
PHYSICAL REVIEW B 104, 035416 (2021)

Analytical model of the acoustic response of nanogranular films adhering to a substrate
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A one-dimensional (1D) mechanical model for nanogranular films, based on a structural interface, is pre-
sented. The analytical dispersion relation for the frequency and lifetimes of the acoustics breathing modes
is obtained in terms of the interface layer thickness and porosity. The model is successfully benchmarked
both against three-dimensional finite element method simulations and experimental photoacoustic data on a
paradigmatic system available from the literature. A simpler 1D model, based on an homogenized interface,
is also presented and its limitations and pitfalls discussed at the light of the more sophisticated pillar model.
The pillar model captures the relevant physics responsible for acoustic dissipation at a disordered interface.
Furthermore, the present findings furnish to the experimentalist an easy-to-adopt, benchmarked analytical tool
to extract the interface layer physical parameters upon fitting of the acoustic data. The model is scale invariant
and may be deployed, other than the case of granular materials, where a patched interface is involved.
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I. INTRODUCTION

Nanogranular ultrathin films are at the forefront of a
wide range of technological applications [1] ranging from
nanomedicine [2], sensing [3–5], to electronics [6–12]. Ac-
cessing their mechanical properties, both within the film’s
bulk and at the interface region in contact with the sup-
porting substrate, is among the most urgent issues in view
of any device development. In this context photoacoustic
nanometrology plays a key role. For instance, the bulk prop-
erties of periodic nanogranular thin films have been explored
across a variety of configurations [13,14] ranging from 1D
[15], two-dimensional (2D) [16–22], to three-dimensional
(3D) [23,24] arrangements. Recently, the development of
table-top UV laser sources allowed generating surface acous-
tic waves with periodicity in the 10 nm range [25], hence
opening to mechanical nanometrology [26] of periodic gran-
ular thin films of thicknesses down to few nanometers
[27,28]. Photoacoustics investigations of the bulk properties of
nonperiodic nanogranular films have also been performed in
several contexts over granularities ranging from a few nm
[4,29,30] to hundreds of nm [31,32] up to the micron scale
[33]. As for interface properties, photoacoustic investiga-
tions mainly focused on homogeneous thin films [34–44],
nanogranular thin film interfaces remaining relatively unex-
plored. The difficulty is to address “patched” interfaces as
the one emerging between an aperiodic granular film and
the adhering substrate, disorder being the critical aspect [29].
Acoustic attenuation times for such an interface are hard to
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conceive in analytical terms, calling for full 3D finite el-
ement method (FEM) simulations and casting the acoustic
wave problem at the interface in scattering terms. These ap-
proaches, whenever applicable, do not shed much light on
the underlying physics and are hardly implementable to fit
photoacoustic data due to computational costs. Furthermore,
implementation of full 3D models requires knowledge of the
detailed film morphology at the interface which, for the case
of aperiodic granular materials, is unknown or very difficult to
achieve [30]. Therefore, easy-to-adopt mechanical models are
necessary to interpret photoacoustics data, retrieving the inter-
face physical properties and ultimately unveiling the relevant
physics ruling the acoustic to structure relation in materials
with disordered interfaces. From a general viewpoint, the sit-
uation addressed here is complementary to that of acoustic
damping from a single nano-object to its supporting sub-
strate [45,46]. For the latter, the experimental is challenging,
whereas the modeling is rather straightforward since it relies
on a thorough system’s knowledge [47,48]. On the contrary, in
the present case the experimental is relatively simple [29], the
modeling though is the delicate and yet unsolved issue. This is
ascribable to the disordered, hence intrinsically undetermined,
interface.

A 1D mechanical model for nanogranular thin films ad-
hered to a flat substrate is proposed. The model, addressed as
pillar model, is based on a structural interface [49], meaning
that a true structure is introduced to mimic the transition re-
gion between the NP’s film bulk and the underlying substrate.
Extrinsic attenuation, i.e., acoustic radiation to the substrate,
is assumed to prevail over intrinsic attenuation which is
not accounted for. The analytical dispersion relation for the
frequencies and lifetimes of the ultrathin film’s acoustic
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FIG. 1. Left: 3D nanoparticles thin film of thickness h adhered to a semi-infinite substrate. The bottom view, as seen looking across the
substrate, highlights the “patched” interface. Center: 3D pillar model: effective NP layer (q < z < h); pillars layer (0 < z < q); semi-infinite
substrate (z < 0). The NP layer effective density and stiffness tensor are ρNP and CNP, respectively. The pillars layer density ρbk and Young
modulus Ebk are the same as the ones of the material of which the NPs are made (see text). The bottom view, as seen looking across the
substrate, highlights the similarity with the patched interface of the real case. Right: Reduction of the periodic 3D pillar model to a single 3D
unit cell of base size L × L. The pillar layer filling fraction α is defined as the ratio of the pillar cross-sectional area to that of the unit cell,
irrespective of the geometry of the pillar cross section. The image is for illustrative purposes.

breathing modes, i.e., the ones commonly excited in pho-
toacoustic experiments, is obtained in terms of the interface
layer physical parameters: interface porosity and layer thick-
ness. The model is successfully benchmarked both against a
full 3D FEM model and against experimental photoacoustic
data available from the literature on a paradigmatic model
system, in which knowledge of mechanical properties at the
interface is a key asset in a variety of applications [4,50,51].
A simpler 1D model, addressed as an effective medium ap-
proximation model (EMA) and based on an homogenized
interface layer, is also provided together with its dispersion
relation. Its limits of validity, restrained to small porosities, are
discussed at the light of the pillar model. Assuming the gran-
ular film made of nanoparticles (NP), the present theoretical
scheme is tested for the case of NP radiuses smaller than the
film thicknesses and inferior to the excited breathing modes
wavelength.

The pillar model rationalizes the acoustic to structure
relation in materials affected by disordered interfaces. The
physics is shown to be ruled by the integral of the stresses
exchanged across the interfaces rather than their detailed
distribution. The pillar model, on one side, furnishes to
the experimentalist an experimentally benchmarked, easy-to-
adopt analytical tool to extract the interface layer physical
parameters upon fitting of the acoustic data. On the other
side, upon previous knowledge of the interfacial layer pa-
rameters, the model allows retrieving the breathing modes
frequencies and lifetimes of a nanogranular coating adhering
to a substrate. All these aspects bear both a fundamen-
tal and applicative interest across a wide range of fields
ranging from condensed matter, material science, to device
physics.

II. THE PILLAR MODEL

The mechanical response of a nanoparticle film resting
on an infinitely extended substrate (Fig. 1) is analyzed here
assuming negligible intrinsic acoustic losses. For the sake
of the following discussion three layers are defined: the NP
film layer (q < z < h), the interfacial layer (0 < z < q), and
the semi-infinite substrate layer (z < 0). The problem is con-
sidered one dimensional, as is the case for photoacoustic
measurements on ultrathin films [29,41,52]. The only nonzero
component of the displacement field u#

z (z, t ) satisfies the clas-
sic wave equation:

∂2u#
z (z, t )

∂t2
= v#2

z

∂2u#
z (z, t )

∂z2
, (1)

where u#
z (z, t ) is the displacement component in the z direc-

tion, the hash refers to each layer, and v#
z is the velocity of the

P wave traveling in such materials. The solution of Eq. (1) can
be written as

u#
z (z, t ) = U #(z)T #(t ), (2)

with

U #(z) = u#
k eik#z + u#

−ke−ik#z,

T #(t ) = u#
ωe−iωt , (3)

where i, ω, and k# are the imaginary unit, the frequency,
and the wave vector, respectively. Substituting Eqs. (2)
and (3) into Eq. (1) yields the dispersion relation ω2 =
v#2

z k#2
. The first and the second terms of U #(z) are the

regressive and the progressive components of the wave, re-
spectively. The regressive component of the wave in the
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substrate is neglected since this layer is considered as in-
finitely extended in the z direction, a fact accounting for the
radiative attenuation of the film’s breathing mode towards the
substrate.

When dealing with granular solids, like the aforementioned
nanoparticle film (Fig. 1, left), imposing a “perfect adhesion”
condition (pa) at the film-substrate interface results in a faulty
evaluation of their mechanical behavior. Perfect adhesion im-
plies perfect geometrical matching and continuity of stress
and displacement. This fault is particularly relevant when
addressing the oscillation’s damping time, not as much for the
oscillation frequency [29]. This can be traced back to the fact
that granularity makes the perfect contact condition unlikely
to be achieved, whereas a “patched interface” would be more
appropriate.

To overcome this issue, the pillar model is introduced
(Fig. 1, center). The pillar model partitions the nanogranular
film of thickness h (Fig. 1, left) into three layers (Fig. 1,
center). The actual NP film layer q < z < h is accounted for
introducing an effective homogeneous and isotropic thin film
layer extending in the same range. The real NP film mor-
phology is granular rather than homogeneous, nevertheless
simulating the real NP film with an homogeneous one allows
defining an effective density ρNP and an effective stiffness
tensor CNP. These constants may be retrieved either from
experiments [29] or theory [4,30]. The key element in the
model is the introduction of a layer of pillars (dashed orange
layer in Fig. 1, center), extending in the range 0 < z < q and
intended to mimic the mechanics in the interfacial layer, i.e., at
the interface between the actual film and the substrate (dashed
orange layer in Fig. 1, left). The pillars density ρbk and Young
modulus Ebk are taken as the ones of the real material of which
the NPs are made of. The pillar mechanical properties hence
differ from that of the effective NP thin film layer. The pillar
layer adheres to a semi-infinite substrate z < 0.

The velocity vNP
z of a P wave in the NP film layer is pro-

portional to the coefficient CNP
11 since transversal contraction

is prevented:

vNP
z =

√
CNP

11

ρNP
, (4)

while the velocity of a P wave in the pillars is proportional
to the Young modulus Ebk since they are free to expand
transversely:

vNP
z =

√
Ebk

ρbk
. (5)

For the pillar model, the boundary conditions are the fol-
lowing:

(1) Free standing at the top of the effective NP layer
(z = h):

CNP
11

∂uNP
z (h, t )

∂z
= 0. (6)

(2) Equilibrium at the interface between the effective NP
layer and the pillars layer (z = q):

F NP(q, t ) = F pil(q, t ). (7)
(3) Continuity of the displacement at the inter-

face between the effective NP layer and the pillars
layer:

uNP
z (q, t ) = upil

z (q, t ). (8)

(4) Force equilibrium at the interface between the pillars
layer and the sapphire substrate (z = 0):

F pil(0, t ) = F sub(0, t ). (9)

(5) Continuity of the displacement at the in-
terface between the pillars layer and the sapphire
substrate:

upil
z (0, t ) = usub

z (0, t ). (10)

It is pinpointed that the continuity of the stresses at the
interfaces between the pillars and the two continuous layers
is replaced with the balance of their resultant forces F as can
been appreciated in Eqs. (7) and (9). This is a key point of the
model.

Equations (7) and (9) reduce to

CNP
11

∂uNP
z (q, t )

∂z
= αEbk ∂upil

z (q, t )

∂z
,

(11)

αEbk ∂upil
z (0, t )

∂z
= Csub

11

∂usub
z (0, t )

∂z
,

respectively, where α is the contact ratio between the areas
of the two homogeneous layers (substrate and effective NP
film) and that of the pillars (see Fig. 1, right), Csub

11 and CNP
11

the substrate’s and the effective NPs film relevant stiffness
tensor’s component, respectively. The model is therefore re-
duced to 1D. It is noteworthy that, despite the fact that the
pillars in Fig. 1 are represented with a circular cross section,
the definition of the parameter α and the structure of the
model do not change if the shape of such cross section is
chosen to be different, for instance square shaped rather than
circular. Furthermore, the analytical model does not depend
on the position of the pillar with respect to the unit cell,
despite the fact that the pillars in Fig. 1 are shown at its
center. These two aspects are crucial for a model intended to
correctly rationalize a disordered interface, where the number
of possible NPs dispositions at the interface, i.e., number of
microstates or configuration in statistical mechanics terms, is
infinite. In photoacoustic experiments for instance, where both
the excitation and probing laser beams are much wider than
the NP’s dimensions, a huge number of possible unit cell’s
configurations are probed all together within a single mea-
surement. The acoustic problem is therefore not affected by
the specific global interface configuration, hence for the pillar
model to correctly capture the physics it must not depend on
the specific pillar cross-sectional geometry or position within
the unit cell.

Enforcing the boundary conditions Eqs. (6)–(10) in Eq. (2)
yields the following equation in the complex-valued unknown
ω(q, α):
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ZNP −
αEbk cot

( (h−q)ω
vNP

z

)[
v

pil
z Zsub cos

( q ω

v
pil
z

) − i αEbk sin
( q ω

v
pil
z

)]
v

pil
z

[
v

pil
z Zsub sin

( q ω

v
pil
z

) + i αEbk cos
( q ω

v
pil
z

)] = 0, (12)

where ZNP and Zsub are the acoustic impedances of the effec-
tive NP layer and the substrate, respectively. Actually, Eq. (12)
may be solved numerically and yields, for each fixed set
of parameters (q, α), infinitely many solutions ω = ωn(q, α)
with n = {0, 1, 2, . . . } the index numbering the mode.

Once the total thickness h of the actual real film is assigned,
the only free parameters in Eq. (12) are the height of the
pillars q and the contact ratio between the two homogeneous
layers and the pillars α. The relations linking the period of
vibration Tn(q, α) and the wave decay time τn(q, α) to the
n-mode complex-valued angular frequency are

Tn(q, α) = 2π

Re[ωn(q, α)]
,

τn(q, α) = 1

Im[ωn(q, α)]
. (13)

The intuitive idea underlying the pillar model stands for
the possibility to reduce the full 3D acoustic scattering prob-
lem, involving a disordered interface, to a more amenable 1D
one. This approximation is meaningful provided the detailed
distribution of stresses across the interface does not affect
the solution in terms of quasimode period and lifetime. As
a matter of fact, the 1D model retains information on the
integral of the stresses exchanged across the interfaces rather
than their detailed distribution. This key point finds its mi-
croscopic justification on the fact that the acoustic problem is
not affected by the specific interface configuration, as earlier
addressed.

The pillar model is more evolved with respect to spring-
based interface models, which are commonly exploited to
mimic imperfect interfaces, see for instance the seminal work
of Ref. [53]. In the present case, the pillar has rigidity
αEbkL2/q, which, contrary to the spring rigidity, arises from
the specific interface geometrical and physical characteristics.
Furthermore, the pillars correctly account for inertia, the mass
being distributed as opposed to concentrated, as is the case for
mass-spring interface models and alike.

TABLE I. Summary of the mechanical properties of the layers.

ρNP 8400 kg m−3

vNP
z 2880 m s−1

ZNP 2.42 × 107 kg s−1 m−2

CNP
11 6.96 × 1010 Pa

ρbk 10 490 kg m−3

vbk
z 2740 m s−1

Zbk 2.87 × 107 kg s−1 m−2

Ebk 7.88 × 1010 Pa
ρsub 3986 kg m−3

vsub
z 11260 m s−1

Z sub 4.49 × 107 kg s−1 m−2

A. The pillar model: Case study

The pillar model is exemplified here for the case of a real
granular thin film [29] made of pure Ag NPs ∼ 6 nm in
diameter, total film thickness h = 50 nm, filling factor 0.8,
and adhered to a sapphire substrate, (0001) α-Al2O3 single
crystal, of acoustic impedance Zsub. Acoustic damping was
shown to be due to extrinsic losses, a condition that must be
met in order for Eq. (12) to be applicable. The NP film is
well mimicked by an homogeneous effective film of known
mechanical properties: vNP

z , ρNP, and ZNP. The concept of
NP film is meaningful beyond the first two deposited layers
of NPs, leading to an interface layer of ∼12 nm, as detailed
in Ref. [30]. A value of q = 12 nm is therefore assumed
for the pillars, which are made of pure Ag of density ρbk ,
Young modulus Ebk , and sustain P waves of sound velocity
vbk

z . The pillar layer filling factor α is left here as the sole free
parameter, Eq. (12) thus linking the complex-valued unknown
ω to α. The values of the relevant mechanical properties for
this system are reported in Table I.

The oscillation period Tn and lifetime τn for the first two
modes of the pillar model, n = {0, 1}, are reported versus α

as full lines in Figs. 2(a) and 2(b), respectively. For α = 0.8
the density of the pillars layer matches the density of the NP
layer, the latter being 0.8 that of bulk Ag. Densification of the
interface layer with respect to the NP film’s bulk was ruled
out for the present scenario [30], the maximum value of α is
hence here constrained to 0.8. A comment is due here. For the
case of cylindrical pillars, a value of α > π/4 ≈ 0.78 implies
compenetration of neighboring pillars. This fact does not con-
stitute a problem though, since, as previously discussed, the
model is independent on the pillar’s cross-section geometry.
For instance, for a pillar of square cross section, compenetra-
tion is prevented for any value of α < 1. For the pillar model,
the period and lifetime of a given mode n = {0, 1, 2, . . . }
(with n = 0 meaning n → 0) are correctly bounded between
those of a “free-standing” ( fs) NP film of thickness h − q:

Tn, fs(α) = 2(h − q)

vNP
z

1

n
, n = {0, 1, 2, . . . },

τn, fs(α) = ∞, ∀n,

(14)

and those of the perfect adhesion (pa) model:

Tn,pa(α) = 4h

vNP
z

1

(1 + 2n)
,

τn,pa(α) = 2h

vNP
z

∣∣∣∣ ln

(∣∣∣∣Zsub − ZNP

Zsub + ZNP

∣∣∣∣
)∣∣∣∣

−1

.

(15)

Attention is drawn to the fact that actually τn,pa(α) is mode
independent. Indeed, as α approaches zero so does the pillars
cross-sectional area and the pillar model converges to that of
a free standing NP film of thickness h − q. On the contrary, as
α approaches one, and assuming a square cross section for the
pillars, the situation converges to that of a perfectly adhering
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(a) (b)

FIG. 2. (a) Period Tn and (b) decay time τn versus α for the Ag nanogranular film (see text) with q = 12 nm and h = 50 nm. The first
two modes n = {0, 1} are addressed. Pillar model (full lines) and limit cases (dashed lines) obtained for the free-standing (subscript fs) and
perfect adhesion (subscript pa) scenarios, respectively. The y axis in the graph (a) is broken for sake of graphical clarity. The scales above and
below the brake are different for ease of representation. The fs scenario yields, for mode n = 0, an infinite period (corresponding to a film
translation), hence it is not reported in (a). The fs scenario yields an infinite decay time, hence it is not reported in (b).

film (continuity of displacement and normal stress component
at the interface) of thickness h. Specifically, for n = 0, T0

diverges (meaning a film rigid shift) as α approaches zero,
as expected for the fs film, and is 70 ps for α = 0.8, which is
converging to the period of the fundamental mode T0,pa for
the pa case, see Fig. 2(a). On the same footing, the mode
lifetime τ0 diverges upon approaching the fs limit, whereas it
approaches the lifetime of the pa film τpa ∼ 30 ps for α = 0.8,
regardless of the specific mode, see Fig. 2(b). For n = 1, T1

evolves from T1, fs = 27 ps, for α = 0, to close to T1,pa = 23
ps, for α = 0.8. The small gap between T1 and T1,pa is due
to the fact that wave propagation is governed by Ebk in the
pillars layer and by CNP

11 in the NP film, see Fig. 2(a). As for
the lifetime, τ1 qualitatively behaves as τ0 with respect to the
fs and pa cases. Interestingly, τ1 > τ0 over the entire range of
α values, see Fig. 2(b).

The present discussion clearly demonstrates that the mode
lifetime, rather than its oscillation period, is mostly sensitive
to the interface morphology. For instance, with reference to
n = 1, varying α so as to evolve from the fs to the pa film, the
relative variation in the oscillation period is �T1/T1 ∼ 17%,
whereas the relative variation in lifetime �τ1/τ1 is infinite.
This also explains why, in previous photoacoustics experi-
ments performed on granular thin films, the pa model was
able to correctly address, within the error bar, the breathing
mode oscillation period but failed in reproducing the lifetime
[29]. Furthermore, it shows that the pillar model behaves
correctly reproducing the fs and pa cases.

B. The pillar model: Parametric study

Typically, when undertaking an acoustic or photoacoustic
investigation of the mechanical properties of ultrathin films,
one measures the breathing mode period and lifetime of a
specific mode n over varying film’s thicknesses h. The inter-
face layer morphology, accounted for by the interface layer
filling factor α and its thickness q, may therefore be retrieved
from fitting of the experimental data exploiting the pillar
model. It is therefore important to undertake a parametric
study to inspect how the parameters α and q affect Tn(h)
and τn(h). The calculations are performed here assuming
the mechanical properties of the granular NP film addressed

above. For sake of exemplification, we focus here on mode
n = 1, which was the best characterized mode in previous
experimental work. T1(h; q, α) and τ1(h; q, α) are reported
versus the total thickness h of the NP layer for a fixed value
of α = 0.68 (the value that gives optimal fitting of the pho-
toacoustic data) while varying the parameter q across the set
of values {6, 8, 10, 12} nm [Fig. 3(a)] and, vice versa, fixing
a value of q = 12 nm (the value that gives optimal fitting
of the photoacoustic data) while varying α across the set
of values {0.60, 0.65, 0.70, 0.75} [Fig. 3(b)]. T1(h; q, α) and
τ1(h; q, α) are also reported for lower values of α and a fixed
q in the Supplemental Material [54]. This set of values has
been chosen around the best fitting value α = 0.68, arising
from fitting the experimental data pertaining to the sample
addressed here, as detailed further on. Within these parameters
ranges and with reference to τ1(h; q, α), the two parameters
act rather independently, q and α governing the position of
the inflection point [see Fig. 3(a)] and the tangent at the very
same point [see Fig. 3(b)], respectively. Indeed, for a fixed
α, the flex moves towards higher h values as q increases,
whereas, for a fixed q, as α approaches unity, the tangent’s
slope decreases, attaining an asymptotic value concomitantly
with the curvature reaching zero. Far enough from the inflec-
tion point, τ1(h; α) is rather linear with h [see Fig. 3(b)]. As
for the periods T1(h; q, α), the differences are not appreciable
throughout the presently explored range, see Fig. 3 dashed
orange blend lines.

Solutions obtained over a wider α and h span are reported
in Fig. 4 for the same value of q = 12 nm. Two features
clearly arise. First, when extending the analysis to include
also smaller α, i.e., slender pillars, a resonance in τ1(h; q, α)
clearly emerges, and grows more pronounced as the pillar gets
slender, see the decay times curve for α values of 0.4, 0.25,
0.2. This fact may be intuitively rationalized considering that,
as the pillar gets slender, the situation approaches that of a
free-standing film. Formally, the pillar stiffness decrees pro-
portionally to its cross section (that scales with α), resulting
in a monotonic reduction of the mechanical wave propagation
speed, ultimately extending the quasimode lifetime.

These resonances stand out also in the mode’s Q factor,
a feature recently observed also in the context of a single
nanodisk adhered to a substrate [55]. Second, for large enough
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(a) (b)

FIG. 3. T1(h; q, α) and τ1(h; q, α) versus h for n = 1 for the Ag nanogranular film: (a) Fixed α = 0.68 while varying q (expressed in nm).
(b) Fixed q = 12 nm for a limited span of α values centered around the best fitting value α = 0.68. The plots of T1(h; q, α) (dashed line, orange
color range) graphically overlap, not so for τ1(h; q, α) (continuous line, blue color range).

values of h, that is once the pillar length becomes negligi-
ble with respect the total thickness of the nanoparticle film,
τ1(h; q, α) scales rather linearly with h. In this h range also
the minute differences in the periods T1(h; q, α) for different
α values can be appreciated, see Fig. 4 orange blend curves.

C. Pillar model benchmarking: Fitting photoacoustic data

The pillar model is now deployed to fit photoacoustic data
acquired on nanogranular films of different thicknesses [29].
The samples are the same as the one addressed in the case
study. These samples constitute an ideal system for bench-
marking purposes. The peculiarities of the deposition method
[56] allow us to obtain solvent-free and ultrapure nanoporous
films, avoiding the synthesis-related complicacies involved
in other methods. Furthermore, these films have been fully
characterized in terms of compositional, structural, morpho-
logical, and mechanical properties. On a general basis, the
interface layer properties are the ones which prove harder
to access. Whereas the NP film layer filling factor may be
retrieved employing a variety of techniques, such as x-ray re-
flectivity [29], environmental ellipsometric porosimetry [57],
and combining the Brunauer-Emmett-Teller method (BET)
with atomic force microscopy (AFM) [58], the interface layer
filling factor α and thickness q escape direct inspection. Only
recently were the latter quantities operatively defined and esti-
mated via a combined transmission electromicroscopy (TEM)

FIG. 4. T1(h; q, α) and τ1(h; q, α) versus an extended h range for
n = 1 for the Ag nanogranular film: q = 12 nm and α values over an
extended span.

and molecular dynamic (MD) investigation performed on the
samples addressed here [30]. Specifically, the interface layer
thickness is defined as the minimal film thickness beyond
which the slice filling factors, calculated for thicker films,
overlap, as addressed in all details in [30].

The pillar model is benchmarked by letting q and α be
fitting parameters and maximizing the likelihood between
the h-dependent functions T1(h; q, α) and τ1(h; q, α) and the
experimental values T1,expt(h) and τ1,expt(h), reported in [29].
Results are reported in Fig. 5 for the best fit values of q = 12
nm and α = 0.68 (continuous lines) together with the ex-
perimental data (markers). Fitting eight data points with two
free parameters may not be ideal, nevertheless, the best fit
parameters are fully consistent with the values that have been
retrieved by other means: q = 12 nm and α ∼ 0.7 for the
interface layer [30]. This is to say that, in the fitting procedure,
one could have taken α as the sole fitting parameter, or even
fixed all the parameters from previous knowledge, still landing
on the experimental data with the theoretical curves calculated
adopting the pillar model. The value τ1 (h = 15 nm) falls at
the edge of the error bar of τ1,expt (h = 15 nm): for h = 15 nm
the effective NP layer is only 3 nm thick, approaching the limit
where only an interface layer exists and the concept of a film

FIG. 5. Pillar model’s best fit solution for mode n = 1 for the
Ag nanogranular film: T1(h; q, α) (continuous orange line) and
τ1(h; q, α) (continuous blue line) vs h plotted for the best fit pa-
rameters q = 12 nm and α = 0.68. The fitting is performed against
the experimental data from [29]: T1,expt(h) (light orange dots) and
τ1,expt(h) (light blue dots). The error bars on the measured oscillation
periods, although present, are too small to be appreciated.
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FIG. 6. Ag nanogranular film (see text). (a) Simulation domain and displacement field un,h(r, t ) (arrows) and modulus (colormap) at
increasing times for n = 1, h = 40 nm, and q = 12 nm. The displacement u1,40(r, t = 0) is constructed to match, for z � 0, the film’s
eigenmode n = 1. (b) Normalized projection coefficient P1,40 vs time for the case represented in (a) (full red dots); its fit with a damped
oscillation of period T and decay time τ (blue line). (c) Periods and decay times vs film thickness: FEM simulations (diamonds), pillar model
(solid lines), and experimental data from [29] (dots).

becomes questionable. Summarizing, the pillar model allows
rationalizing the experimental data, the best fitting parameter
being fully consistent with the values expected from previous
knowledge.

D. Pillar model benchmarking: 3D pillar model solved by FEM

We now compare the analytical 1D pillar model, addressed
so far as the pillar model for brevity, against FEM simulations
performed on the 3D pillar model. The scope is twofold.
A first quest is whether the reduction from a full 3D pillar
model (see Fig. 1, center), where acoustic wave scattering is
accounted for, to the 1D pillar model expressed by Eq. (12),
which does not account for scattering, is justified for the case
of low n modes. Furthermore, the 3D model accounts for the
distribution of stresses across the interfaces, whereas the pillar
model retains information on the integral of the stresses only.
Comparing results obtained from the pillar model against
those of 3D FEM simulations would enable confirming the
soundness of these approximations. Second, although the
pillar model benchmarked remarkably well against existing
experimental data, the quest stands as whether the model
remains effective across a wider range of interface layer filling
factors, while keeping the NP film layer mechanical properties
unaltered, (i.e. fixed NP’s film filling fraction), a situation for
which we lack experimental data. In this sense comparing
against FEM simulations constitute a valid alternative.

We then proceed as follows. As a validation step, we first
implement FEM simulations on the 3D pillar model, mimick-
ing the situations for which experimental data are available.
That is we excite a specific film breathing mode n = 1 and,
subsequently, simulate its temporal evolution throughout the
sample, now comprising the substrate as well, thus accessing
the quasieigenmode oscillation period, lifetime, and quality
factor. As a matter of fact, once the substrate is accounted

for, the film breathing mode becomes a quasimode radiat-
ing acoustic energy into the substrate. The results will be
benchmarked against both, those of the pillar model and the
experimental ones. We then run similar simulations varying
the pillar layer filling fraction α for a fixed film thickness
h = 50 nm and compare the results against the values obtained
from the pillar model.

To this end we first consider the 3D pillar model (see
Fig. 1, right) mimicking the samples on which experiments
were performed and for which q = 12 nm and α = 0.68 were
obtained.

Geometry. The 3D unit cell geometry, reported in Fig. 6(a)
and in right panel of Fig. 1, is composed of three domains and
has base dimensions L × L. Domain sub (−5 μm < z < 0)
consists of a 5-μm-thick sapphire substrate. This value has
been chosen long enough so as to avoid any wave front reflec-
tion from the bottom of sapphire within the time span of the
simulated dynamics. For the sake of visualization only a small
part of it is shown. Domain pil (0 < z < q) consists of a pure
Ag cylindrical pillar of height q and radius rpil = L

√
α/π . We

take rpil = 3.2 nm, consistent with the NPs radius composing
the experimentally investigated films, thus resulting in L = 7
nm. Domain NP (q < z < h) consists of the effective NP layer
of thickness h − q.

Materials properties. As for the domains mechanical prop-
erties, the densities and elastic constants for sapphire and
polycrystalline Ag are taken for the substrate and for the pillar,
respectively, whereas the effective NP layer is attributed to the
density ρNP and the elastic tensor components C11 = 6.96 ×
1010 GPa, taken from [29], and C44 = 1, 86 × 1010 GPa, cal-
culated from Budiansky homogenization formulas [59] for a
volumetric filling factor of 0.8. The C44 value is not actually
of any relevance, since, given the problem’s symmetry to be
discussed shortly, the solution is independent on the choice
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of C44, as we numerically tested. The adopted values for the
above-mentioned quantities are reported in Table I.

Boundary conditions. A zero-displacement boundary con-
dition is enforced at the “sub” bottom surface. The “NP”
top surface is taken stress free. At the portion of the bottom
surface of NP not in contact with the pillar (z = q+ and√

x2 + y2 > rpil), a stress-free boundary condition is enforced
together with the constraint that the z component of the dis-
placement (w) must be spatially constant along the x-y plane
(rigid connector). Actually the rigid connector condition does
not affect the result but slightly improves the computation
time. The displacement field component normal to the lateral
boundaries of sub and NP is fixed to zero due to the system
periodicity and the experimental excitation symmetry. The
pillar’s wall is constrained to move in the vertical (i.e., the
direction normal to the substrate) and radial direction only, so
as to impede pillar torsion. These boundary conditions have
been chosen so as to be consistent with the pillar model. Fur-
thermore, the boundary conditions in both models, together
with the irrelevance of the choice of C44 in the domain NP, are
consistent with the displacement and stress fields symmetry
triggered by an excitation mechanics such as that of a laser
pulse, of waist much greater than the overall film thickness h,
impinging at normal incidence on the film.

Film’s quasimode period, lifetime, and Q factor. We first
calculate the set of eigenmodes {ũn,h(r)} solutions of the
acoustic eigenvalue problem for the domain pil ∪ NP of
height h:

∇ · [c(r):∇ũn,h(r)] = −ρ(r)ω2
i ũn,h(r), (16)

with ρ(r) and c(r) the position-dependent mass density and
elastic stiffness tensor, respectively, and with zero displace-
ment enforced at the boundary z = 0. The latter is a good
approximation for an impulsive excitation of the film (for
instance upon absorption of an ultrashort laser pulse) when
Zsub > Zpil, as in the present case. The first subscript, n, iden-
tifies the film’s eigenmode, the second subscript, h, the film’s
thickness expressed in nm.

We then define the initial displacement on the entire simu-
lation domain sub ∪ pil ∪ NP:

un,h(r, t = 0) =
{

Aũn,h(r), ∀z � 0,

0, ∀z < 0,
(17)

where the displacement amplitude A will cancel out in the
following analysis. We pinpoint that un,h(r, t = 0) is not an
eigenmode of the acoustic eigenvalue problem for the domain
sub ∪ pil ∪ NP, nevertheless, for h � 0, it matches the eigen-
mode of domain pil ∪ NP. The initial velocity field is taken as
u̇n,h(r, t = 0) = 0.

Propagating the initial displacement on the entire unit cell
via the Navier equation,

∇ · [c(r):∇u] = ρ(r)ü, (18)

we obtain un,h(r, t ).
For the sake of retrieving the film’s quasieigenmode

decay time we calculate the normalized projec-
tion coefficient between modes un,h(r, t = 0) and
un,h(r, t ):

Pn,h(t ) = 〈un,h(t = 0)|un,h(t )〉
〈un,h(t = 0)|un,h(t = 0)〉 =

∫
V un,h(r, t = 0)ρ(r)un,h(r, t )dr∫

V un,h(r, t = 0)ρ(r)un,h(r, t = 0)dr
, (19)

where the integrals are actually calculated on the film’s vol-
ume Vfilm, since the initial displacement in the substrate is null
by construction. The introduction of the film density ρ(r) is
necessary to obtain a formally correct definition of the scalar
product, the eigenvalue problem on the entire domain being of
the Sturm-Liouville type.

For instance, for the case of a sample with h = 40 nm
and focusing on n = 1, Fig. 6(a) shows the spatial profile of
u1,40(r, t = 0) (arrows) and its modulus (colorbar) together
with snapshots of its evolution u1,40(r, t ) taken for increasing
times. As time evolves, the film’s quasieigenmode u1,40(r, t =
0) fades away, displacement radiating into the substrate. Fig-
ure 6(b) reports the corresponding P1,40(t ) (full red dots),
measuring the overlap between the film’s n = 1 mode dis-
placement profile at time t = 0 and the actual displacement
throughout the sample at any given time t . For the “gedanken”
case, in which no acoustic radiation to the substrate occurs,
the normalized projection coefficient would oscillate in be-
tween 1 and −1 without any damping, u1,40(r, t ) representing,
for z � 0, the film’s quasieigenmode displacement at differ-
ent times. The normalized projection coefficient’s maximum
would thus be attained for t = mT (the two displacements
fields being in phase), it would be zero for t = (2m + 1)T/4
(the two displacements fields being in quadrature) and be at its

minimum for t = (2m + 1)T/2 (the two displacements fields
being in antiphase) with m ∈ N0. For the real case, in which
acoustic radiation is active, the normalized projection coeffi-
cient’s oscillation is exponentially damped, its period T1,40 and
decay time τ1,40 being retrieved fitting the numerical results,
see Fig. 6(b), blue line. Running simulations for varying h we
thus obtain Tn,h and τn,h, Fig. 6(c) reporting the case for n = 1
(filled diamonds). For the sake of comparison, we report on
the same graph the data obtained from the analytic solution
of the pillar model (full lines) together with the experimental
values from ultrafast optoacoustic measurements [29] (filled
circles). The three sets of data are in good agreement, pointing
to the fact that we correctly addressed the 3D pillar model
via FEM and that, at least for α = 0.68, the approximations
entailed in the pillar model are sound.

Following the same procedure, we now perform FEM
simulations on the 3D pillar model varying the pillar layer
filling fraction α for a fixed film thickness h = 50 nm and
for a NP film layer filling factor fixed at 0.68, and compare
the results against the values obtained from the pillar model.
Figure 7 reports the oscillation period (a), decay time (b),
and quality factor (c), Qn = π (τn/Tn), calculated for n = 0,
where the superscripts FEM and pil stand for FEM simu-
lations and pillar model, respectively. The same quantities,
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Ag nanogranular film. Comparison between the oscillation period, decay time, and quality factor obtained from FEM solution
of the 3D pilar model (filled diamonds) and the pillar model (full lines) vs the pillar layer filling factor α for a film’s thickness h = 50 nm.
(a) Period, (b) decay time, and (c) quality factor for n = 0. (d) Period, (e) decay time (log-lin scale), and (f) quality factor (log-lin scale) for
n = 1. The insets show the relative difference between the calculated quantities in the two models.

calculated for n = 1, are reported throughout Figs. 7(d)–7(f).
The two models yield the same results, the relative differences
(X FEM

n − X pil
n )/X FEM

n with X = {T, τ, Q}, amounting, at most,
to a few percent, see insets to each graph. For the case n = 0
we were able to perform FEM simulations down to α = 0.05,
whereas for n = 1 numerical problems impeded extending
simulations below α = 0.3. Given the boosting of Q1 for the
latter case, FEM simulations, as the one reported in Fig. 6(b),
were performed extending the time range to 500 ps. The
overall result is that the analytic 1D pillar model perfectly
reproduces the results of the more involved 3D FEM pillar
model. Furthermore, the former does not pose any problem
for the case of low α values, it is order of magnitudes more
efficient in terms of computation times (four orders of magni-
tudes for the present geometry), and, being analytic, it is much
more amenable to fit experimental data and clearly identifies
the structural parameters leading the acoustic problem.

For low α values simulations were also performed vary-
ing the pillar position within the unit cell xy plane and the
pillar cross-sectional geometry (a square instead of a circle
while keeping the same surface area), the results remaining
unaltered. Those of low α values constitute the worse case
scenarios for these tests since a slender pillar can be sub-
stantially displaced within the unit cell, whereas only small
translations can be tested for the case of plumped pillars,
i.e., greater α values. These evidences suggest that results
are invariant with respect to the specific disordered interface
realization. Specifically, the detailed knowledge of the stresses
distribution across the interface does not affect the solution in
terms of quasimode period and lifetime, the relevant aspect
rather being the integral of the stresses exchanged across the
interfaces. The latter supports the physical ansatz implied in
the 1D pillar model.

For the sake of completeness, in the Supplemental Ma-
terial (SM) we also report the modulus of the displacement

|{ũn,50(r)}| for the first (n = 0) and the second (n = 1) film
breathing modes for α = 0.05, 0.4, and 0.75 [60]. These
plots give an idea of the quasibreathing mode evolution
from the quasi free standing to the quasi perfect adhesion
scenarios.

III. EMA MODEL

In order to display the potential of the pillar model, its
broad validity range and its added value with respect to more
traditional approaches, a simpler 1D model, addressed as ef-
fective medium approximation model (EMA) and based on
an homogenized interface layer, is now introduced and its
dispersion relation calculated. Its limit of validity, restrained
to small porosities, are discussed at the light of the pillar
model, showing the need for the latter to correctly access the
acoustic to structure relation in granular ultrathin films. The
interface layer, previously identified with the pillar layer, is
now accounted for via a continuum, isotropic, and homoge-
neous slab, addressed as effective interface layer, see Fig. 8.
The latter mimics an interface granular layer of thickness d ,
with its solid component made of the same material consti-
tuting the NPs and of filling fraction β. The parameters d
and β play a similar role as h and α in the pillar model.
The elastic properties of the effective interface layer, denoted
with an asterisk as a superscript, are calculated on the basis
of Budiansky theory [59]. The bulk K∗(β ) and shear modulus
G∗(β ) are obtained through

n∑
i=1

ci

1 + A
( Ki

K∗ − 1
) = 1,

n∑
i=1

ci

1 + B
( Gi

G∗ − 1
) = 1, (20)
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z=h

C*  v*  ρ* 

CNP

vNP

ρNP

Real model EMA model

z=d
z=0

z=h

z=d
z=0 Sub

FIG. 8. Left: 3D nanoparticles thin film of thickness d adhered to a semi-infinite substrate. Center: EMA model: effective NP layer (d <

z < h); effective interface layer (0 < z < d); semi-infinite substrate (z < 0). The NP layer is the same one addressed in the pillar model. The
interface layer has effective mechanical properties C∗, v∗, and ρ∗ (see text). The image is for illustrative purposes. Right: 1D sketch of the
EMA model.

where the value of A and B are

A = 1 + ν∗(β )

3[1 − ν∗(β )]
, B = 2[4 − 5ν∗(β )]

15[1 − ν∗(β )]
, (21)

in which the Poisson’s ratio is expressed via K∗(β ) and G∗(β )
by the standard relation

ν∗ = 3K∗(β ) − 2G∗(β )

6K∗(β ) + 2G∗(β )
. (22)

In Eq. (20) ci, Ki, and Gi are the volume fraction, the bulk
modulus, and the shear modulus of the phase i, respectively,
where, in the present case, N = 2, i = 1 stands for vacuum
and i = 2 for the material constituting the NPs (bulk silver
in the following), i.e., c2 = β. A major pitfall of Budiansky
formulas stands on the fact the elastic coefficients vanish when
β reaches 0.5, thus setting a limit to the applicability of the
EMA model, as will be discussed shortly.

Since the transversal contraction is prevented in the effec-

tive interface layer, the P-wave velocity is v∗(β ) =
√

C∗
11(β )

ρ∗(β ) .
The interface boundary conditions for the EMA model are

the “perfect adhesion” ones. In the following we summarize
the full set of boundary conditions for the EMA model:

(1) Free standing at the top of the NP layer (z = h):

CNP
11

∂uNP
z (h, t )

∂z
= 0. (23)

(2) Continuity of stresses at the interface between the NP
layer and the effective homogeneous layer (z = d):

CNP
11

∂uNP
z (d, t )

∂z
= C∗

11(β )
∂u∗

z (d, t )

∂z
. (24)

(3) Continuity of the displacement at the interface be-
tween the NP layer and the effective homogeneous layer:

uNP
z (d, t ) = u∗

z (d, t ). (25)

(4) Continuity of stresses at the interface between the ef-
fective homogeneous layer and the sapphire substrate (z = 0):

C∗
11(β )

∂u∗
z (0, t )

∂z
= Csub

11

∂usub
z (0, t )

∂z
. (26)

(5) Continuity of the displacement condition at the in-
terface between the effective homogeneous layer and the
sapphire substrate:

u∗
z (0, t ) = usub

z (0, t ). (27)

Enforcing the boundary conditions Eqs. (23)–(27) to
Eq. (2) yields the following equation in the unknown ω(d, β ):

ZNP −
C∗

11(β ) cot
( (h−d )ω

vNP
z

)[
v∗

z (β )Zsub cos
(

d ω
v∗

z (β )

) − i C∗
11(β ) sin

(
d ω

v∗
z (β )

)]
v∗

z (β )
[
v∗

z (β )Zsub sin
(

d ω
v∗

z (β )

) + i C∗
11(β ) cos

(
d ω

v∗
z (β )

)] = 0. (28)

Mutatis mutandis from the pillar mode case Eq. (28) may
be solved numerically and yields, for each fixed set of pa-
rameters (d, β ), infinitely many complex-valued solutions
ω = ωn(d, β ), with n = {0, 1, 2, . . . } the index numbering the
mode.

Once the total thickness of the NP layer is assigned, the
only free parameters in Eq. (28), are the height of the interface
layer d and its filling fraction β. The relations linking the pe-

riod of vibration Tn(d, β ) and the wave decay time τn(d, β ) to
the n-mode complex-valued angular frequency are expressed
through Eqs. (13).

Comparison of Eqs. (12) and (28) show that the
pillar and EMA models yield the same results pro-
vided d = q, αEbk = C∗

11(β ), and v
pil
z = v∗

z (β ). For the
case of Ag NPs, the previous equations are satisfied if
α = β = 0.770439.
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(a) (b)

FIG. 9. EMA model. (a) Period Tn and (b) decay time τn versus β for the Ag nanogranular film with d = 12 nm and h = 50 nm. The first
two modes n = 0, 1 are addressed. EMA model (full lines) and limit cases (dashed lines) obtained for the fs and pa scenarios, respectively.
The y axis in the graph of (a) is broken for the sake of graphical clarity. The scales above and below the brake are different for ease of
representation. Tn diverges for β → 0.5, an artifact ascribable to the pitfalls of Budiansky formulas. The fs scenario yields, for mode n = 0, an
infinite period (corresponding to a film translation), hence it is not reported in (a). The fs scenario yields an infinite decay time, hence it is not
reported in (b).

A. The EMA model: Case study

We now exemplify the EMA model considering the same
situation addressed in the case study for the pillar model, the
only exception being the replacement of the pillar with the
effective homogeneous film of d = 12 nm.

The oscillation period Tn and lifetime τn for the first two
modes of the EMA model n = {0, 1} are reported versus β

as full lines in Figs. 9(a) and 9(b), respectively. For β = 0.8
the density of the effective homogeneous layer matches the
density of the NP layer, the latter being 0.8 that of bulk Ag. We
do not consider interface densification, the maximum β value
is thus once again constrained to 0.8. Tn diverges as β ap-
proaches 0.5, this being due to the elastic constants becoming
null in the Budiansky formula. For the same reason, T1 is not
bound between the values T1,pa and T1, fs, as should be the case
for a correct model. On the contrary, Tn correctly approaches
T1,pa = 23 ps for β → 0.8, that is when the interface layer
becomes identical to the NPs layer. As for the lifetime, τn

diverges as β approaches 0.5, again due to the pitfalls of
Budiansky formulas.

B. The EMA model: Parametric study

We here repeat the same parametric study, previously per-
formed for the pillar model, for the case of the EMA model.

T1(h; d, β ) and τ1(h; d, β ) are reported versus the total thick-
ness h of the NP layer for a fixed value of β = 0.73 (the
value that gives optimal fitting of the photoacoustic data, see
SM [61]) while varying the parameter d across the set of
values {6, 8, 10, 12} nm, see Fig. 10(a), and vice versa, fixing
a value d = 12 nm (the value that gives optimal fitting of the
photoacoustic data, see SM [61]) and varying β across the set
of values {0.70, 0.75, 0.80, 0.85}, see Fig. 10(b). Figure 10
shows the same salient features observed for the pillar model
in Fig. 3: the position of the inflection point and the magnitude
of the tangent in such a point being governed quite indepen-
dently by d and β, respectively.

C. Pillar vs EMA model

The pillar model is more adherent to physical reality than
the EMA model and, contrary to the latter, is reliable across
the entire spectrum of interface filling factor values. The EMA
model suffers a major drawback in that both the oscillation
periods and decay times diverge as the interface layer filling
factor approaches 0.5. The EMA and pillar models yields
the same results for a very specific value of the layer filling
fraction, which happens to be ∼0.77 for the case investigated
here. The EMA model yields reasonable predictions for small
departures of β from these values and, in this range, its control
parameters work like the ones of the pillar model. For greater

(a) (b)

FIG. 10. EMA model. T1(h; d, β ) and τ1(h; d, β ) vs h for n = 1 for the Ag nanogranular film: (a) Fixed β = 0.73 while varying d
(expressed in nm); and (b) fixed d = 12 nm while varying β.
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FIG. 11. Ag nanogranular film with q = 12 nm (pillar), d = 12
nm (EMA) and h = 50 nm. Decay time, τ

pil
1 , and oscillation period,

T pil
1 , versus α (pillar model); decay time, τEMA

1 , and oscillation pe-
riod, T EMA

1 , versus β (EMA model). The two models coincide for
α = β ≈ 0.77.

departures of β from the optimal value, the EMA model fails.
Figure 11 summarizes well these points, reporting, on the
same graph and for the same sample T pil

1 and τ
pil
1 versus α,

for the pillar model, and T EMA
1 and τEMA

1 vs β for the EMA
model.

IV. CONCLUSIONS AND PERSPECTIVES

The pillar model, a fully analytical 1D acoustic model for
nanoporous thin films adhered to a flat substrate, is proposed.
The analytical dispersion relation for the frequencies and life-
times of the film’s acoustic breathing modes were obtained
in terms of the interface layer’s porosity and thickness. The
model was successfully benchmarked both against full 3D
FEM simulations of a 3D pillar model and photoacoustic
data available from the literature on an archetypal model sys-
tem. The interface mechanical properties of the experimental
model system itself bear great applicative relevance, as out-
lined in recent literature. In order to assess the potential of the
pillar model and its broad validity range, its performance was
compared against a simpler 1D analytical model, addressed
as EMA model, based on an homogenized interface layer of
Budiansky type. The limits of applicability of the EMA model
were addressed, together with the necessity of deploying the
pillar model for most filling factors.

The results reported here are relevant both under a funda-
mental and applicative stand point. As for the former, the pillar
model provides a vivid physical representation of the acoustic
of porous thin films and its controlling parameters. More gen-
erally, it may be deployed to access the acoustic to structure
relation in materials affected by disordered interfaces. The
model showed that the physics is primarily dictated by the
integral of the stresses exchanged across the interfaces rather
than their detailed distribution. Being fully analytical and 1D,

the model is computationally very efficient and particularly
amenable to fit experimental quasibreathing mode periods
and lifetimes. The model allows accessing the interface layer
parameters, which proved challenging to retrieve otherwise.
On the other hand, should the porous film morphology been
known a priori, the model correctly predicts its acoustic re-
sponse. As for applications, knowledge of granular thin films
interfaces adhered to a substrate is of paramount importance
in a variety of sectors. Just to mention a few, the NP interface
layer rules the adhesion properties of bactericidal coatings
[51,62], both the mechanical and the electrical endurance of
bendable transparent conductive oxides [50], and conductive
NPs films produced by inkjet techniques [63] and the sensitiv-
ity of photoacoustics sensors [4].

The pillar model is scale invariant and may thus be de-
ployed to investigate systems of greater dimensions, ranging
from porous foams for vibration transmission control, to rock
sediments laying on a continuous bed, to seismological sce-
narios [64]. Furthermore, the model is applicable, beyond the
case of granular materials, to any patched interface. This is the
case, for instance, when acoustically addressing the wrinkled
interface that may arise between a 2D or a few layers mate-
rial and its supporting substrate [65], when investigating the
acoustic properties of thin films suspended on pillars [66], or
when inspecting for the presence of PMMA residues between
a nanopatterned structure, fabricated via e-beam, lithography,
and the substrate it adheres to, an issue of the utmost impor-
tance in post-processing quality control.

The pillar model also provides a connection to the adhesion
forces. Even though a direct comparison with the pull-off
force, as provided by the most common adhesion models
(JKR [67], DMT [68]), is not straightforward, a simplified
average pull-off pressure estimate is presented in the SM [69].
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