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Kibble-Zurek mechanism in polariton graphene

D. D. Solnyshkov ,1,2 L. Bessonart,1 A. Nalitov,1,3 and G. Malpuech1

1Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, F-63000 Clermont-Ferrand, France
2Institut Universitaire de France (IUF), F-75231 Paris, France

3Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, UK

(Received 10 March 2021; revised 28 June 2021; accepted 7 July 2021; published 19 July 2021)

We study the formation of topological defects (quantum vortices) during the formation of a two-dimensional
(2D) polariton condensate at the � point of a honeycomb lattice via the Kibble-Zurek mechanism. The lattice
modifies the single-particle dispersion. The typical interaction energies at the quench time correspond to the
linear part of the dispersion. The resulting scaling exponent for the density of topological defects is numerically
found as 0.95 ± 0.05. This value differs from the one expected for 2D massive particles (1/2), but is indeed
compatible with the one expected for a linear dispersion. We moreover demonstrate that the vortices can be
pinned to the lattice, which prevents their recombination and could facilitate their observation and counting in
continuous wave experiments.
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I. INTRODUCTION

Topological photonics is a rapidly developing area which
already covers a wide range of hot topics of modern physics
[1,2]. Interesting nontrivial effects with important practical
applications, such as the quantum Hall effect (normal and
anomalous) and the associated chiral edge states that can be
used for topological lasing [3–7] or optical isolation [8], were
observed in photonic lattices. Photonic systems have allowed
measuring the Berry curvature [9] characterizing such topo-
logical effects.

Among different photonic platforms, exciton-polaritons
(polaritons) [10] claim a special place thanks to their strong
intrinsic nonlinearity. Indeed, they arise from strong light-
matter coupling, and as such can benefit from the repulsive
exciton-exciton interactions, ensuring an effective χ3 coeffi-
cient 106 times higher than the typical Kerr nonlinearity [11].
The polariton platform is also extremely practical from the
experimental point of view, offering full access to the system’s
wave function (density and phase) control and measurement
both in the real space and in the reciprocal space.

These unique features of exciton-polaritons allow merging
topological photonics [1] with the field of interacting quan-
tum fluids [12,13]. The first important question arising at the
crossroads of the two fields is the modification of topology by
interactions of the fluids [14–16] and, in particular, the sta-
bility of the topologically protected modes in lasers [17–19].
The possibilities of synergy of the two fields were already
demonstrated by enhancement of topological protection in
lattices due to quantum fluid interactions [20].

Aside from the band topology context, quantum fluids
have been known since the dawn of their study to support
topological defects [21], the most famous example being the
quantum vortex [22]. Quantum vortices are protected by a par-
ticular real-space topological invariant known as the winding

number [23], which ensures their stability. They can only be
removed via vortex-antivortex annihilation, or by reaching the
zero-density system boundaries. Quantum vortices have been
observed in liquid He [24,25], in atomic condensates [26], in
light beams propagating in atomic vapors [27], and also in po-
laritonic systems [28]. Here, quantum vortices can be created
in nonequilibrium flows via quantum turbulence mechanisms
[29,30]. Another way is based on preferential condensation at
selected orbital angular momentum states [31–33]. It is also
possible to imprint quantum vortices at will under resonant
pumping [34,35], using spatial light modulators.

A particularly interesting mechanism of generation of
topological defects is the Kibble-Zurek mechanism (KZM),
based on the intrinsic nonadiabaticity of second-order phase
transitions. Initially proposed in the context of the spon-
taneous symmetry breaking defects in the early Universe
evolution by Kibble [36], it was later applied to determine
the residual quantum vortex density in superfluid liquid He
by Zurek [37,38], and then generalized to other systems and
configurations [39–41]. KZM is characterised by a particular
scaling of the density of the topological defects as a function
of the quenching speed (the characteristic time of the phase
transition). For homogeneous polariton condensates (without
lattices), these scalings were studied in several recent theoreti-
cal works [42–44]. One of the most important problems for the
experimental studies of this mechanism is the recombination
of the topological defects (vortex-antivortex recombination):
if they are allowed to move freely and do not benefit from any
additional protection, their density decreases with time after
the transition has occurred (as already noticed by Kibble [36])
and drops to zero at long timescales. Recently, it was shown
how this problem can be solved by additional topological
protection for the defects in one-dimensional (1D) polariton
lattices [3]. KZM in lattices was the subject of several recent
studies [45,46], some of which were focused on Dirac points
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[47,48] and topological insulators [49]. A specificity brought
by lattices with respect to homogeneous system is the change
of the dispersion, whose nonparabolicity can affect the scaling
exponents. The honeycomb lattice is particularly interesting
among others because it can exhibit a nontrivial topology if
the gap is opened at the Dirac point, which can be done, for
example, by using the spin-anisotropic interactions [15].

In this work, we address polariton condensation at the
lowest energy state (the � point) of a honeycomb lattice of
micropillar cavities. We demonstrate that the vortices formed
via the KZM can be pinned to the potential of the lattice. This
prevents their recombination and allows their observation and
counting in continuous wave (cw) single-switch-on experi-
ments. We demonstrate that the density of quantum vortices
exhibits a power-law scaling with the pumping power, with
the exponent corresponding to the mean-field predictions for a
two-dimensional (2D) system with a linear dispersion, which
in our case is induced by the lattice.

II. MODEL

We simulate the polariton condensation under nonresonant
pumping and the polariton dynamics in the honeycomb lat-
tice using the Gross-Pitaevskii equation with lifetime, energy
relaxation, and saturated gain

ih̄
∂ψ

∂t
= −(1 − i�)

h̄2

2m
�ψ + g|ψ |2ψ

+
(

U + iγ (ntot ) − ih̄

2τ

)
ψ + χ. (1)

Here m is the polariton mass, g is the polariton-polariton
interaction constant, U is the potential forming the honey-
comb lattice of polariton graphene, γ (n) is the saturated
gain term, ntot the total polariton density, τ is the polariton
lifetime, χ is the noise describing the spontaneuous scat-
tering from the excitonic reservoir, and � characterizes the
efficiency of the energy relaxation [50]. We solve Eq. (1)
numerically using the third-order Adams method for the time
derivative and a Graphics Processing Unit-accelerated Fast
Fourier Transform for the Laplacian. We chose the parameters
of a typical polariton graphene lattice [51] that we already
used to describe the polariton condensation in such a lattice
at the top of the first band. However, here we increased
the energy relaxation constant � and replaced the localized
Gaussian pumping of Ref. [51] by a homogeneous pumping.
Indeed, the numerous studies on the dynamics of polariton
condensation demonstrated that depending on the parameters
of the system, in particular, on the exciton-photon detuning
and on the size of the pumping spot, the condensation can
occur either as an equilibrium thermodynamic process or as
an out-of-equilibrium dynamical process [52–54]. Increasing
the detuning and the size of the pumping spot makes polariton
energy relaxation more efficient. The transition between the
condensation in excited states and in the ground state with
these parameters has been demonstrated experimentally in a
homogeneous 2D system [55].

Figure 1(a) shows the numerically calculated dispersion
of the polariton graphene (without the condensate) in the
direction ky (� → K → M → K ′ → �, marked with red
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FIG. 1. (a), (b) The numerically calculated energy dispersions of
the polariton graphene in the directions (a) ky (� → K → M → K ′)
and kx (� → M → �). Magenta numbers mark the condensation
points in Refs. [51,56,57] and in the present work, respectively.
(c) Spatial image of the lattice potential and the density of the con-
densate formed at the � point. A unit cell of the lattice is shown with
white lines. (d) Reciprocal space image confirming the condensation
at the � point of the first Brillouin zone. White dashed lines mark the
cuts shown in panels (a), (b).

characters), with well-resolved energy bands (the whole s
band and a part of the p band). This dispersion quite accu-
rately reproduces the experimental observations for polariton
graphene [51,56]. The numerical dispersion is obtained by
solving Eq. (1) in the linear regime, keeping only the kinetic
energy and the potential of the lattice. Figure 1(b) shows the
cut in the direction kx (� → M). The band extrema where the
polariton condensation has been observed experimentally are
marked with magenta numbers from 1 to 3 (corresponding to
Refs. [51,56,57]). One can see that it is possible to observe
condensation not only in the negative mass states (favored
by localized pumping), but also in positive mass states, as in
Ref. [57]. Condensation has also been observed in positive
mass states at the Dirac point of a triangular polariton lattice
[58]. Number 4 marks the theoretical result of the present
work. We decided to focus at the lowest energy state because
it provides a direct comparison to a system without a lattice.
It will also serve as a reference point for the future studies
of KZM in the condensation at the other particular points,
especially the K point.

We consider the case where polariton condensation occurs
as a dynamical process, when the effective temperature of
the system (determined by the parameter �) is kept constant,
whereas the density of the particles increases over time be-
cause of the constant pumping from the reservoir (described
by the term γ ), which overcomes the losses. Figure 1(c)
shows the contour of the lattice potential (black line), with the
hexagonal unit cell shown with white lines. The spatial distri-

035423-2



KIBBLE-ZUREK MECHANISM IN POLARITON GRAPHENE PHYSICAL REVIEW B 104, 035423 (2021)

bution of the density of the condensate n(x, y) = |ψ (x, y)|2 is
plotted using a normalized false colorscale. Finally, Fig. 1(d)
shows the reciprocal space image of the polariton condensate,
confirming that if the energy relaxation is sufficiently strong,
the condensate can form at the lowest energy state: the �

point of the first Brillouin zone. This is also confirmed by
the spatial distribution of the density of the condensate: the
condensate shown in Fig. 1(c) exhibits relatively weak density
modulations, contrary to the Bloch state of the highest energy
state of this band (where the condensation was observed in
Ref. [51]), which is completely antisymmetric, changes sign
between the sites of the lattice, and therefore exhibits zero
density between the sites.

III. RESULTS AND DISCUSSION

Now that we demonstrated the possibility of the formation
of the condensate at the � point of the honeycomb lattice, we
begin studying the formation of the topological defects via the
Kibble-Zurek mechanism and their behavior after the conden-
sation. As explained above, according to the Ginzburg-Landau
theory of the phase transitions, in any second-order phase
transition the relaxation time diverges when approaching the
transition point. At the same time, the characteristic size of the
fluctuations diverges as well because their energy cost tends
to zero. For quantum fluids described by a wave function,
such domains (formed within the normal phase) correspond
to the domains of coherence of the phase. The phase of the
wave function is constant within a single domain and different
between the domains. The lines of the phase jumps terminate
on topological defects which are quantum vortices whose
density is proportional to the density of the phase domains
and inversely proportional to their size. The details of the
calculation of the defect density will be given below because
first we would like to discuss the dynamics of the defects after
the condensation and the possibilities of their experimental
observation.

It is difficult to detect vortices by studying only the density
of the polariton condensate [such as shown in Fig. 1(a)],
especially since the vortices are attracted by low-density re-
gions, which are the centers of the unit cells. We therefore
use the curl of the condensate wave function ∇ × ψ to track
their positions. Indeed, since the quantum fluid described by a
complex-valued wave function is irrotational, the only points
with nonzero curl are the centers of the vortices with zero den-
sity [21]. Figure 2 shows the spatial image of the curl of the
condensate wave function with a certain number of vortices
(red spots) and antivortices (blue spots). This type of image
can be observed immediately after the condensation, and the
density of vortices is expected to depend on the quench time
via the Kibble-Zurek mechanism. However, before studying
this dependence, we will focus on the dynamics of these
vortices after the condensation.

Depending on the conditions (in particular, on the char-
acteristic interaction energy after the condensation), these
vortices can either freely migrate in the system or become
immediately pinned to the potential of the lattice (felt by the
vortices via the density of the condensate). In the first case, the
vortices and antivortices, exhibiting random walks, eventually
approach each other or the boundary of the lattice and anni-
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FIG. 2. (a) Spatial image of the curl of the wave function after
condensation exhibiting topological defects. The lattice potential is
shown as a black line. (b) The number of topological defects as
a function of time in the case of strong (gn = 1 meV) and weak
(gn = 0.25 meV) interactions (points: pinned and free vortices, re-
spectively). Solid lines show exponential decay fits.

hilate. Phase ordering kinetics in such conditions was studied
recently for polariton condensates in Ref. [43]. The number
of vortices [shown in Fig. 2(b) with black and red points]
decreases over time. This decay is expected to be hyperbolic
at high densities [59] (due to vortex-vortex interaction) and
then turn to exponential (due to the decay on the boundaries).
An exponential decay fit (solid black and red lines) gives a
characteristic time of about 330 ± 20 ps. It means that in a
cw experiment all vortices formed during the condensation
via the Kibble-Zurek mechanism will disappear before the
observation (whose typical timescale is measured in seconds
and not in picoseconds).

However, we found that the vortices are pinned to the
minima of the density (which are at the centers of the unit
cells) if the characteristic interaction energy gn (with n being
the maximal value of the density observed at the centers
of the lattice sites) is sufficient. Vortex pinning is a well-
known phenomenon, which has enabled the first experimental
observation of a quantum vortex in liquid He [60]. It also
occurs in superconductors [61] and in atomic condensates
[62]. However, in most cases vortices are pinned to defects.
Pinning to a lattice requires the vortex size ξ = h̄/

√
2gnm

to be comparable with the lattice parameter a. For atomic
condensates in optical lattices, the pinning transition was
considered theoretically [63,64] and demonstrated experimen-
tally [62]. The possibility to prevent the vortex decay in the
Kibble-Zurek mechanism by the pinning was suggested by
Zurek [38] for superconductors in two dimensions. We note
that the boundary of the system not only attracts vortices
(which could pin them), but also acts as a source of decay,
as a region of zero density where the phase is not defined.
When the vortices are pinned, the vortex mutual annihilation
is effectively suppressed. The condition for the transition be-
tween the two regimes is gn ∼ t , where t is the characteristic
width of the energy band. With the parameters of a typical
GaAs-based polariton graphene t ≈ 0.25 meV [51], we find
a critical interaction energy of the order of 0.5 meV. Above
this value, the vortices are pinned to the lattice. In this case,
the vortex lifetime is infinite, their numbers do not change
over time [blue and cyan points in Fig. 2(b)], and they can
be counted even in a cw experiment by self-interference mea-
surements [31] because they are completely pinned and do not
move at all. The possibilities to stabilize vortices in polariton
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condensates in inhomogeneous systems were found previ-
ously experimentally and theoretically in Refs. [29,65].

Now that we established the possibility of the experimental
measurement of the scaling and demonstrated the formation
of the topological defects in numerical experiments, let us dis-
cuss the scaling of their density that one can expect to observe.
In the Kibble-Zurek mechanism, the scaling of the density
of the topological defects with the dimensionless temperature
ε in vicinity of the transition is determined by two scaling
exponents: ν, the critical exponent of the correlation length
and z, the dynamic critical exponent [39]. The correlation
length writes

ξ (ε) = ξ0

|ε|ν , (2)

while the equilibrium relaxation time τ writes

τ (ε) = τ0

|ε|zν . (3)

The key feature of the condensation in the lattice of polariton
graphene is that the critical exponent of the correlation length
ν changes with respect to the condensation in a system without
a lattice. Indeed, it is the dispersion of an empty (bare) system
(before the formation of the condensate), which determines
the scaling in the Kibble-Zurek mechanism. However, it is
the dispersion at the interaction energy gn corresponding to
the moment of the loss of adiabaticity which has to be taken
into account. For a very low density and interaction energy
gn � t at the transition, one could expect to observe the same
scaling as predicted for a homogeneous 2D system (ν = 1/2).
However, in realistic experiments requiring vortex pinning,
but also a reasonable number of topological defects in a
finite-size sample, gn ∼ t , as discussed above. The dispersion
of polariton graphene is not parabolic, but linear in a broad
range close to this value, which allows writing the following
expression for the correlation length

h̄c0
1

ξ
∼ gn ∼ ε ⇐⇒ ξ = ξ0

|ε|1 (4)

giving the critical exponent ν = 1. We note that it is not the
dispersion of the weak excitations of the condensate which
needs to be used to determine the correlation length be-
cause the defect density is determined at the moment of the
loss of adiabaticity during the quench, when the extended
condensate is not formed yet, and thus the low-wave-vector
(long wavelength) bogolons cannot exist. We also note that
the association of the vortex pinning regime with the linear
dispersion at the interaction energy is not a coincidence or
a peculiarity of the honeycomb lattice. It can be expected to
occur in any strong lattice well-described by the tight-binding
approximation, where the dispersion is always described by
cosine functions E (k) ∼ cos ka, and the condition for the vor-
tex localization ξ ∼ a (see above) qualitatively corresponds to
the region with a vanishing second derivative ∂2E (k)/∂k2 ≈ 0
and a linear dispersion.

The dynamical critical exponent, linked with the energy
relaxation, is controlled by the energy relaxation term i��ψ

in Eq. (1). To determine how exactly the corresponding decay
rate scales with mode energy, we performed numerical simu-
lations in the absence of the condensate (as for the dispersions

(a) (b)

FIG. 3. (a) Effective decay rate scales linearly with mode energy
(circles: numerical simulation; solid line: linear fit). (b) Density
of topological defects as a function of the quenching parameter
(effective pumping) and a power-law fit with a scaling exponent
0.95 ± 0.05.

shown in Fig. 1) using relatively long pulses for the excitation
of the system. The results are shown in Fig. 3(a): the decay
rate depends linearly on the energy of the mode in a wide
range of values up to the Dirac point (E ≈ 0.7 meV), which
means that the relaxation time in Eq. (3) diverges hyperbol-
ically, and the product zν = 1, which gives z = 1 (and not
z = 2).

The final expression for the density of topological defects
contains also the dimensionality of the space D = 2 and the
dimensionality of the topological defects d = 0. It reads

nvort =
(

τ0

τq

)(D−d ) ν
1+zν

=
(

τ0

τq

)1

. (5)

The final scaling exponent is therefore equal to 1.
Changing the system’s temperature with time is not the

only way to vary the dimensionless temperature ε = (T −
Tc)/Tc and to cross the transition point ε = 0. While it is
indeed possible to observe polariton condensation by varying
temperature, this variation occurs at macroscopic timescales
and its speed is difficult to control. Another option is much
better suited to this system: one can vary the critical tem-
perature Tc by varying the particle density n because Tc ≈
h̄2n/2mkB (in 2D quasicondensation). When the amplification
exceeds the losses, the particle density behaves as n(t ) ∼
exp(�t ). Linearizing this dependence at the condensation
threshold density, one obtains a linear behavior for the dimen-
sionless temperature ε(t ) = t/τq, with the quench time τq ∼
�−1 and � ∼ (P − Pc). The quench time is therefore inversely
proportional to the pumping intensity excess over the thresh-
old value. In terms of Eq. (1), the relevant parameter can be
written as (γ0 − γeff )/γeff , where γ0 is the low-density limit of
the saturated gain γ (n) and γeff are the total losses determined
by the polariton lifetime τ and the energy relaxation �. Taking
into account the scaling exponent found above and the fact
that the vortex pinning occurs for interaction energies gn ≈ t ,
we can expect that at the pumping powers corresponding to
vortex pinning, the density of topological defects should in-
crease linearly with the pumping power (scaling exponent 1).

To test these analytical results we performed a set of nu-
merical experiments changing the gain γ0, which is equivalent
to changing the quench time in the Kibble-Zurek mechanism,
as discussed above. The results are plotted in Fig. 3(b), with
the number of vortices observed in a system of the size
120 μm × 120 μm shown as black points with error bars.
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Each point is an average over ten simulations and the error
bars correspond to the root-mean-square deviation. The red
line is a power-law fit, which shows that the density of topo-
logical defects in our numerical simulations exhibits a scaling
exponent of 0.95 ± 0.05. This value corresponds to the ana-
lytical predictions of a mean-field theory in two dimensions
with a linear dispersion. As explained above, the dispersion of
graphene is approximately linear in the region corresponding
to the critical interaction energy of the vortex pinning. The
scaling behavior is different from what was observed theoret-
ically for a 1D system with a lattice in Ref. [3], where the
protection against the decay of the topological defects was
ensured not by pinning, but by a topological invariant (the Zak
phase). The low density regime was accessible in that case,
and the scaling exponent was corresponding to the mean-field
predictions for a parabolic dispersion in one dimension. In the
framework of the present work, one can also expect that for
very low pumping powers, where the vortices are not pinned,
the scaling exponent should tend to the mean-field 2D limit
of 1/2. This limit should be tested by counting the vortex
density immediately after the condensation, to avoid the effect
of the decay. The leftmost point in Fig. 3(b) seems to indicate
the onset of the 1/2 scaling exponent corresponding to the
low-wave-vector limit of the dispersion (this slope is shown
by a blue dashed line).

IV. CONCLUSION

To conclude, we studied the polariton condensation in a
honeycomb lattice. We demonstrated that with a sufficiently
fast energy relaxation, the condensation can occur at the
ground state of the system (at the � point of the reciprocal
space). We showed that the quantum vortices formed dur-
ing the condensation via the Kibble-Zurek mechanism can
be pinned to the underlying lattice, which facilitates their
experimental observation in the cw regime. We demonstrate
that the presence of the lattice affects the scaling exponent
of the density of the topological defects, which is found to
be 0.95 ± 0.05 in numerical experiments, in agreement with
the mean-field prediction of 1 accounting for the lattice, as
compared with a value of 1/2 expected without a lattice.
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F. P. Laussy, D. Krizhanovskii, M. Skolnick, L. Marrucci,
A. Lemaitre et al., Nat. Phys. 6, 527 (2010).

[30] G. Nardin, G. Grosso, Y. Leger, B. Pietka, F. Morier-
Genoud, and B. Deveaud-Pledran, Nat. Phys. 7, 635
(2011).

[31] V. G. Sala, D. D. Solnyshkov, I. Carusotto, T. Jacqmin, A.
Lemaître, H. Terças, A. Nalitov, M. Abbarchi, E. Galopin,
I. Sagnes et al., Phys. Rev. X 5, 011034 (2015).

[32] N. C. Zambon, P. St-Jean, M. Milićević, A. Lemaître, A.
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