu,m j′ (t ) + W j′u

ml ′,αKl jmu(t ) + W̃ ul
j′m,α (t )Ku j,l ′m(t )

+ W̃ ul ′
j′m,α (t )Kl j,um(t )

] −
∑
mu,α

[
W̃ um

ml,α (t )Ku j,l ′ j′ (t ) + W̃ ul ′
ml,α (t )Km j,u j′ (t ) + W mu

jm,αKlu,l ′ j′ + W j′u
jm,αKlm,l ′u

+ W̃ ul
ml ′,α (t )Ku j,m j′ (t ) + W̃ um

ml ′,α (t )Kl j,u j′ (t ) + W ju
j′m,α (t )Klu,l ′m(t ) + W mu

j′m,α (t )Kl j,l ′u(t )
]
, (56)

where the rates W ju
ml,α (t ) and W̃ ju

ml,α (t ) are the same appearing
in Eq. (45) (see the Appendix F for details). Using a similar
schematic notation as before, we have

dK
dt

= i

h̄
εOTOC K + WOTOC K. (57)

The procedure to formulate the adiabatic master equation for
the OTOC is the same as the one for the density matrix. As

before, the rates are split into frozen and adiabatic compo-
nents whose origin can be traced back to Eqs. (42) and (43)
respectively,

WOTOC = WOTOC, f + δWOTOC. (58)

Introducing this decomposition, as well as the one in Eq. (55)
leads to the master equation for the steady state, describing the

035425-7



BHANDARI, FAZIO, TADDEI, AND ARRACHEA PHYSICAL REVIEW B 104, 035425 (2021)

long-time dynamics (for t → ∞) of the frozen component,

0 = i

h̄
εOTOC, f K f + WOTOC, f K f , (59)

which has similar form as the one derived in Ref. [75] for the
case of a single reservoir in equilibrium. As already noticed
in Ref. [75], the master equation for the OTOC is basically
the one for two copies of the density matrix. In the case of a
single reservoir and for a system without driving, Eq. (57) is
similar to implementing a forward and a backward evolution
with the master equation for the density matrix as in Ref. [76].
The adiabatic component can be calculated from

∂K f

∂X
Ẋ = i

h̄
εOTOC, f Ka + WOTOC, f Ka + δWOTOC K f , (60)

where the last term can be neglected using similar arguments
to those presented as in the case of the adiabatic evolution
for the density matrix. Also in the present case, we must take
into account the contributions due to the changes of the matrix
of Eq. (59) and those corresponding to the changes in the
eigenstates. The corresponding solutions satisfy∑

mn

K f
mm,nn = 〈OB(tr )OD(tr )〉 = K∞ (constant), (61)

for the frozen components, and∑
mn

Ka
mm,nn = 0, (62)

for the adiabatic ones.

C. Currents

Similarly, substituting Eqs. (21) and (22) in the definition
of the energy currents, we get

J (E )
α (t ) =

∑
m,n,u

[
εum W̃ um, f

mn,α (t )ρun(t ) − εnu W nu, f
mn,α (t )ρmu(t )

]
.

(63)

Similarly, for the charge currents, we obtain

J (c)
α (t ) = e

∑
m,n,u

[
Ṽ um, f

mn,α (t )ρun(t ) − V nu, f
mn,α (t )ρmu(t )

]
, (64)

where

V ju,( f )
ml,α = λα,ml (t )λα, ju(t )γ f

α (ε ju)/2

− λα,ml (t )λα, ju(t )γ̃ f
α (εu j )/2, (65)

Ṽ ul,( f )
jm,α = λα, jm(t )λα,ul (t )γ̃ f

α (εul )/2

− λα, jm(t )λα,ul (t )γ f
α (εlu)/2. (66)

Notice that the charge current has been defined only for the
fermionic case.

Moreover, currents are made up of a frozen and an adi-
abatic contributions [J (E ), f

α (t ) and J (E ),a
α (t ), respectively, for

energy currents] coming from the respective terms of the
density matrix.

IV. EXAMPLES

The outcome of the previous sections is that the master
equations describing the adiabatic dynamics of an open quan-
tum system for the density matrix and the OTOC, as well as
the currents, are completely defined by the frozen rates in
Eqs. (47) and (48). In order to calculate them, all we need
is the unitary transformation diagonalyzing the instantaneous
Hamiltonian of the system, the spectral function of the baths
and the corresponding Bose-Einstein or Fermi-Dirac distri-
bution functions. We illustrate the procedure for two simple
examples.

A. Qutrit

We analyze the dynamics of a driven qutrit—a three-level
system such as an atom with a ground state and two excited
states—attached to two bosonic reservoirs. The latter could,
for instance, represent two electromagnetic environments to
which the atom is coupled. We consider the following Hamil-
tonian for the driven three-level system

HS(t ) =
2∑

q=0

Eq(t )π̂qq + w(t )(π̂12 + π̂21), (67)

where Eq(t ), with q = 0, 1, 2, are the energy levels relative to
the ground state (0) and the two excited states (1 and 2). The
inter-level coupling parameter w(t ) denotes the amplitude for,
possibly, time-dependent transitions between the two excited
states. The consider the bath Hamiltonian described by Eq. (2)
with Nr = 2, b̂kα being bosonic operators for reservoir α =
L, R. As shown in Fig. 1, we fix the temperature of the two
baths as TL = T + �T and TR = T − �T . Moreover, we will
consider Ohmic baths with linear dissipation relation spectral
density

�α (ε) = ϒα ε e−ε/εc , with ε > 0, (68)

where εc, is a high frequency cutoff. We assume that the left
bath is connected to the qutrit through energy level 1 and right
bath is connected through energy level 2, so that the contact
Hamiltonian is given by

HC =
∑

k

VkL(π̂10 + π̂01)(b†
kL + bkL )

+
∑

k

VkR(π̂02 + π̂20)(b†
kR + bkR). (69)

As detailed in Sec. II, we first diagonalize the system Hamil-
tonian with a suitable unitary transformation Û (t ) so that

H̃S(t ) =
∑
l=±

εl (t )ρ̂ll + ε0(t )ρ̂00, (70)

with the instantaneous eigenstates being |0〉, |−〉, |+〉, being
the instantaneous eigenenergies ε0(t ) = E0(t ) and

ε±(t ) =
(

E1(t ) + E2(t )

2

)
± 1

2

√
(E1(t ) − E2(t ))2 + 4w(t )2.

(71)
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FIG. 2. Qutrit: population probabilities in the absence of driving
as functions of �T for fixed energy splitting E1 − E2 = 0 (top) and
as functions of level splitting for �T = 0.8T (bottom). Green lines
refers to p− (with axis on the left) and blue lines refers to p0 (with
axis on the right). Notice the two scales on the left and right axis
are different. Solid (dashed) lines result from the solution of the RE
(QME). Parameters values are ϒL = ϒR = 0.2, εC = 100 kBT , w =
0.05 kBT , E1 + E2 = 5 kBT , and E0 = 0.

Moreover, the contact Hamiltonian in the instantaneous basis
becomes

H̃C =
∑
k,α

∑
l=±

Vkα (λα,0l (t ) ρ̂0l + λα,l0(t ) ρ̂l0)(bkα + b†
kα

),

(72)
where

λL,0+(t ) = −λR,0−(t ) = cos θ (t )/2,

λL,0−(t ) = λR,0+(t ) = sin θ (t )/2, (73)

with θ (t ) = tan−1( 2w(t )
E1(t )−E2(t ) ) and λα,0l (t ) = λα,l0(t ). In the

present problem, λα,ml (t ) = λα,lm(t ).

1. Density matrix

Given Eqs. (71) we immediately have the component of the
frozen kernel ε in Eq. (51). On the other hand, given Eqs. (73),
we readily get the rates defined in Eqs. (47) and (48), which
completes all the information about the elements of the frozen
master equation in Eq. (51).

We first consider the particular case of the frozen Hamil-
tonian, corresponding to fixed values of El and w, and we
analyze the effect of coherence by comparing the outcomes of
the full quantum master equation (QME) with those obtained
from the rate equation (RE). The latter corresponds to solving
the equation for the diagonal elements only. In Fig. 2, we plot
the populations p0 (blue lines) and p− (green lines) of the
states |0〉 and |−〉, respectively, as functions of �T (top panel)
and energy level splitting E1 − E2 (bottom panel). Solid lines

0 1 2 3
w[kBT ]

0

1

2

3

|ρ̄f +
−|

×10−3

|ρ̄f
+−|

|ρ̄a
+−|

0.00 0.25 0.50 0.75
ΔT/T

0.0

0.5

1.0
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−|

×10−3
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0.5

1.0

| ρ̄a +
−|

×10−4

0

1

2

|ρ̄a +
−|

×10−4

FIG. 3. Qutrit: frozen ( f ) and adiabatic (a) contributions to the
period-averaged coherences ρ̄+− as functions of the interlevel cou-
pling w for fixed �T = 0.5T (top) and as functions of �T for
fixed w = 0.5 kBT (bottom). Red solid lines refer to the absolute
value of the frozen contribution (with axis on the left) and black
dashed lines refer to the absolute value of the adiabatic contribution
(with axis on the right). Parameters values are ϒL = ϒR = 0.2, εc =
30 kBT , E1(t ) = 2kBT + 4kBT cos (�t + π

2 ), E0 = 0 and E2(t ) =
0.5kBT cos (�t ).

result from the solution of the RE, while dashed lines from the
solution of the QME. The top panel in Fig. 2 shows that the
effect of coherence on the populations is absent for �T = 0
(where the overall system is at equilibrium) and leads to an
important contribution for large values of �T . The bottom
panel of Fig. 2, highlights the relevant energy scale for which
the coherence plays a significant role. Concretely, we see that
this is the case when the level splitting is small compared to
kBT . In the figure, this corresponds to values E1 − E2 < 0.5
kBT , in which range, for this choice of parameters, the gap
between bonding and antibonding energy levels � = ε+ − ε−
is smaller than the energy scale kB�T [49].

Let us now assume that the system is driven by mod-
ulating the parameters according to the following scheme:
E1(t ) + E2(t ) = Eav + δε cos(�t + φ) and E1(t ) − E2(t ) =
Erel + δε̄ cos(�t ), while w is time-independent. In the present
case, we solve the adiabatic master equation of Eq. (52) along
with the frozen one in Eq. (51), which also accounts for the
gauge potential term. In Fig. 3, we plot the absolute value of
the period-averaged frozen and adiabatic contributions to the
coherences, ρ̄

f
+− and ρ̄a

+−, respectively, as functions of w (top
panel) and �T (bottom panel). Red solid lines refer to the
frozen contribution (with values on the left axis) and black
dashed lines refer to the adiabatic contribution (with value
on the right axis). The top panel of Fig. 3 shows that frozen
and adiabatic components of the coherence display different
behaviors as a function of the inter-level coupling, while their
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FIG. 4. Qutrit: time variations of OTOCs for different values of
thermal bias �T = 0 (top) and �T = 0.98T (bottom) taking only
the diagonal terms of the projection operators and ϒL = 0.1, ϒR =
0.2, w = 0.2kBT , E0 = 0, E1 − E2 = 0.3kBT , E1 + E2 = 0.6kBT ,
εc = 20kBT , with initial conditions K00(0) = 0.2, K0+(0) = 0.2,
K0−(0) = 0.2, K+0(0) = 0.2, K++(0) = 0.2 and the normalization
condition

∑
ll ′ Kll ′ (t ) = 1.

absolute values differ by more than one order of magnitude. In
particular, they are zero at w = 0, since no coupling is present,
and are suppressed at large w, since the gap � gets larger
than the energy scale kB�T . However, they present a max-
imum at different values of w, namely at about w = 2kBT ,
for the frozen component, and at about w = 0.2kBT , for the
adiabatic component. The bottom panel of Fig. 3 shows that
the two components of the coherence ρ̄+− behave differently
as functions of �T . While the frozen component vanishes
for �T = 0 and thereafter increases, the adiabatic component
first decreases (starting from a finite value at �T = 0), reach-
ing a minimum at �T 	 0.4T and thereafter increasing.

In summary, in the frozen case, we observe that the ef-
fect of coherence becomes significant close to degeneracy
and in highly nonequilibrium conditions [49,79]. Although
the coherence due to frozen dynamics is suppressed near
equilibrium conditions, we show that the coherence can be
enhanced by adiabatic driving (see Fig. 3). In addition, for
small values of interlevel coupling (w ≈ 0) the coherence in
the two cases are comparable. These results can have potential
impact on theoretical as well as experimental works based on
adiabatically driven quantum systems.

2. OTOC

The different components of the quantity Kll ′ (t ) =
Kll,l ′l ′ (t ), corresponding to the solution of Eq. (57) without
driving, are shown in Fig. 4 for different values of the initial

0.00 0.25 0.50 0.75 1.00
0.50

0.75

1.00

1.25

1.50

×10−1

K00

K0+

K0−
K++

K+−
K−−

0.00 0.25 0.50 0.75 1.00

ΔT/T

2.5

3.0

3.5

4.0
×10−1

p0

p+

p−

FIG. 5. Qutrit: steady-state values of OTOCs as a function of
thermal bias for the time independent case taking only the diagonal
terms of the projection operators. The parameters are the same as
in Fig. 4. As a reference, we also show in the bottom panel the
populations of the different levels for the same parameters.

conditions. Here the gauge term of the master equation (60)
does not play any role since Kll ′ correspond to the “rate” com-
ponent of the OTOC. Because of the normalization conditions
in Eq. (61), we have normalized the operators O(t ) such that∑

ll ′ Kll ′ (t ) = 1. We recall that OTOCs have been suggested
as useful quantities to characterize scrambling dynamics in
many-body systems. In nonintegrable Hamiltonians, OTOC’s
are expected to grow as a function of time [71–74]. In sys-
tems coupled to thermal baths these correlations stabilize after
some time [75,76] and tend to the asymptotic limit determined
by Eq. (61). This can be appreciated in the evolution shown in
Fig. 4. In the bottom panel of the same figure, we show the
evolution of the OTOCs for the same parameters and the same
initial conditions shown in the top panel, under the presence
of a thermal bias between the two reservoirs. Overall, we see
a similar behavior as in the case of equilibrium reservoirs
shown in the top panel. However, we can notice that the time
to reach the asymptotic limit is larger and we can see that in
some components there is an enhancement with respect to the
equilibrium case.

In Fig. 5, we can see the behavior of the stationary values
solution of Eq. (59) for the same parameters as in Fig. 4
in the nonequilibrium regime. For some components we can
see an enhancement of the OTOCs as the temperature bias
�T increases. The behavior of K00, K−−, K++ is correlated
with the behavior of the populations of the different levels,
as shown in the bottom panel of Fig. 5. The reason is that
the thermal bias generates relative changes in the populations,
which are accounted for by the nonequilibrium features of the
OTOCs.
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FIG. 6. Qutrit: adiabatic contribution to the OTOCs as a function
of thermal bias under adiabatic driving taking only the diagonal terms
of the projection operators and ϒL = 0.2, ϒR = 0.2, w = 0.05kBT ,
εC = 20 kBT , E0 = 0, E1(t ) + E2(t ) = 2kBT + 2kBT cos (�t + π

2 ),
E1(t ) − E2(t ) = 0.5kBT + 0.5kBT cos (�t ), h̄� = 0.01kBT , and the
normalization condition

∑
ll ′ K f

ll ′ = 1.

Finally, the effect of driving treated in the framework of
the adiabatic approximation is illustrated in Fig. 6. We recall
that these are corrections to the frozen components shown in
Fig. 5.

Interestingly, they are positive for the components
K00, K++, K0+, which are the ones that grow with �T in the
frozen case, while they are negative for the ones that decrease.

B. Coupled quantum dots

In this section, we analyze now a fermionic driven system
consisting of a pair of coupled quantum dots (QDs) [21].
For simplicity, we focus on the case with infinite intra-dot
Coulomb repulsion, which limits the occupation to, at the
most, one electron per quantum dot, and we assume spinless
fermions.

Concretely, we consider the following Hamiltonian for a
pair of coupled single-level quantum dots:

HS(t ) = E1(t ) â†
1â1 + E2(t ) â†

2â2

+ w(t ) (â†
1â2 + â†

2â1) + Un̂1n̂2, (74)

where â j and â†
j are, respectively, the annihilation and creation

operators for fermions in the quantum dot j = 1, 2 and n̂ j =
â†

j â j . The time-dependent parameters are the QDs’ energy
levels E1(t ) and E2(t ), and the hopping element w(t ) between
the two QDs, while U is the inter-dot Coulomb interaction.
The bath Hamiltonian is given by Eq. (2) with Nr = 2, b̂kα be-
ing fermionic operators for reservoir α = L, R. Moreover, we
assume a characterless spectral density, namely �α (ε) = �α ,
independent of energy. The contact Hamiltonian is given by

HC =
∑

k

VkLb̂†
kLâ1 +

∑
k

VkRb̂†
kRâ2 + H.c., (75)

so that each QD is connected only to one reservoir.
The Hilbert space of the double-dot system is composed of

the following four occupation states: |0〉 (empty), |1〉 = â†
1|0〉

0.00 0.25 0.50 0.75
−2

−1

0

1

J
(E

),
a

R
[k

B
T

]

×10−4

RE

QME

0.00 0.25 0.50 0.75
ΔT/T

−2

−1

0

1

J
(E

),
a

R
[k

B
T

]

×10−4

0 1 2
U [kBT ]

0.9

1.0

×10−4

FIG. 7. Adiabatically pumped energy current in the right reser-
voir averaged over one period relative to the qutrit system (top) and
to the coupled QD system (bottom) as a function of a �T . Solid
red (dashed black) lines results from the solution of the RE (QME).
Parameters values are w = 0.2kBT , εc = 100kBT , E1(t ) = 2kBT +
2kBT cos (�t − π

2 ), E2(t ) = kBT + kBT cos (�t ), h̄� = 0.01kBT ;
for qutrit ϒL = ϒR = 0.2 and for coupled quantum dots �L = �R =
0.2kBT , U = 0. In the inset of the lower panel, we plot the adia-
batically pumped energy current as a function of interdot Coulomb
interaction (U ) for �T = 0.8T and other parameters as in the main
panel. The chemical potential of the leads is μ = 0.

(single occupancy, left QD), |2〉 = â†
2|0〉 (single occupancy,

right QD) and |d〉 = â†
1â†

2|0〉 (double occupancy). The diago-
nalyzed system Hamiltonian reads

H̃S(t ) =
∑

l=0,±,d

εl (t )ρ̂ll , (76)

where ε±(t ) are given by Eq. (71), ε0 = 0 and εd (t ) = U +
ε1(t ) + ε2(t ). The contact Hamiltonian becomes

H̃C =
∑
k,α

∑
l=±

Vkα[λα,0l (t ) b̂†
kα

ρ̂0l + λα,dl (t ) b̂†
kα

ρ̂ld + H.c.],

(77)
where λL,0+(t ) = −λR,0−(t ) = λR,+d (t ) = λL,−d (t ) are the
same as in Eq. (73), while λα,ll ′ (t ) = λα,l ′l (t ). As before, the
full adiabatic master equation for diagonal and off-diagonal
terms of the density matrix and the OTOC can be obtained
after calculating Eqs. (47) and (48) following Sec. III B. Since
the kernel W is very similar to the qutrit case, the behavior
of the matrix elements ρ jl is qualitatively similar to what is
shown in Figs. 2 and 3.
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Our aim now is to calculate the energy currents flowing
through the system between the reservoirs as a consequence
of the combined effect of the thermal bias and the ac-driving.
We consider a modulation in time of the parameters E1(t ) and
E2(t ) according to the scheme presented in Sec. IV A, while
taking w time-independent. We notice that, in the adiabatic
regime, asymmetric coupling (with respect to the reservoirs) is
a necessary condition to obtain a net pumping of energy over
a period when �T = 0 [12]. In Fig. 7, we plot the adiabati-
cally pumped energy current (averaged over a period) flowing
into the right reservoir J̄ (E ),a

R = �/(2π )
∫ 2π/�

0 dt J (E ),a
R (t ) as

a function of the �T for both systems, qutrit and coupled QD,
corresponding, respectively, to the upper and lower panels. It
is interesting to analyze here the role of the coherences in
evaluating the currents. The solid red lines result from the
solution of the RE, in the absence of coherence effects, while
the dashed black lines result from the solution of the QME.
The fact that the value of J̄ (E ),a

R is negative (in a range of
values of �T ) means that the energy current is exiting the
right, cold reservoir, so that the system works as a refriger-
ator. Interestingly, in both cases we find that the presence of
coherence decreases the absolute value of the energy current,
thus suppressing the refrigeration effect [6,79]. The effect is
more pronounced for the qutrit than for the coupled QD case.
The dependence of adiabatically pumped energy current on
the interdot Coulomb interaction (U ) is shown in the inset
of the lower panel of Fig. 3. We observe that, for this driv-
ing protocol, the energy current decreases monotonously as
a function of U. This is because in the present problem the
energy transport is associated to charge fluctuations between
the quantum dots and the reservoirs. For these parameters
[chemical potential of the reservoirs μ = 0, and Ej (t ) � kBT ]
the dominant fluctuation is between singly and doubly occu-
pancy and the Coulomb blockade mechanism induced by U
inhibits the charge and energy transport.

V. SUMMARY AND CONCLUSIONS

We have presented a derivation of the quantum master
equation ruling the adiabatic dynamics of a driven system

weakly coupled to nonequilibrium reservoirs. The formalism
applies to any Hamiltonian system with finite dimension of
its Hilbert space at which a slowly varying time-dependent
perturbation is applied and weakly coupled to fermionic or
bosonic baths. Our derivation includes the equations for the
dynamics of the reduced density matrix of the finite-size sys-
tem, the currents between the system and the reservoirs and
the out-of-time-order correlation (OTOC) functions.

We have illustrated the application of the formalism with
two examples: a qutrit coupled to two bosonic baths and two
coupled quantum dots attached to fermionic baths. In both
cases, a time-periodic perturbation with low frequencies, con-
sistent with the adiabatic regime, and a temperature bias were
considered. In the frozen case, we showed the relevance of the
off-diagonal terms of the density matrix (coherences) in the
far-from equilibrium (corresponding to large temperature dif-
ferences between reservoirs) and near degeneracy situations.
In addition, in the other regime (near equilibrium and for small
values of inter-system coupling) when the frozen contribu-
tion to off-diagonal terms becomes small, we observed that
the adiabatic contribution to the off-diagonal terms becomes
significant.

We have also analyzed the steady-state and adiabatic so-
lutions of the OTOC. The present formalism may represent
a useful tool to analyze the dynamics of the OTOC in other
Hamiltonian systems coupled to reservoirs in nonequilibrium
scenarios.
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APPENDIX A: EVALUATION OF THE MEAN VALUES

In this section, we will evaluate the mean values entering in Eq. (17). The mean values will be calculated perturbatively up to
first order in the coupling strength Vkα , starting with the time-ordered correlator

i〈TK b̂†
kα

(t ′)ρ̂m j (t )〉 ≈
∫

K
dt1

〈
TK

[
H̃H

C (t1)b̂†
kα

(t ′)ρ̂m j (t )
]〉 = Vkα

∑
uv

λα,uv

∫
K

dt1〈TK [ρ̂uv (t1)b̂kα (t1)b̂†
kα

(t ′)ρ̂m j (t )]〉. (A1)

We can deform the contour K into a pair of contours such that K1 goes from −∞ to t and back to −∞ and K2 from −∞ to t ′
and back to −∞. We can write ∫

K1

=
∫ t

−∞
+

∫ −∞

t
;

∫
K2

=
∫ t ′

−∞
+

∫ −∞

t ′
, (A2)

such that

i〈b̂†
kα

(t ′)ρ̂m j (t )〉 ≈ Vkα

∑
uv

λα,uv

[[∫ t

−∞
dt1〈b̂†

kα
(t ′)ρ̂m j (t )ρ̂uv (t1)b̂kα (t1)〉 +

∫ −∞

t
dt1〈b̂†

kα
(t ′)ρ̂uv (t1)b̂kα (t1)ρ̂m j (t )〉

]

+
[∫ t ′

−∞
dt1〈b̂†

kα
(t ′)ρ̂uv (t1)b̂kα (t1)ρ̂m j (t )〉 +

∫ −∞

t ′
dt1〈ρ̂uv (t1)b̂kα (t1)b̂†

kα
(t ′)ρ̂m j (t )〉

]]
. (A3)
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For the mixed lesser Green’s function defined in Eq. (16),
using Wick’s theorem Eq. (A3) can be rewritten as

G<
m j,kα (t, t ′)

≈
∫ ∞

−∞
dt1Vkα

∑
uv

λα,uv (t )
[
gr

m j,vu(t, t1)g<
kα (t1, t ′)

+ g<
m j,vu(t, t1)ga

kα (t1, t ′)
]
, (A4)

where the definition for the system Green’s functions are
given in Eqs. (26) and (27). The lesser and greater Green’s
function for the baths are defined as

g<
kα (t1, t2) = ±i〈b†

kα
(t2)bkα (t1)〉,

g>
kα (t1, t2) = −i〈bkα (t1)b†

kα
(t1)〉, (A5)

where the upper sign applies to fermionic reservoirs and the
lower sign is for bosonic reservoirs. The corresponding re-
tarded and advanced Green’s functions can be obtained using
a similar relation as in Eq. (27).

APPENDIX B: FROZEN AND ADIABATIC COMPONENTS
OF LESSER GREEN’S FUNCTION

The lesser Green’s function is given by

g<
l j,vu(t1, t2) = ±i〈ρ̂uv (t2)ρ̂l j (t1)〉. (B1)

Writing in terms of evolution operators,

g<
l j,vu(t1, t2) = ±i

〈
T̂K ei/h̄

∫ t2
t0

H̃S (t ′ )dt ′
ρ̂uv

× e−i/h̄
∫ t2

t1
H̃S (t ′ )dt ′

ρ̂l je
−i/h̄

∫ t1
t0

H̃S (t ′ )dt ′ 〉
. (B2)

Using H̃S (t ′) = H̃ f
S + δH̃S(t ′) along with Eq. (37), we obtain

g<
l j,vu(t1, t2) = ±i

〈
T̂K ei/h̄

∫ t2
t0

δH̃S (t ′ )dt ′
ρ̂ f

uv (t2)

× e−i/h̄
∫ t2

t1
δH̃S (t ′ )dt ′

ρ̂
f
l j (t1)e−i/h̄

∫ t1
t0

δH̃S (t ′ )dt ′ 〉
.

(B3)

For the contour shown in Fig. 8, where contour K goes
from t0 → t1 → t2 → t0, we can write

g<
l j,vu(t1, t2) = ±i

〈
T̂K e−i/h̄

∫
K δH̃ f

S (t ′ )dt ′
ρ̂ f

uv (t−
2 )ρ̂ f

l j (t
+
1 )

〉
, (B4)

where we used δH̃S ≡ δH̃ f
S considering the driving to be slow

enough. One other simplification entailed by slow driving
is that one can Taylor expand the exponential in Eq. (B4),

FIG. 8. The Keldysh contour.

obtaining

e−i/h̄
∫

K δH̃ f
S (t ′ )dt ′ ≈ 1−i/h̄

∫
K

δH̃ f
S (t ′)dt ′, (B5)

such that

g<
l j,vu(t1, t2) = ±i

〈
T̂K ρ̂ f

uv (t−
2 )ρ̂ f

l j (t
+
1 )

〉
± 1/h̄

〈
T̂K

∫
K

δH̃ f
S (t ′)dt ′ ρ̂ f

uv (t−
2 )ρ̂ f

l j (t
+
1 )

〉
,

(B6)

where the first term on the right-hand side is the frozen con-
tribution to the lesser Green’s function,

g<, f
l j,vu(t1, t2) = ±iδlv

〈
ρ̂

f
u j (t1)

〉
eiεuv (t2−t1 )

= ±iδlv
〈
ρ̂

f
u j (t2)

〉
eiε jv (t2−t1 ), (B7)

whereas the second term gives the higher order contributions,

δg<, f
l j,vu(t1, t2)

= ±1/h̄
N∑

k=1

〈
T̂K

∫
K

ξk (t ′)ρ̂ f
kk (t ′)dt ′ ρ̂ f

uv (t−
2 )ρ̂ f

l j (t
+
1 )

〉
,

(B8)

where we used the second equation of Eq. (35). Expanding
over the Keldysh contour, we get

δg<, f
l j,vu(t1, t2)

= ±1/h̄
N∑

k=1

[〈∫ t1

t0

dt ′ξk (t ′) ρ̂ f
uv (t2)ρ̂ f

l j (t1)ρ̂ f
kk (t ′)

〉

+
〈∫ t2

t1

dt ′ξk (t ′) ρ̂ f
uv (t2)ρ̂ f

kk (t ′)ρ̂ f
l j (t1)

〉

+
〈∫ t0

t2

dt ′ξk (t ′) ρ̂
f
kk (t ′)ρ̂ f

uv (t2)ρ̂ f
l j (t1)

〉
. (B9)

After some simple calculations, we obtain

δg<, f
l j,vu(t1, t2) = − i

h̄
g<, f

l j,uv
(t1, t2)

[∫ t1

t0

dt ′ξ j (t
′)

+
∫ t2

t1

dt ′ξv (t ′) +
∫ t0

t2

dt ′ξu(t ′)
]
. (B10)

APPENDIX C: CALCULATION OF TRANSITION RATES

Using Eqs. (39) and substituting in the first term of
Eq. (21), for κ = 0 we have for the imaginary part

i
∫

dt1Im
[
gr, f

m j,vu(t, t1)
]
�<(0)

α (t1, t )

= ±�α (�εuv )

2
nα (εuv )

(〈
ρ̂ f

mv

〉
tδ ju ± 〈

ρ̂
f
u j

〉
t
δmv

)
, (C1)

which are referred to as dissipation-type terms [46]. Similarly,
there are also terms of the type,∫

dt1Re
[
gr, f

m j,vu(t, t1)
]
�<(0)

α (t1, t )

= −i
〈(
ρ̂ f

mv

〉
tδ ju ± 〈

ρ̂
f
u j

〉
t
δmv

)
P

∫
dε

2π

nα (ε)�α (ε)

ε − εuv

, (C2)
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which lead to the level renormalization. For some specific
spectral functions, the above integral can be calculated explic-
itly [49]. Moreover, substituting Eq. (39) in the first term of
Eq. (21), for κ = 1 the imaginary part is given by

i
∫

dt1Im
[
gr, f

m j,vu(t, t1)
]
�<(1)

α (t1, t )

= ±εuv

�α (εuv )

2
nα (εuv )

(〈
ρ̂ f

mv

〉
tδ ju ± 〈

ρ̂
f
u j

〉
t
δmv

)
. (C3)

Similarly, the real part becomes∫
dt1Re

[
gr, f

m j,vu(t, t1)
]
�<(1)

α (t1, t )

= −i
〈(
ρ̂ f

mv

〉
tδ ju ± 〈

ρ̂
f
u j

〉
t
δmv

)
P

∫
dε

2π

ε nα (ε)�α (ε)

ε − εuv

.

(C4)

All other terms in Eq. (21) can be similarly evaluated. Sub-
stituting the above results in Eq. (21) neglecting the effect of
lamb shift, for κ = 0, we obtain

�
α(0)
m j (t ) = h̄

∑
u

[
λα, ju(t )

2
γα,u jm(t ) ρmu

−λα,um(t )

2
γ̃α, jmu(t ) ρu j

]
(C5)

and

�
α(0)
jm (t ) = h̄

∑
u

[
λα, ju(t )

2
˜̄γα,m ju(t ) ρmu

− λα,um(t )

2
γ̄α,um j (t ) ρu j

]
, (C6)

where we have introduced

γα,u jm(t ) = γ f
α (ε ju) + δγα,u jm(t ),

γ̃α, jmu(t ) = γ̃ f
α (εum) + δγ̃α, jmu(t ),

γ̄α,um j (t ) = γ f
α (εmu) + δγ̄α,um j (t ),

˜̄γα,m ju(t ) = γ̃ f
α (εu j ) + δ ˜̄γα,m ju(t ). (C7)

The first terms on the right-hand side of Eqs. (C7) are
the frozen contributions originating from Eq. (39) and ex-
pressed as γ

f
α (ε) = h̄−1nα (ε)�(0)

α (ε) and γ̃
f

α (ε) = h̄−1(1 ∓
nα (ε))�(0)

α (ε). On the other hand, the second terms on the right
hand side of Eqs. (C7) are due to the adiabatic correction given
by Eq. (40). The contribution due to level renormalization
have been neglected.

APPENDIX D: EVALUATION OF THE MEAN VALUES
FOR THE OTOCs

For simplicity, we consider the bosonic case such that
the bath and the system degrees of freedom commute. The
mean value associated with the lesser Green’s function in the

FIG. 9. The augmented Keldysh contour K for the OTOC.

interaction picture can be written as

i
〈
b†H

kα
(t ′)K̂l j,h f (t )

〉
≈

∫
K

dt1〈TK [H̃C b†
kα

(t ′)K̂l j,h f (t )]〉

=
∑
uv

Vkαλ̄α,uv (t )
∫

K
dt1〈TK [ρ̂uv (t1)bkα (t1)b†

kα
(t ′)

× ρ̂l j (t )OB(t0)ρ̂h f (t )OD(t0)]〉, (D1)

where t lies in the arm where the contour goes from −∞
to ∞ and t ′ in the arm which goes from ∞ to −∞. The
calculation of mean values cannot be done in the traditional
Keldysh fashion as the out-of-time-order correlators (OTOC)
have an abnormal time ordering. Instead we proceed along the
line of argument of Ref. [73]. We will consider an augmented
Keldysh contour as shown in Fig. 9. In terms of the augmented
contour, the lesser Green’s function can be expressed as

i
〈
b†H

kα
(t ′)K̂H

l j,h f (t )
〉

=
∑
u,v

Vkαλ̄α,uv (t )
∫

K
dt1

〈
TK

[
ρ̂uv (t1)bkα (t1)b†

kα
(t ′)

× ρ̂l j (t
u)OB

(
t u
0

)
ρ̂h f (t d )OD(t d

0 )
]〉
. (D2)

In the next step, we deform the contour as shown in Fig. 10.

FIG. 10. The deformed augmented Keldysh contour such that t
and t ′ lie in different Keldysh contours.
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The integration over the Keldysh contour can be broken down into 6 different parts (d−, d+, u−, u+ in K1 and forward and
backward going branch in K2) depending on where t1 is pinned. The integral over the Keldysh contour can be expressed as∫

K
dt1 =

∫ t d

td
0

dtd−
1 +

∫ t0

t d

dtd+
1 +

∫ t ′d

t0

dtd ′−
1 +

∫ t u
0

t ′d
dtd ′+

1

+
∫ t u

tu
0

dtu−
1 +

∫ t0

t u

dtu+
1 +

∫ t ′u

t0

dtu′−
1 +

∫ t0

t ′u
dtu′+

1 . (D3)

We can stretch t d/u
0 and t0 to −∞, such that

i
〈
b†H

kα
(t ′)K̂H

l j,h f (t )
〉 =

∑
u,v

Vkαλ̄α,uv (t )
∫ ∞

−∞
dt1[θ (t − t1)〈ρ̂l j (t )OB(t0)[ρ̂h f (t ), ρ̂uv (t1)]OD(t0)〉〈b†

kα
(t ′)bkα (t1)〉

+ θ (t ′ − t1)〈ρ̂l j (t )OB(t0)ρ̂uv (t1)ρ̂h f (t )OD(t0)〉[〈b†
kα

(t ′)bkα (t1)〉 − 〈bkα (t1)b†
kα

(t ′)〉]
+ θ (t − t1)〈[ρ̂l j (t ), ρ̂uv (t1)]OB(t0)ρ̂h f (t )OD(t0)〉〈b†

kα
(t ′)bkα (t1)〉

+ θ (t ′ − t1)〈ρ̂uv (t1)ρ̂l j (t )OB(t0)ρ̂h f (t )OD(t0)〉[〈b†
kα

(t ′)bkα (t1)〉 − 〈bkα (t1)b†
kα

(t ′)〉]]. (D4)

In terms of Green’s functions, one can write

G<
l jh f ,kα (t, t ′)

	
∫ ∞

−∞
dt1Vkα

∑
u,v

λα,uv (t )

× [
gr

l jh f ,uv (t, t1)g<
kα (t1, t ′) + g<

l jh f ,uv (t, t1)ga
kα (t1, t ′)

]
,

(D5)

where

gr
l jh f ,vu(t, t ′)

= −iθ (t − t ′)〈ρ̂l j (t )OB(t0)[ρ̂h f (t ), ρ̂uv (t ′)]−
× OD(t0) + [ρ̂l j (t ), ρuv (t ′)]−OB(t0)ρ̂h f (t )OD(t0)〉

(D6)

and

g<
l jh f ,vu(t, t ′) = −i〈ρ̂uv (t ′)ρ̂l j (t )OB(t0)ρ̂h f (t )OD(t0)〉

− i〈ρ̂l j (t )OB(t0)ρ̂uv (t ′)ρ̂h f (t )OD(t0)〉. (D7)

In the case with fermionic baths, the commutator changes to
anti-commutator and the lesser Green’s function changes by a
sign.

APPENDIX E: FROZEN AND ADIABATIC COMPONENTS
OF LESSER GREEN’S FUNCTION FOR THE

CASE OF OTOC

The lesser Green’s function for the case of OTOC can be
separated into frozen and adiabatic components (similar to
the case of density matrix). We now introduce the interaction
representation with respect to H̃ f

S and consider the Green’s
function

g<
l jh f ,vu(t1, t2) = g<, f

l jh f ,uv
(t1, t2) + δg<, f

l jh f ,uv
(t1, t2), (E1)

where the frozen contribution is

g<, f
l jh f ,vu(t1, t2) = ±i

〈
ρ̂ f

uv (t−
2 )K̂ f

l j,h f (t+
1 )

〉
± i

〈
ρ̂

f
l j (t

+
1 )OB(t0)ρ̂ f

uv (t−
2 )ρ̂ f

h f (t+
1 )OD(t0)

〉
(E2)

and the adiabatic contribution is

δg<, f
l jh f ,vu(t1, t2)

= ±1

h̄

〈
Tk

∫
K

dt ′δH̃ f
S (t ′)ρ̂ f

uv (t−
2 )K̂ f

l j,h f (t+
1 )

〉
± 1

h̄

〈
Tk

∫
K

dt ′

× δH̃ f
S (t ′)ρ̂ f

l j (t
+
1 )OB(t0)ρ̂ f

uv (t−
2 )ρ̂ f

h f (t+
1 )OD(t0)

〉
.

(E3)

After some calculation using the Keldysh contour in Fig. 9,
we obtain

δg<, f
l jh f ,vu(t1, t2)

= ±1

h̄

∫ ∞

−∞
dt ′(〈K̂ f

u j,h f (t1)
〉
δvl×

× [θ (t1 − t ′)ξ f j,hv (t ′)+ θ (t2 − t ′)ξv,u(t ′)]+ 〈
K̂ f

l j,u f (t1)
〉

× δvh[θ (t1 − t ′)ξ f j,lv (t ′) + θ (t2 − t ′)ξv,u(t ′)]
)
eiεvu(t1−t2 ).

(E4)

APPENDIX F: CALCULATION OF FROZEN TRANSITION
RATES FOR THE OTOC MASTER EQUATION

We have the following relations for the bath Green’s func-
tion

gr
kα (t, t1) = −iθ (t − t1)e−iεkα (t−t1 ),

ga
kα (t, t1) = iθ (t1 − t )e−iεkα (t−t1 ),

g<
kα (t, t1) = ±inα (εkα )e−iεkα (t−t1 ). (F1)

Similarly for the system Green’s functions

g<, f
l jl ′ j′,vu(t, t1) = ±i

[
δlv

〈
K f

u j,l ′ j′ (t )
〉 + δl ′v

〈
K f

l j,u j′ (t )
〉]

eiεvu (t−t1 ),

(F2)

g<, f
uv, jl j′l ′ (t, t1) = ±i

[
δ j′u

〈
K f

l j,l ′v (t )
〉 + δ ju

〈
K f

lv,l ′ j′ (t )
〉]

eiεvu(t−t1 ),

(F3)
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the retarded Green’s function

gr, f
l jl ′ j′,vu(t, t1)

= −iθ (t − t1)eiεvu(t−t1 )(δu j
〈
K f

lv,l ′ j′ (t )
〉

± δvl
〈
K f

u j,l ′ j′ (t )
〉 + δ j′u

〈
K f

l j,l ′v (t )
〉 ± δvl ′

〈
K f

l j,u j′ (t )
〉)
,

(F4)

and the advanced Green’s function

ga, f
uv, jl j′l ′ (t1, t )

= iθ (t − t1)eiεvu(t−t1 )
(
δvl

〈
K f

u j,l ′ j′ (t )
〉

± δu j
〈
K f

lv,l ′ j′ (t )
〉 + δvl ′

〈
K f

l j,u j′ (t )
〉 ± δ j′u

〈
K f

l j,l ′v (t )
〉)
.

(F5)

Now we can calculate individual expressions in Eq. (24) such
as ∫

dt1gr, f
l jl ′ j′,vu(t, t1)g<

kα (t1, t )

= ±i
(
δu j

〈
K f

lv,l ′ j′ (t )
〉 ± δvl

〈
K f

u j,l ′ j′ (t )
〉 + δ j′u

〈
K f

l j,l ′v (t )
〉

± δvl ′
〈
K f

l j,u j′ (t )
〉)

nα (εkα )

[
1

εkα − εuv + iη

]
. (F6)

Similarly,∫
dt1g<, f

l jl ′ j′,vu(t, t1)ga
kα (t1, t )

= ∓i
[
δvl

〈
K f

u j,l ′ j′ (t )
〉 + δvl ′

〈
K f

l j,u j′ (t )
〉][ 1

εkα − εuv + iη

]
,

(F7)∫ ∞

−∞
dt1gr

kα (t, t1)g<, f
uv, jl j′l ′ (t1, t )

= ∓i
[
δ j′u

〈
K f

l j,l ′v (t )
〉 + δ ju

〈
K f

lv,l ′ j′ (t )
〉][ 1

εkα − εvu + iη

]
,

(F8)

and∫
dt1g<

kα (t, t1)ga, f
uv, jl j′l ′ (t1, t )

= ±i
(
δvl

〈
K f

u j,l ′ j′ (t )
〉 ± δu j

〈
K f

lv,l ′ j′ (t )
〉 + δvl ′

〈
K f

l j,u j′ (t )
〉

± δ j′u
〈
K f

l j,l ′v (t )
〉)

nα (εkα )

[
1

εkα − εvu + iη

]
. (F9)

Using the relation

1

εkα − εmn ± iη
= P

{
1

εkα − εmn

}
∓ iπδ(εkα − εmn), (F10)

and neglecting the principal value (which gives rise of level
renormalization effects), we obtain

∫
dt1gr, f

l jl ′ j′,vu(t, t1)�<(0)
α (t1, t ) = ±�(0)

α (εuv )

2
nα (εuv )

(
δu j

〈
K f

lv,l ′ j′ (t )
〉 ± δvl

〈
K f

u j,l ′ j′ (t )
〉 + δ j′u

〈
K f

l j,l ′v (t )
〉 ± δvl ′

〈
K f

l j,u j′ (t )
〉)
, (F11)

where �
(0)
kα

(t1, t ) = ∑
k |Vkα|2gkα (t1, t ) for all the bath Green’s functions. Similarly,

∫
dt1g<, f

l jl ′ j′,vu(t, t1)�a(0)
α (t1, t ) = ∓�(0)

α (εuv )

2

[
δvl

〈
K f

u j,l ′ j′ (t )
〉 + δvl ′

〈
K f

l j,u j′ (t )
〉]
, (F12)

∫
dt1�

r(0)
α (t, t1)g<, f

uv, jl j′l ′ (t1, t ) = ∓�(0)
α (εvu)

2

[
δ j′u

〈
K f

l j,l ′v (t )
〉 + δ ju

〈
K f

lv,l ′ j′ (t )
〉]
, (F13)

and

∫
dt1�

<(0)
α (t, t1)ga, f

uv, jl j′l ′ (t1, t ) = ±�(0)
α (εvu)

2
nα (εvu)

(
δvl

〈
K f

u j,l ′ j′ (t )
〉 ± δu j

〈
K f

lv,l ′ j′ (t )
〉 + δvl ′

〈
K f

l j,u j′ (t )
〉 ± δ j′u

〈
K f

l j,l ′v (t )
〉)
. (F14)

Substituting Eqs. (F11), (F12), (F13), and (F14) in Eqs. (29) and (30), in terms of transition rates, we obtain

�α,OTOC
l jl ′ j′ (t, t ) = h̄

2

∑
u

[
λα, ju(t )γα (ε ju)

〈
K f

lu,l ′ j′ (t )
〉 + λα, j′u(t )γα (ε j′u)

〈
K f

l j,l ′u(t )
〉

− λα,ul (t )γ̃α (εul )
〈
K f

u j,l ′ j′ (t )
〉 − λα,ul ′ (t )γ̃α (εul ′ )

〈
K f

l j,u j′ (t )
〉]
, (F15)

�
α,OTOC
jl j′l ′ (t, t ) = − h̄

2

∑
u

[
λα,ul (t )γα (εlu)

〈
K f

u j,l ′ j′ (t )
〉 + λα,ul ′ (t )γα (εl ′u)

〈
K f

l j,u j′ (t )
〉

− λα, j′u(t )γ̃α (εu j′ )
〈
K f

l j,l ′u(t )
〉 − λα, ju(t )γ̃α (εu j )

〈
K f

lu,l ′ j′ (t )
〉]
. (F16)
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Finally, we have

∂Kl j,l ′ j′ (t )

∂t
= i

h̄
[εl (t ) − ε j (t ) + εl ′ (t ) − ε j′ (t )]Kl j,l ′ j′ (t ) + 1

h̄

∑
m

[
λα,ml (t )�α,OTOC

m jl ′ j′ (t ) − λα, jm(t )�α,OTOC
lml ′ j′ (t )

+ λα,ml ′ (t )�α,OTOC
l jm j′ (t ) − λα, j′m(t )�α,OTOC

l jl ′m (t ) + λα,ml (t )�
α,OTOC
jm j′l ′ (t ) − λα, jm(t )�

α,OTOC
ml j′l ′ (t )

+ λα,ml ′ (t )�
α,OTOC
jl j′m (t ) − λα, j′m(t )�

α,OTOC
jlml ′ (t )

]
. (F17)

APPENDIX G: ADIABATIC CHANGE OF THE BASIS OF EIGENSTATES

Introducing the notation ∂X instead of ∂/∂X, we have

∂X(|l〉〈 j|) = |∂Xl〉〈 j| + |l〉〈∂X j| (G1)

Using Eq. (D3) of Ref. [12], we obtain

〈l ′|∂Xl〉 = 〈l ′|∂XHS|l〉
εl − εl ′

, l �= l ′. (G2)

Operating on both sides by
∑

l ′ |l ′〉, and taking only the contribution originating in the gauge term, we obtain

∂X|l〉 =
∑

l ′
Al ′,l |l ′〉. (G3)

Similarly, using the other equation in Eq. (D3) of Ref. [12], we obtain

〈∂X j|l ′〉 = 〈 j|∂XHS|l ′〉
ε j − εl ′

, l �= l ′. (G4)

Operating on both sides by
∑

l ′ 〈l ′|, we obtain

〈∂X j| = −
∑

l ′
Aj,l ′ 〈l ′| (G5)
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