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We present a theoretical investigation of electron states hosted by magnetic domain walls on the three-
dimensional topological insulator surface. The consideration includes the domain walls with distinct vectorial
and spatial textures. The study is carried out on the basis of the Hamiltonian for quasirelativistic fermions by
using a continual approach and tight-binding calculations. We derive the spectral characteristics and spatial
localization of the one-dimensional low-energy states appearing at the domain walls. The antiphase domain
walls are shown to generate the topologically protected chiral states with linear dispersion, the group velocity and
spin-polarization direction of which depend on an easy-axis orientation. In the case of an easy-plane anisotropy,
we predict a realization of a dispersionless state flatband in the energy spectrum, that is spin polarized along the
surface normal. Modification of the surface states in the multidomain case, which is approximated by a periodic
set of domain walls, is described as well. We find that the magnetic domain walls with complex internal texture,
such as Néel-like or Bloch-like walls, also host the topological states, although their spectrum and spin structure
can be changed compared with the sharp wall case.
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I. INTRODUCTION

The effect of quantized conductivity without an external
magnetic field was revealed and studied in topological insu-
lators (TIs) that are time-reversal invariant semiconductors
with strong spin-orbit coupling [1–3]. However, namely, the
breaking of time-reversal symmetry through the introduction
of a magnetic order in TIs provides conducive ground for
an emergence of fascinating phenomena such as quantum
anomalous Hall effect (QAHE) [4–8], axion insulator state
[8], and Majorana fermions [9], which would allow extend-
ing the potential of spintronic applications. At present, there
are several viable approaches for creating a magnetic or-
der in TIs on the basis of tetradymitelike semiconductors
[10]. Accordingly, five alternative platforms suitable for re-
alization of phenomena associated with quantized transverse
conductivity can be outlined as follows. (1) QAHE was first
detected in thin films composed of a few quintuple layers
(QLs) of TIs Crx(Bi, Sb)2−xTe3 [11] and Vx(Bi, Sb)2−xTe3

[12], where randomly dissolved moments of transition metal
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atoms form ferromagnetic (FM) long-range order. (2) By us-
ing magnetic modulation doping, when the rich-Cr/V-doped
thin layers are inserted near both the surfaces of (Bi, Sb)2Te3

films, experimentalists have succeeded in observing QAHE
[13–15] and axion insulator state [15–17]. (3) The magnetic-
proximity-effect-induced QAHE has been implemented in the
(Zn, Cr)Te/(Bi, Sb)2Te3/(Zn, Cr)Te heterostructure due to a
fine-tuning of the composition of FM insulator interfaced with
TI [18]. (4) The giant exchange gap at the Dirac point of the
surface state could be achieved due to a magnetic extension
effect, when a thin layer of FM insulator is deposited on the
surface of a nonmagnetic TI, which are both structurally and
compositionally compatible with each other [19,20]. Perhaps
this effect is responsible for anomalous Hall regime at temper-
atures of several Kelvin observed in the magnetic topological
bulk crystals in which Mn ions self-organize into a periodic
MnBi2Te4/Bi2Te3 superlattice [21]. (5) Recently, the exis-
tence of quantized Hall conductivity, accompanied by zero
longitudinal resistance, was experimentally demonstrated in
the thin flakes of an intrinsic antiferromagnetic (AFM) TI
MnBi2Te4 with odd numbers of septuple layers (SLs), con-
cretely five SLs, under zero extrinsic magnetic field [22]. This
is a typical behavior of QAHE, theoretically predicted for
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intrinsic AFM TI in Ref. [23]. In turn, the flakes of MnBi2Te4

with even number of SLs, namely, six SLs, have exhibited
axion insulator state at zero magnetic field [24].

Despite rapid progress in this field, the exploration of mag-
netic TIs with in-plane easy axis [25–27] or with magnetic
moment canted towards the surface [28,29] remains scarce.
The recent study [30] has predicted the in-plane sublattice
magnetization in the vanadium-based family of AFM TIs
V(Bi, Sb)2(Se, Te)4, which could significantly broaden the
base for the search of exotic fermion states at the TI surface.

It should be stressed that, in the magnetic TI sam-
ples prepared for spin-dependent transport measurements,
the physical boundaries such as surfaces, interfaces, and
side faces play a particular role [8,10]. Conceptually, given
that the surface/interface states are fully gapped at the Dirac
point due to the spontaneous magnetization normal to the sur-
face, the topologically protected edge chiral channels running
along the side faces are responsible for the quantized Hall con-
ductivity [4–8,10]. In reality, the magnetization distribution
at the surface can be highly distinct from the bulk magnetic
order. It is thought that this distinction can be caused by vari-
ous factors. One of them is thermal magnetization fluctuations
which, as a rule, are enhanced in the surface region of a mag-
netic systems [31]. At the same time, the magnetic fluctuations
are frozen by static symmetry-reducing imperfections [32].
The structural defects and compositional disorder inevitably
occur during the exfoliation or the epitaxial growth of the TI
samples [33–35]. For instance, the surface of an exfoliated
MnBi2Te4 flake can even be subjected to strong chemical re-
construction, so that the topmost SL becomes rather as a Mn-
doped Bi2Te3 and a MnxBiyTe double layer with a clear van
der Waals gap in between [36]. These and other symmetry-
reducing imperfections can dominate locally the exchange and
dipolar interactions between moments as well as magnetic
anisotropy at the surface. In turn, an interplay between the
exchange coupling and anisotropy drives nucleation and en-
ergetic stability of the magnetic landscape at the terminating
surface including complex space-varying textures of magneti-
zation. It is also important to emphasize that, in tetradymite TI
materials, the topologically protected surface states are mostly
localized inside a few terminating QLs/SLs, i.e., roughly
speaking, inside the same region where the magnetic order is
sensitive to the perturbations and therefore can be remarkably
modified compared with the bulk magnetic order.

The existence of magnetic domain walls (DWs) on the
surface of magnetic TIs and the one-dimensional (1D)
electron states associated with them is experimentally
confirmed [35,37,38]. Using magnetic force microscopy, Sass
and co-authors presented microscopic evidence of the DWs on
the as-grown (0001) surface of MnBi2Te4, which is consistent
with opposite surface magnetizations of antiphase domains or
terraces separated by SL steps [35]. The emergence of mul-
tidomain states at topological phase transitions under external
field sweep was found in various magnetic systems based
on TIs [15,17,37–41]. The inconsistency of spectroscopy
[angle-resolved photoemission spectroscopy (ARPES)]
results [42–45] with the earlier ones [29,46–48] indicates
the possibility of a spatially inhomogeneous structure of
the surface magnetization in MnBi2Te4. In addition, the
magnetic DWs on the AFM TI surface could also be induced

intentionally using a magnetic force microscope tip [49] or by
spatially modulated external magnetic field due to Meissner
repulsion from a bulk superconductor, as has been realized
in Cr-doped TI (Bi, Sb)2Te3 [50]. On the theoretical side, the
issue on particular quasiparticle states on the magnetic DWs
of TIs was raised previously in Refs. [30,51–56].

In this work, we study how the magnetic inhomogeneities
such as DWs can modify a picture of the topological sur-
face states. The DW spatial textures are modeled as static
one-dimensional boundaries between magnetic domains of
different orientations on the TI surface. We discuss the proper-
ties of the DW-induced fermion states in the context of the real
space localization and the spin-resolved spectral function. We
demonstrate that such DWs host topologically protected chiral
fermion states, the energy spectrum of which can evolve from
a linear dispersion to a flatband depending on the easy-axis
orientation. The results are obtained by means of two com-
plementary methods: one based on the effective low-energy
Dirac equation description and the other based on a numerical
tight-binding approach.

The rest of the paper is organized as follows. In Sec. II we
present the microscopic model of DWs on the magnetic TI
surface and outline methodological details of the description
of the electron states bound to DWs. In Sec. III, we succes-
sively investigate the characteristics of the low-energy surface
states generated by a single magnetic antiphase DW under dif-
ferent directions of easy axis, a pair of the antiphase DWs, and
the multidomain periodic configurations of magnetization.
Here we also study how the noncollinear and noncoplanar
textures of the magnetization modify the spectral properties
of the surface states. Finally, in Sec. IV, we summarize the
obtained results and discuss possible manifestations of DWs
in spectroscopy and transport properties of TIs.

II. MODEL AND METHODS

The essential low-energy physics on the 3D TI surface
can be described by massless two-component fermions with
the spin-momentum locking [1–3]. In the presence of the
exchange field at the surface, the motion of the fermions can
be modeled with the effective two-dimensional (2D) Hamilto-
nian

H (k) = −ν[k × σ]z + J (M · σ ). (1)

Here, the first term is the lowest-order expansion of the Dirac
quasiparticle energy in the small in-plane momentum k =
(kx, ky) around the � point in the surface Brillouin zone (BZ),
ν is the Fermi velocity (one assumes h̄ = 1), and σ is the
trio of Pauli matrices σi (i = x, y, z) for the spin degree of
freedom. In the tetradymite TI systems, both in the case of
randomly distributed 3d transition metal dopants and in the
case of regularly aligned layers of magnetic ions, the exchange
coupling is mediated by p orbitals of the TI host. It can lead
to the appearance of a magnetic ordering and hence a surface
magnetization M(x, y). The latter causes a spin polarization
of the Dirac fermions owing to an effective interaction J .
We present the corresponding exchange energy by the second
term in Eq. (1) that allows us to capture the DW fingerprints
in the spectral properties of the surface electrons in any of the
five platforms for magnetic ordering in the TIs listed above.
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FIG. 1. Energy dispersion in the momentum space (kx, ky ) for
topological surface state subjected to the uniform surface magnetiza-
tion oriented along the z axis (left panel), the x axis (central panel),
and the y axis (right panel).

It should be noted that the interaction strength J depends
profoundly on the strategy of the formation magnetic order in
the system. We also suppose that the interaction J is the same
in the in-plane and out-of-plane direction (for certainty J > 0)
and ignore the particle-hole asymmetry in the surface bands.
We suggest that the surface states modeled with Eq. (1) reside
in the projected bulk band gap. It should be noted, we do
not include a possible hexagonal warping term [57,58], which
could be avoided at small momentum near the BZ center.

If the surface magnetization is uniform, the energy spec-
trum of the Hamiltonian (1) is given by the relation E2 =
(νkx − JMy)2 + (νky + JMx )2 + J2M2

z . Thus, when the vec-
tor M is oriented in the surface plane, the 2D electron states
show a gapless cone spectrum with the Dirac point shifted
from the BZ origin in the direction perpendicular to M. In the
case of out-of-plane easy axis, the surface states are gapped.
The corresponding 2D spectral relations for the three orien-
tations of the uniform surface magnetization are illustrated in
Fig. 1. However, for topological surface states, an interplay
of the band topology and magnetic ordering is not reduced
to these spectral features. Indeed, the topological indices of
the surface states of a magnetic TI might be closely linked
with the sign of either the exchange energy gap or the ex-
change shift of the Dirac cone in the 2D BZ, depending on
the magnetic easy-axis direction. In other words, the fermions
moving on the magnetically inhomogeneous surface can ac-
quire the spatially varying topological indices. Thus, the DW,
across which the surface magnetization changes its sign, is
also a border separating domains with different topological
indices. Thereby, such a border is expected to host a peculiar
topologically protected 1D state.

As emphasized above, despite the presence of magnetic
order in the TI bulk, the terminating surface can display rather
considerable local variations of the magnetization M(x, y),
including DWs with various textures. The magnetic DWs of
certain types can bind the Dirac fermions. In order to elucidate
this issue, we address a particular class of magnetic configu-
rations in which the M, magnitude, is fixed, |M(x, y)| = M0,
while the vector M(x, y)/M0 = m(x, y) is a function of the
position at the surface plane. Furthermore, we restrict our
study to a 1D model in the sense that the magnetization under-

goes large-scale modulation in only one spatial direction, for
definiteness m(x, y) → m(x), while retaining lattice periodic-
ity in the orthogonal direction and, consequently, conserving
momentum ky. We consider several representative orientation
configurations of the surface magnetization. We do not an-
alyze here the energy of these configurations, but make use
of them as a playground for the exploration of substantive
characteristics of the topological surface states. At first, we
will address isolated antiphase DWs of zero width such as
m(x) = m0 sgn(x), which may differ in the m0 direction with
respect to the crystallographic axes of the system. If the
distance between the neighboring DWs is not too large, the
DW-induced bound states overlap and hybridize. This aspect
is explored by using configurations of a pair of DWs and a
1D periodic domain lattice. We also consider noncollinear
magnetic DWs at the TI surface and study the bound states
appearing at the isolated 180◦ Néel-type and Bloch-type DWs,
which profiles are simulated by piecewise unit vectors m.

Our k-linear model approach, Eq. (1), has the advantage
that it allows us to readily explain the main trends in modifica-
tion of the topological surface states caused by perturbations
of magnetization that are not easily accounted for within ab
initio simulations. We employ both the continuum model anal-
ysis and the tight-binding calculations. The former is used to
find explicit low-energy solutions for the Dirac-like equation.
The latter are based on a lattice regularization of the k · p
Hamiltonian (1) via the substitution kx,y → (1/a) sin(kx,ya)
where a is a 2D square lattice constant. The tight-binding sim-
ulation is featured by the dimensionless parameter JM0a/ν.
To avoid an appearance of false Dirac points at the bound-
ary of BZ, known as the double-fermion problem [59], we
include the Wilson mass term 2wσz

a2 [2 − cos(kxa) − cos(kya)],
which does not significantly affect the surface state behavior at
small momenta. The tight-binding calculations are performed
using a recursive technique for the Green’s functions [60,61].
Having obtained the retarded Green’s function [GR(E , ky)]
for a given magnetization distribution, we can analyze further
the corresponding momentum-resolved one-particle spectral
function ρ(E , ky ) = (−1/π )Im Tr GR(E , ky) and that for each
spin polarization Si(E , ky) = (−1/π )Im Tr σiGR(E , ky). Fur-
thermore, we can obtain the total density of states (DOS)
ρ(E ) = (2π/a)

∫ π/a
−π/a dkyρ(E , ky), and the net spin polariza-

tion Si(E ) = (2π/a)
∫ π/a
−π/a dkySi(E , ky) as a function of the

state energy, E . The spatial distribution of the surface electron
state is evaluated by the local density of states ρ(E , x, ky ) =
(−1/π )Im [E + iε − H (x, ky)]−1 at energy E , where iε is a
small broadening width. The results of the tight-binding nu-
merical simulations are presented in Figs. 2–9.

III. THE MAIN RESULTS

A. Single antiphase domain wall

We begin by considering the electron state bound to a
single collinear DW, when two of its sides differ in sign
of the magnetization. For definiteness, DW is assumed to
extend along the y direction being centered at x = 0. The
spatial configuration of such an antiphase DW is merely given
by a step function profile, m(x, y) = m(x) = m0 sgn(x),
i.e., the DW magnetization changes sharply its direction
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FIG. 2. Bound electron states induced by a single sharp antiphase DW on the magnetic TI surface for increasing angle θ . Panels (a),(b),
(c),(d), (e),(f), and (g),(h) correspond to θ = 0, π/6, π/3, and π/2, respectively. Projected topological surface bands associated with left and
right magnetic domains are in blue and green, respectively. In panel (a) these bands coincide. Dependence E (ky ) for the DW-induced bound
state obtained in terms of spectral function is in red. The total DOS, ρ(E ), and the spin polarization, Si(E ), are shown as well. The top of
panels (a), (c), (e), and (g) contains the schematic image of magnetic texture of the antiphase DW indicated by arrows.

to just the opposite one under crossing over the
boundary (x = 0, y), while the magnetization within
the domain stays uniform. We describe the unit vector
m0 = [cos(φ) sin(θ ), sin(φ) sin(θ ), cos(θ )] with spherical
coordinates, where the polar angle θ and azimuthal angle φ

set the magnetization orientation with respect to the z axis
and in the surface plane (x, y), respectively. The vector m0 is
typically aligned with the magnetic easy axis. The infinitely
thin DW approximation is justified, provided that the DW
width is significantly shorter than the localization scale of the
electron state.

The system homogeneity along the y direction implies
that the Bloch excitation with wave vector ky propagates
along the DW. Therefore, upon replacement kx → −i∂x, the
problem is reduced to the 1D real-space Dirac equation
H (x, ky )�(x, ky) = E (ky)�(x, ky) for the bispinor envelope
function �(x, ky) = [ϕ(x, ky), χ (x, ky)]T, which must decay
into the domain regions, i.e., �(|x| → ∞, ky) = 0. On the
other hand, the function �(x, ky) satisfies the boundary
conditions that ensure its continuity at x = 0 and the deriva-
tive jump which reads

iσy[∂x�(x, ky)|0+ − ∂x�(x, ky)|0−]

= 2k0(m0 · σ)�(0, ky),
(2)

where k0 = JM0/ν is the characteristic momentum.
As a prime example of the eigenproblem we address the

case when the magnetization is tilted in the (x, z) plane by
angle θ and the my component is absent, i.e., sin(φ) = 0. The
“tail-to-tail” DW, the two sides of which differ by angle π (for
definiteness 0 � θ � π/2), harbors the bound state featured
by the envelope function

�(x, ky) = �0

(
α

1

) ∑
±

h(±x) exp(∓p±x) (3)

and the energy dispersion

E (ky) = νky cos(θ ). (4)

Here h(x) is the Heaviside function, the momenta p± = k0 ±
ky sin(θ ) determine the localization length of the bound state,
and �0 is a normalization constant, α = tan[(π/2 − θ )/2].
The spectral branch (4) exists within the momentum inter-
val |ky sin(θ )| < k0, where p± > 0; in other words, the 1D
linearly dispersive mode (4) meets the 2D Dirac cones when
|ky sin(θ )| = k0.

Thus, we find that at the TI surface there is only one chiral
bound state per single magnetic DW, propagating along the
DW with group velocity ν∗ = ν cos(θ ). The properties of the
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DW-induced state (3)–(4) alter as one changes the tilt angle
θ . When the domain magnetization is parallel to the surface
normal, the emergent state is massless linearly dispersing
and completely spin polarized along the x-axis fermion with
energy E = νky and spinor construction α = 1. On the con-
trary, when the vector m is parallel to the x axis, a heavy
fermion with E = 0 and spin polarization along the z axis
(α = 0) appears. In any case, i.e., at arbitrary angle θ , one
can see that the spin polarization of the bound state (3)–(4) is
exactly perpendicular to both the DW propagation direction
and the domain magnetization, (m0 · 〈σ〉) = 0. In this sense,
besides spin-momentum coupling, the fermion state possesses
a peculiar sort of chirality when the fermion spin localized at
the DW is tightly locked to the surface magnetization. The
DOS for the solution (3)–(4) is given by

ρ(E ) = a

2πν cos(θ )
h[νk0 cot(θ ) − |E |]. (5)

The DOS (5) is transformed from the constant value ρ(E ) =
a/(2πν) for θ = 0 to the utterly narrow peak ρ(E ) =
(ak0/π )δ(E ) for θ = π/2, where δ(E ) is the delta function.

We have also numerically verified the existence and pe-
culiarities of the DW-induced bound states using the lattice
approximation. In the tight-binding calculations, the model
dimensionless parameter is chosen as JM0a/ν = 0.1 only for
convenience, in order to facilitate the visualization of the
results. One can easily verify that the same qualitative re-
sults would be observed for any value of this parameter. In
Fig. 2, we plot representative pictures of the spectral depen-
dencies, E (ky), the total DOS, ρ(E ), and the spin polarization,
Si(E ), for four selected values of the angle θ ; in addition,
the corresponding DW configurations are schematically de-
picted. What we are most interested in is the low-lying states
in the middle of the projected 1D BZ |ky| < π/a with the
momenta that are small compared to the momentum of the
order of the reciprocal lattice length. First, the energy spec-
trum of these states comprises pronounced projections of the
two Dirac cones, originated from the corresponding magnetic
domains, separated by momentum 2k0 sin(θ ) and gapped by
energy 2JM0 cos(θ ). Second, and most important, there is a
1D massless linearly dispersing in-gap chiral fermion branch
[at cos(θ ) 	= 0] associated with the DW-induced bound state.
The properties of the emergent DW states controlled by the
polar angle are drastically different in the cases when the easy
axis is normal to the surface or lies in its plane. As seen in
Figs. 2(a) and 2(b), at cos(θ ) = 1, the fully spin polarized
along the x-axis dispersionless mode with constant DOS spans
the exchange gap of the size 2JM0 in the Dirac cone. Away
from the angle θ = 0, the state gradually changes its char-
acter: the group velocity, ν∗ = ν cos(θ ), of the bound state
reduces linearly with the mz component, the spin polarization
deviates from the x axis in the (x, z) plane, and DOS as
a function of energy concentrates around E = 0. Particular
cases are demonstrated in Fig. 2 for θ = π/6 [panels (c)
and (d)] and for θ = π/3 [panels (e) and (f)]. Eventually, at
cos(θ ) = 0, one observes in Fig. 2(g) a perfectly flat band with
energy E = 0 that bridges the two Dirac cones with nodes
at momenta ±k0. The corresponding heavy fermion state,
fully spin polarized along the z axis, manifests in a dramatic

FIG. 3. Spatial profiles of the probability density of the planar
DW bound state for distinct momenta ky indicated with small color
squares on the dispersion curves in Fig. 2(g).

enhancement of DOS [Fig. 2(h)]. In Fig. 3 we depict the local
density profile of the flatband state for three momenta ky.

Thus, combining analytic model and tight-binding numer-
ical simulations in the long-wavelength limit we consistently
demonstrate that the antiphase DW at any polar orientation
θ supports the in-gap chiral degenerate bound state. The chi-
rality consists in locking of three vectors that are mutually
orthogonal to each other, that is to say, they constitute the
orthogonal trio: the domain polarization m0 (oriented as a
rule along a favoring axis of a magnetocrystalline anisotropy
in the surface plane), the state spin polarization 〈σ〉, and the
propagation direction, i.e., the wave vector yky. The inversion
of the DW magnetization m(x), such as tail-to-tail↔“head-
to-head,” entails the alteration of the vectors 〈σ〉 and yky to
just the opposite ones. In other words, the fermions moving
on the tail-to-tail and head-to-head DWs have the opposite
chiralities.

The spectral and spin features of the DW-induced state
are highly sensitive to the orientation of m0 with respect to
the surface normal. Notably also, the existence of the eigen
localized solution (3)–(4) is guaranteed by the antiphase DW
texture, which allows us to consider such a magnetic defect
as a topological boundary and, consequently, the emergent
in-gap quasiparticle state as a topologically protected one.
When the magnetization points perpendicular to the TI sur-
face, an exchange-interaction-induced magnetization opens
up the gap of the size 2JM0. At the boundary between
up and down out-of-plane magnetic domains, according to
the known arguments [62,63], a chiral linearly dispersive
state appears [Fig. 2(a)] because of the inversion of the gap
from +2JM0 to −2JM0. To provide compelling evidence
that the DW-induced state (3)–(4) has a topological origin
at any polar angle, we use the reasoning similar to that
given in Refs. [30,64]. In the general case, which is ad-
dressed here, the role of the “effective gap” could be played
by the momentum-dependent energy parameter �(x, ky) =
2ν[p+h(x) − p−h(−x)] = 2[JM0 sgn(x) + νky sin(θ )]. Pro-
vided that ky is restricted to the realm of the existence of
the bound state (3)–(4) in the 1D BZ, |ky sin(θ )| < k0, the
parameter �(x, ky) changes its sign just at the magnetic DW.
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On the contrary, if |ky sin(θ )| > k0, the parameter �(x, ky) has
the same sign on both sides of the DW. Thus, the 1D gapless
surface bound state (3)–(4) appears due to the “gap” �(x, ky)
closing at the DW, which is guaranteed by the texture of the
antiphase DW at any polar orientation θ . In the partial case
of the easy plane, θ = π/2, the linearly dispersing branch of
the surface spectrum, Figs. 2(a), 2(c) and 2(e), transforms into
the flatband branch with energy E = 0 connecting the Dirac
points at ky = ±k0, Fig. 2(g). It should be acknowledged that
the existence of a 2D dispersionless state, so-called “heavy
fermion,” was predicted by Volkov and Pankratov in the case
of a supersymmetric DW in a ferroelectric semiconductor
A4B6 [65].

When the surface magnetization remains in the (y, z)
plane, the antiphase DW featured by the vector m0 =
[0, sin(θ ), cos(θ )] hosts massless linearly dispersing chiral
fermions for any angle 0 � θ � π/2. According to the bound-
ary conditions of Eq. (2), it is described by the envelope
function �(x, ky) ∼ exp(−k0eiθ |x|) and spectrum E (ky) =
νky and is fully spin polarized along the x axis. In the case
in which the magnetization is oriented along the DW, i.e.,
θ = π/2 and ϕ = π/2, the bound state disappears.

B. The flatband state for a single domain wall
with in-plane magnetization

Now we turn to consideration of the magnetic TI sur-
face where domains are oriented in the basic plane due to
preferable easy-plane anisotropy. In order to understand what
happens with the surface state, we set the single azimuthal
DW that separates two regions with differing magnetization
orientations specified by angles φ+ and φ−. The magnetiza-
tion spatial profile reads m(x) = [cos(φ+), sin(φ+), 0]h(x) +
[cos(φ−), sin(φ−), 0]h(−x). We find readily the DW-induced
state pinned to energy E = 0 and express its envelope function
as

�(x) =
(

ϕ0

0

) ∑
±

h(±x) exp(q±x),

− k0 cos(φ−) < ky < −k0 cos(φ+);

�(x) =
(

0
χ0

) ∑
±

h(±x) exp(−q∗
±x),

− k0 cos(φ+) < ky < −k0 cos(φ−),

(6)

where the momenta q± = ky + k0 exp(iφ±) determine the lo-
calization length of the bound state, and ϕ0 and χ0 are
normalization constants. From here we conclude that the az-
imuthal DW generates the dispersionless bound state with
perfect spin polarization aligned perpendicular to the surface
plane unless only the Mx components coincide. The realm
of the flatband connecting the projections of the two Dirac
cones in the 1D BZ is determined by angles φ+ and φ−. The
condition φ+ = −φ− or φ+, φ− = ±π/2 means disappear-
ing of the bound state. On the contrary, in the case of the
antiphase DW, when either φ+ = 0, φ− = π or φ+ = π , φ− =
0, the state occupies the widest possible realm in the mo-
mentum space, |ky| < k0, Fig. 2(g). The DOS for the flatband
state of Eq. (6) is given by ρ(E ) = [ak0/(2π )]| cos(φ+) −
cos(φ−)|δ(E ). Our consideration demonstrates that the 1D

FIG. 4. Bound electron states induced by a pair of single sharp
antiphase DWs on the magnetic TI surface for out-of-plane easy axis.
Dependence E (ky ) for the induced bound state obtained in terms of
the spectral function is present in panels (a) and (b) in red for two
different distances between DWs, L = 50a and L = 10a. Total DOS,
ρ(E ), and the spin polarization, Si(E ), are shown in panel (c). The
top of panels (a) and (b) contains the schematic image of out-of-
plane antiphase magnetic texture, where the domain magnetizations
are indicated by arrows.

flatband state is robust even when the orientations of the
magnetic domains are rotated with respect to each other in
the basic plane.

C. Pair of antiphase domain walls

If the distance between two DWs is not too large, the DW-
induced bound states can overlap and hybridize, effectively
leading to a deformation of their spectra. To analyze this mod-
ification we describe the surface magnetization distribution as
composed of three different regions divided by the sharp DWs
fixed at x = ±L/2. In the case of the out-of-plane anisotropy,
the up-magnetized stripe domain of a finite width L is
placed between the two half-infinite down-magnetized do-
mains, which can be represented as m(x) = (0, 0,−1)h(|x| −
L/2) + (0, 0, 1)h(L/2 − |x|). When the overlap of the tails
of the states originating from the DWs is small, two 1D lin-
ear spectral branches appear within the exchange gap 2JM0,
which are slightly gapped ∼JM0 exp(−k0L) at ky = 0 due to
the states hybridization, Fig. 4(a). If the DWs are relatively
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FIG. 5. The same as Fig. 4, but for the case of the in-plane easy
axis.

close to each other, Lk0 � 1, the large overlap leads to the
formation of a pair of weakly localized states with parabol-
iclike bands [Fig. 4(b)], whose edges are near the exchange
gap edges, JM0 − |E | ∼ JM0(k0L)2 at ky = 0. The DOS and
spin polarization of these states are depicted in Fig. 4(c).

In the case of the in-plane anisotropy, the magnetization
configuration includes the tail-to-tail and head-to-head DWs.
For the sake of definiteness, we assume that the side domain
regions magnetized along the x axis are separated by the
intermediate region with the opposite magnetization direc-
tion, which is described by m(x) = (−1, 0, 0)h(|x| − L/2) +
(1, 0, 0)h(L/2 − |x|). In the spectral picture of Fig. 5(a) one
can see that, at large enough width L, one of the cones,
associated with the middle domain, is weakly pronounced,
while the heavy fermion spectral branch acquires weak disper-
sion given by E (ky) ≈ √

2JM0ν(k0 − ky) exp[−(k0 − ky)L].
When Lk0 � 1, both this cone and the bound state disappear
[Fig. 5(b)]. The respective DOS and spin polarization are
depicted in Fig. 5(c). Our analysis shows that the DW-induced
flatband state is highly sensitive to the DW-to-DW distance.

D. Periodical array of domain walls

In low-temperature phase, the surface of an as-grown mag-
netic material sample should host a set of domains with
different magnetization directions [32,66,67]. Here the ques-
tion arises as to how such a multidomain magnetic texture, in
particular the domain length scale, affects the electronic and

spin structure of the TI surface states. To figure that out, we
address the 1D periodically modulated collinear textures of
the surface magnetization which consist of alternating mag-
netization stripes aligned in the opposite directions: m(x) =
m0 sgn[sin(πx/L)], where 2L is the texture period. The do-
main stripes have finite width along the x axis and infinite
length along the y axis and are separated from one another
by sharp antiphase DWs. The net surface magnetization is
supposed to be vanished. The domain polarization m0 is fixed
to an easy axis. To be more specific, we study the modification
of the topological surface states under the magnetic texture
m(x) for two cases: the out-of-plane anisotropy, when m0 =
(0, 0, 1), and the in-plane anisotropy, when m0 = (1, 0, 0).

The tight-binding calculations are performed using an en-
larged unit cell, which is the stripe of width 2L = Na in
the x direction, where N is the number of sites per the unit
cell. The latter contains two antialigned domains. As we
have already clarified, due to the local variation of exchange
field, an isolated antiphase DW supports the bound state. As
the magnetization forms a multidomain texture, the surface
states stemming from the neighboring DWs hybridize. Hence,
it is natural to expect that the surface Dirac-like spectrum
rebuilds owing to the formation of the Bloch-like subbands
En(kx, ky) in the 2D BZ restricted to the realm |ky| < π/a,
|kx| < π/(2L).

In the case of the z easy axis, the 2D Dirac surface
states are gapped out by the domain magnetizations point-
ing outwards and inwards from the sample surface, whereas
the single DW produces the 1D in-gap state. As the DWs
are arranged regularly, the low-energy spectrum can be ex-

pressed in the form E±
0 (kx, ky ) = ±

√
ν2k2

y + ξ 2(kx ) + �2. In

the regime where the typical localization length k−1
0 is smaller

than the inter-DW distance, the dispersion in kx appears due
to the weak overlap of the envelope function tails, ξ (kx ) ∼
νk0 exp(−k0L) sin(kxL), the tiny hybridization gap 2� be-
tween the branches E+(kx, ky ) and E−(kx, ky) is of the next
order of magnitude in the overlap. The situation when the
inter-DW distance is comparable to the typical localization
length k−1

0 is illustrated by the spectral picture in Fig. 6 for
L = 30a. Moreover, at the BZ boundary |kx| = π/(2L), the
remarkable gap opens up in the spectral density of the prop-
agating states about energy |E | ≈ 0.16ν/a at ky ≈ 0. The x
component of spin polarization Sx(E , ky) is depicted in Fig. 6
by means of color intensity of the spectral branches. This
image tells about the spin-momentum locking of the surface
states, excluding the narrow realm in the vicinity ky ≈ 0.

A more complicated situation arises in the case of the
magnetization lying in the surface plane. When the adjacent
DWs lie at quite some distance from one another, L � k−1

0
[Fig. 7(a) for L = 100a], the flatness and spin polarization
of the low-energy states near E = 0 changes very little as
compared with the single-DW case. There occur the disper-
sion ξ (kx ) ∼ νk0 exp(−k0L) sin(kxL) along kx and the tiny gap
2� between the branches E+

0 (kx, |ky| < k0) and E−
0 (kx, |ky| <

k0). As follows from Fig. 7(b), the spatial profile of the
probability density of the low-energy state at ky ≈ 0 is sig-
nificantly different from that at |ky| ≈ k0. With regard to the
delocalized states, as seen in Fig. 7(a) for the spectral density
projected onto ky, the continual cone spectrum is split into a
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FIG. 6. Electron states induced by periodical array of sharp an-
tiphase DWs on the magnetic TI surface with the out-of-plane easy
axis. The spin-resolved spectral function is calculated for texture
with the period 2L, where L = 30a. The amplitude and sign of the
spin polarization Sx (E ) of the energy states E (ky ) are coded in a
red-blue color scheme. The top of the panel contains the schematic
image of the corresponding magnetic texture, where the domain
magnetizations are indicated by arrows. Total DOS, ρ(E ), is shown
as well.

set of subbands, En(|ky| = k0) ≈ πνn/(2L), n = 1, 2, 3 . . . .
As the inter-DW distance is decreased to intermediate value
L ∼ k−1

0 , we find that the low-energy spectrum loses the flat
behavior becoming parabolic along momentum ky, which can
be seen in Fig. 7(c) for L = 30a. Interestingly, while the
bands at zero energy disappear, two new flatlike bands at the
finite energy |E | ≈ ±0.13ν/a emerge due to a rebuilding of
the cone states in the exchange field of the periodic texture
with L = 30a, Fig. 7(c). Correspondingly, two sharp peaks
are present in the full DOS. One also notes that the compo-
nent Sx(E , ky) reduces near ky ≈ 0, where the electron spin
density is polarized normal to the surface. The real space
behavior of some states with different eigenvalues is shown in
Fig. 7(d).

Our analysis shows that the spectral characteristics of the
low-energy states in the case of the z easy axis are generally
stable in relation to varying inter-DW distance. On the con-
trary, in the case of the in-plane anisotropy, the dispersionless
states bound to DW are highly sensitive to change of the dis-
tance between neighboring DWs. When L � k−1

0 , these states
are interfering with each other shifting the flatband level from
zero energy. As a result, the spectrum acquires the curvature
and the gap. Moreover, the drastic redistribution of DOS of
the 2D cone states takes place under the magnetization spatial
modulation.

E. Noncollinear and noncoplanar domain walls

Above, we have considered the antiphase DW described by
the collinear magnetization texture m(x) = m0 sgn(x). Such a
sharp profile is believed to be a reasonable approximation if
the DW size is much smaller than the fermion localization

length ∼k−1
0 ; in this case, an internal structure of the DW

is not important. Now we turn our attention to more com-
plex DW textures displaying noncollinear and noncoplanar
arrangement of the surface magnetization varying over finite
scale. To explore the properties of the bound electron states
induced by such textures, we address several typical exam-
ples of 1D 180◦ noncollinear and noncoplanar configurations,
where the magnetization orientation varies only along the
x axis, m(x) = [mx(x), my(x), mz(x)], and the magnitude is
fixed, |m(x)| = 1. In order to avoid time-consuming calcula-
tions, we employ the approach where the spatial profile m(x)
is composed of three differently oriented regions: m(x) =
msh(|x| − l ) sgn(x) + mmh(l − |x|), where ms and mm are
independent of the coordinate, and the boundaries between the
regions are perpendicular to the x axis. The magnetizations of
the side regions, ±ms, are antiparallel to each other and or-
thogonal to that of the middle region, mm, i.e., (ms · mm) = 0.
The approximation simulates a helical rotation or cycloidal
one of the magnetization vector about the DW normal moving
from one side to another for the Bloch-like texture or the
Néel-like one, respectively. In the framework of our approach,
the bound states created by these textures are described
by solution of the eigenvalue problem H (x, ky )�n(x, ky) =
En(ky)�n(x, ky) with the Hamiltonian (1) under boundary
conditions at x = l and x = −l presented in Eq. (2).

In the present approach, the coplanar vectors ms =
(1, 0, 0) and mm = (0, 1, 0) set the Néel-like DW on the TI
surface. The schematic of the magnetization profiles along
the DW can be seen at the top of Fig. 8. A hallmark of
this Néel-like DW is an existence of the dispersionless and
strongly spin-polarized state with energy E0(ky) = 0 within
the momentum interval |ky| < k0, at any width 2l of the mid-
dle region. When compared with the case of the sharp DW
m = (1, 0, 0) sgn(x) referred to in Eq. (3) at θ = π/2, the
presence of the middle region is reflected in the phase shift
of the envelope function away from the DW core: �0(x →
±∞, ky ) ∼ exp(∓|k0 + ky|x ± ik0l ). The spectral characteris-
tics of the surface electrons are illustrated by the tight-binding
simulations displayed in Fig. 8. They confirm clearly the ex-
istence of the flatband state and indicate a large sharp peak in
both full DOS ρ(E ) and the spin polarization Sz(E ) near zero
energy. It should be noted that in the case of a broad middle
region, l > k−1

0 , the DW also supports the spin-degenerate
gapped states with quasiparabolic bands En(ky) = En(−ky)
within the local gap in the 2D projected bands (Fig. 8), here
n = ±1,±2, . . . ± N . The eigenstates have opposite energies
with respect to the zero energy, En(ky) = −E−n(ky). With
increasing the width, 2l , a number of the gapped states, 2N ,
grows. The bound states with n 	= 0 manifest in modification
of DOS at the edges of the quasiparabolic bands. In the
opposite case of the relatively sharp DW, when l < k−1

0 , the
additional states with n 	= 0 do not occur. The specified above
trends can be observed in Fig. 8 by comparing the spectral
features for 2l = 50a and 2l = 20a.

We performed a similar analysis of the bound states for the
noncoplanar surface magnetic texture defined by the vectors
ms = (0, 0, 1) and mm = (0, 1, 0), which is here referred to as
the Bloch-like DW. We argue that, at any width of the middle
region, the Bloch-like DW hosts the strongly spin-polarized
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FIG. 7. Electron states induced by periodical array of sharp antiphase DWs on the magnetic TI surface for the in-plane easy axis. The
calculated spin-resolved spectral function is shown for the texture with period 2L, where L = 100a, in panel (a), and L = 30a, in panel (c). In
the latter case, the amplitude and sign of the spin polarization Sx (E , ky ) of the energy states E (ky ) are coded in a red-blue color scheme. The
top of panels (a) and (c) contains the schematic image of the corresponding magnetic texture, where the domain magnetizations are indicated
by arrows. Total DOSs, ρ(E ), are shown as well. The panels (b) and (d) present spatial profiles of the probability density of the states with
distinct momenta ky indicated with small squares of the corresponding color on the dispersion curves in panels (a) and (c), respectively.

state with linear momentum-energy relationship E0(ky) = νky

spanning the exchange gap. The asymptotic behavior of the
envelope function of the state away from the DW core, given
by the relation �0(x → ±∞) ∼ exp[∓k0(x − il )] shows that
the existence of the middle region results in a phase shift of
the function. Furthermore, if the middle region is so wide
that l > k−1

0 , the additional bound gapped states with quasi-
parabolic dispersion, En(ky) = En(−ky) (n = ±1,±2, . . . ±
N), appear in the gap. These states are doubly degenerate
in spin, and their spectrum is mirrored with respect to zero
energy, En(ky) = −E−n(ky). With increasing 2l , a number of
the gapped states, 2N , increases. In the case when l < k−1

0 , the
additional states with n 	= 0 are absent.

Let us consider two polar Néel-like textures, where the
surface magnetization is confined in the (x, z) plane. Figure 9
displays the spectral picture of the surface electron states for
magnetic configuration given by ms = (1, 0, 0) and mm =
(0, 0, 1). As seen in Fig. 9, in the case of the relatively wide
middle region of 2l = 50a, a pair of quasilinear bands appears
within the local gap starting from the Dirac points at ky = ±k0

and crossing at ky = 0. This band crossing is accompanied
by an opening of a tiny hybridization gap ∼ exp(−2k0l ),
which divides the states with opposite spatial parity, E0(ky)
and E−1(ky). As can be inferred by comparing the spectra
at different values of the width 2l (see, e.g., the plots for
2l = 50a and 2l = 20a in Fig. 9), when the middle region
is narrowed the gap |E0(0) − E−1(0)| enlarges. At the same
time, the low-energy dispersive state E0(ky) sinks deeper into
the local gap, and eventually in the small 2l limit, it takes the
form of the perfect flatband close to zero energy connecting
the two Dirac points, E0(ky) ≈ −2νk2

0 l at k0l → 0. Note also,
that the state E0(ky) is partially spin polarized at the finite
width 2l; however, it becomes a fully spin-polarized state if
the DW middle region is completely shrunk. In turn, the state
E−1(ky) moves towards the band continuum edge and leaves
the local gap below a certain value of the width 2l = k−1

0
[E−1(ky) = −νk0 at 2k0l = 1].

One can also show that the two in-gap bound states are
hosted by the Néel-like DW whose texture is defined by the
vectors ms = (0, 0, 1) and mm = (1, 0, 0). Provided that the
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FIG. 8. Bound electron states induced by the Néel-like texture
on the magnetic TI surface with the easy in-plane anisotropy. The
spin-resolved spectral function is calculated for the texture with the
middle region width 2l , where 2l = 50a in panel (a) and 2l = 20a
in panel (b). The top of the panels (a) and (c) contains the schematic
image of the corresponding magnetic texture, where the right and left
side regions are in green and blue, respectively, the middle region
is in brown, and the arrows indicate the moments directions. The
projected surface band structure associated with the left and right
sides of the texture is in blue and green, respectively. The dependen-
cies E (ky ) for the DW-induced bound states are associated with red
curves. The total DOS, ρ(E ), and the spin polarization, Sz(E ), are
shown as well.

middle region is narrow enough, k0l � 1, one of these states
leaves the exchange gap for the band continuum, while the
other remains within the gap as the chiral fermion with the
perfect linear dispersion E0(ky) = νky. It is evident that a sin-
gle 90◦ DW, which contains the (0,±1, 0)-oriented domain,
does not support an in-gap bound state. However, noncollinear
and noncoplanar 180◦ textures, in which the middle region
magnetization mm is aligned along the y axis, can generate
from one to several in-gap states. In any case, the 180◦ Néel-
or Bloch-type DWs investigated certainly provide the exis-
tence of the topologically protected chiral state E0(ky) inside
the exchange gap.

IV. DISCUSSION AND SUMMARY

We have shown that the real-space magnetic textures,
such as surface DWs, are capable of affecting substantially

FIG. 9. The same as Fig. 8, but for the case of polar Néel-like
texture.

the momentum-space behavior of low-energy quasiparticles
in TIs. Thus, any particular magnetization texture M(x, y)
should provide its own spectral portrait for the surface electron
states in the surface exchange gap. The averaged spec-
tral function A(E , k) = −(1/π )Im Tr 〈GR[E , k|M(x, y)]〉, in
which the contributions of all the textures are collected ac-
cording to their statistic weight, is thought to be observed
in the spectroscopy measurements. Such an assumption may
qualitatively explain controversial ARPES results for the sur-
face spectra of intrinsic AFM TI MnBi2Te4 with out-of-plane
easy axis obtained by various experimental groups [34,42–
44,46]. In the seminal work [46] a clear exchange gap of
about 70 meV at the � point separating the upper and lower
parts of the surface cone was revealed, which is close to the
theoretically predicted value 88 meV. However, Shikin et al.
[34] have found in the ARPES spectra both large (60–70 meV)
and reduced (<20 meV) surface gaps at the Dirac point.
Some other ARPES measurements [42–44] have detected the
gapless Dirac states at the surface of MnBi2Te4 below the
Néel temperature instead of the expected exchange gapping
of the states. Within the developed theory, we speculate that
in the experimental findings cited here above the ARPES sur-
face spectra may contain a superposition of the DW-induced
spectral features like the ones presented in Figs. 2, 4, and 6
averaged spatially over multiple DWs caught out in the light
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spot of a micron scale. If the concentration of the DWs is
relatively low, they can hardly ensure a visible spectral sig-
nal inside the large exchange gap, which is associated with
almost homogeneous out-of-plane magnetization of the broad
domains. With the increasing concentration of DWs, one can
note the appearance of the Dirac-like gapless dispersion cross-
ing the exchange energy gap. Under the higher concentration,
the Dirac-like spectrum becomes gapped (i.e., with the “re-
duced” gap in the terms of Ref. [34] at the � point owing
to the hybridization of the states bound to the neighboring
DWs (see Fig. 4 and the corresponding comments). From
that standpoint, the disagreement of the ARPES findings for
the surface spectra of intrinsic AFM TI MnBi2Te4 can be
attributed to the growth conditions and magnetic treatment of
tested samples.

The disagreement between some spectroscopic probes in-
dicating a relatively large exchange gap at the TI surface and
the low-temperature range of the QAHE realization remains
an important matter [68]. The quantized conductivity effects
in real systems are affected by a complex network of topo-
logically nontrivial and trivial conducting channels running
along boundaries, separating regions of distinct topological
phases [69]. Our results demonstrate the presence of the
DW-induced states embodying the conducting channels at the
magnetic surface of TI and describe their characteristics. In
magnetotransport measurements, when the chemical potential
is fixed within the energy gap, the conductivity is realized by
means of both a carrier propagation along the edge channels
of the sample and a percolation through 1D channels caused
by the network of the magnetic DWs [41,70]. Therefore the
measured conductivity can display remarkable deviation from
the expected quantized value.

We have revealed a unique possibility to tune the group
velocity and spin-polarization orientation of the DW-induced
states by reorienting the easy-axis direction, which could be
useful to design new devices with controlled propagation
velocity and chirality for the robust excitations responsible
for quantized dissipationless conductivity. We have predicted

that, when the moments lie within the easy plane parallel to
the TI surface plane, both the head-to-head and tail-to-tail
planar textures generate the chiral zero-energy flatband state
in the single-particle spectrum. Due to the flatness of the
energy dispersion and respectively the large peak of DOS,
this state could attract particular attention from the perspective
of enhanced electron correlations. Thereby, the surface of the
planar magnetic TI carrying the DWs could provide a unique
platform for realizing phase transitions driven by instabili-
ties of the unusual quasiparticles—the heavy chiral fermions
with nontrivial topology. In particular, in such a system, it
would be interesting to seek for the unconventional super-
conductivity with spin-triplet pairing [71] or triplet excitonic
insulator [72].

To summarize, we have provided the physical picture to
understand the nature and properties of the DW-induced states
at the TI magnetic surface. Implying a rich domain texture of
the surface, we have shown the existence of various topologi-
cally protected states stemming from the DWs. The relevance
of our results is based on the fact that the properties of the
DW-induced states are explained in terms of a general ap-
proach, and their description is material independent. It can
be applied to the surfaces of intrinsic magnetic TIs and the
interfaces in hetrostructures with induced magnetization un-
der any direction of anisotropy axis. Further investigations of
the interplay between domain texture and the surface fermion
states in the magnetic TIs, especially via different experimen-
tal techniques, are strongly desired to open the way to realize
novel quantum phenomena.
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