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Magnetic field driven redistribution between extended and localized electronic states
in high-mobility Si MOSFETs at low temperatures
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In the study of oscillatory electron transport in high-mobility Si MOSFETs at low temperatures we observe
two correlated effects in weak in-plane magnetic fields: a steep decrease of the magnetic susceptibility χ∗(H ) and
an increase of the concentration of mobile carriers n(H ). We suggest a phenomenological model of the magnetic
field driven redistribution between the extended and localized electronic states that qualitatively explains both
effects. We argue that the redistribution is mainly caused by magnetization of the large-spin S ≈ 2 localized
states with energies close to the Fermi energy EF , coexisting with the majority Fermi liquid state. Our findings
also resolve a long-standing disagreement between the experimental data on χ∗ obtained in weak (H ∼ kBT/μB)
and strong (H ∼ EF /gμB) magnetic fields.
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I. INTRODUCTION

Dilute two-dimensional systems of electrons represent a
very fruitful playground for exploration of the physics of
strongly interacting charged fermions. The conventional ap-
proach, i.e., the Landau theory of Fermi liquids (FL), treats
the system of interacting electrons as a gas of quasi-electrons
whose parameters are renormalized by interactions [1,2]. It is,
however, questionable whether this description remains valid
for a two-dimensional (2D) system when the electron-electron
interaction energy Eee greatly exceeds the Fermi energy EF

[3], i.e., at rs � 1 [4]. Different approaches to this problem
gave birth to a plethora of theoretical suggestions [5–9] for
the ground states of strongly interacting electron systems.

Various correlated systems close to the Mott transition
exhibit a tendency to phase separate in insulator and metallic
phases with different densities [10]. This tendency is sup-
pressed by the long-range Coulomb interaction and by the gate
screening (for the 2D gated systems), which favors uniform
phases. Spatial phase separation and the emergence of an
inhomogeneous state also often occurs in the vicinity of a
phase transition, e.g., between superconducting, normal, and
magnetically ordered phases [11,12]. More specifically, for a
two-dimensional hole system, using the local compressibility
measurements Ilani et al. [13] observed the emergence of an
inhomogeneous state in the vicinity of the metal-to-insulator
transition.

The anomalous spin magnetization observed in the in-
plane magnetic fields for the strongly correlated system in
thermodynamic magnetization [14] and anomalous magneto-
transport [15,16] were interpreted as a transition of a dilute
2D system into the two-phase state. In the two-phase state,
the large-spin collective localized states, the so-called spin

droplets (SD), emerge and coexist with FL of mobile elec-
trons. The total spin of an individual droplet, S = 2 [14], is
almost independent of the carrier density and temperature,
whereas the number of droplets per unit area strongly depends
on the temperature and the electron density [15]. The idea of
the large-spin droplets has received theoretical support [17].

The disorder-enhanced magnetism in the ground state for
restricted geometries has been considered in Refs. [18–20].
Formation of local regions with nonzero spin density in a
disordered 2D system close to the Stoner instability was
predicted in Ref. [21]. On the other hand, the two-phase
state was suggested to emerge from a pure 2D Fermi liquid
on the verge of the Wigner crystallization [5]. Electron and
hole puddles, coupled by tunneling to the edge states, are
believed to be a common feature of 2D topological insulators
[22,23]. Recently, the mesoscopic Stoner instability in open
quantum dots, tunnel-coupled to external fermionic reservoir,
was studied theoretically in Ref. [24]. On the experimental
side, for mesoscopic size samples, a phase-inhomogeneous
state was observed by the authors of Ref. [25]; signatures of
spin polarization for a confined few-electrons system reported
in Refs. [26,27] were considered as evidence of interaction-
induced collective spin polarization transition.

In the current paper we report evidence for the presence of
inhomogeneous two-phase state over a wide range of carrier
concentrations on the “metallic” side of the so-called “2D
metal-insulator” transition in macroscopic 2D electron system
in (100) Si-MOS structures. Our detailed measurements of
the Shubnikov–de Haas (ShdH) oscillations in vector mag-
netic fields revealed steep variations of (i) the renormalized
spin susceptibility χ∗(H ) and (ii) the mobile carrier density
nSdH(H ), driven by a weak in-plane field H‖. The unexpected
nonmonotonic variations of the susceptibility (∼10–20%)
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and 2D carrier density (∼3%) correlate with each other
and with thermodynamic spin magnetization of electrons.
These correlations allowed us to identify the origin of these
effects.

We associate the density variation with the magnetic field
driven redistribution of electrons between two phases of dif-
ferent electron states. The majority phase is the 2D Fermi
liquid of mobile electrons, for which the local carrier density
can be determined from the SdH oscillations. The minority
phase, we believe, consists of the collective localized spin
droplets [14] which are imbedded in the 2D Fermi liquid.

We show that in the studied two-phase system the carrier
redistribution between the two states is driven by the magne-
tization of the large-spin SD states in the in-plane magnetic
field H‖. We tested this idea by considering a phenomenolog-
ical thermodynamic model of the two-phase state and linked
the observed changes in the nonlinear SD magnetization with
changes in the FL density nSdH(H‖) and susceptibility χ∗(H‖).
The observed χ∗(H‖) dependence indicates that a widely em-
ployed technique of extracting the 2D spin susceptibility from
measurements of the magnetoresistance saturation [28,29]
may provide inaccurate results not only when measurements
are performed in the strong fields of the order of EF /gμB (as
noted in Ref. [30]), but already in a much weaker field of the
order of temperature.

II. EXPERIMENT

The ac (13 Hz) transport measurements were performed
with two (100) Si-MOS samples from different wafers Si6-14
and Si3-10 with the peak mobility 2.4 m2/Vs and 3.2 m2/Vs,
respectively (at T = 0.3 K). For the resistivity ρxx measure-
ments we used the vector magnetic field technique with two
independent superconducting coils. Typical examples of the
SdH oscillations at different in-plane fields and their fitting
may be found in Refs. [31–33]. The oscillatory component
δρxx was shown earlier to be well fitted with conventional
Lifshits-Kosevich formula [31,33,34]; this enables accurate
extraction of χ∗ and nSdH. In particular, χ∗ values were de-
termined from the oscillation beating with an accuracy of
∼(1–2)%.

The results were available within the temperature range
T < 0.5K , in which the ShdH oscillations in weak H⊥ fields
[32] are not damped by temperature. The new data reported
here coincide in the H‖ → 0 limit with the χ∗(0) values re-
ported earlier in Refs. [32,35].

III. RESULTS

Figure 1 shows an unexpected nonmonotonic dependence
of χ∗ on the in-plane field. This dependence is reproducible
for both samples studied. As the density increases from n =
0.99 to 10 × 1011cm−2, the δχ∗(H )/χ∗(0) variations de-
crease from ∼25% to ∼(10–6)%. The characteristic field of
the χ∗(H )-minimum, H‖ ∼ 1 T for n = (1.1–2) × 1011cm−2,
is much weaker than the field of complete spin polariza-
tion of the 2D system, Hp = 2EF /g∗μB (∼20T for n = 2 ×
1011cm−2). We note that in a homogeneous single-phase FL
system Hp is the only characteristic field.

FIG. 1. Summary of χ∗(H‖)/χ∗(0) data versus H‖ for both sam-
ples and for several densities. For the lowest density n = 0.99, the
χ∗(H )/χ∗(0) variations are scaled down by two times. The density
is indicated in units of 1011 cm−2, T = 0.1 K. The dashed line is a
guide to the eye.

The hint for explanation of the puzzling χ∗(H‖) field de-
pendence is provided by the observed remarkable correlation
between the spin susceptibility minimum and the maximum
of the mobile carrier density, determined from the SdH oscil-
lation frequency in weak tilted fields (see Fig. 2). Though the
density changes δnSdH/nSdH are small, ∼2%, they are reliably
determined for various densities. The correlation has been
observed over the whole studied range of densities. Since the
total charge of the gated structure is conserved, the observed
dependence δnSdH(H ) provides evidence for the field-induced
redistribution between the localized and extended electronic
states.

Both sharp field dependencies of the spin susceptibility
χ∗(H )/χ∗(0) and the density of mobile carriers nSdH(H ) were
measured simultaneously in the same experiment, from the
beating pattern of SdH oscillations in vector fields, and are in
remarkable correlation with each other. Such “generic” V - and
�-shaped dependencies have been observed over the range
of densities (1.1–2.1) × 1011 cm−2 (referred to as “interme-
diate” densities); they are qualitatively similar for the two
studied samples.

Below we describe more complex behavior of χ∗(H ) and
nSdH(H ) over the extended range of densities.

A. Low densities

For the lowest density n = 0.99 × 1011 cm−2 the drop δχ∗
with H‖ is surprisingly prominent (25%), as Fig. 3(a) shows.
At such low densities on the verge of the transition to fully lo-
calized state, the nSdH(H ) variation could not be measured and
variations of χ∗(H ) could not be traced to higher field because
application of an in-plane field caused complete localization
of the 2D system [36–39].

B. High densities

The δχ∗/χ (0) variations become smaller with increasing
density: e.g., at n = 6.16 × 1011 cm−2 the drop becomes a
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FIG. 2. Correlation between the in-plane field dependence of
(a) χ∗(H )/χ∗(0), (b) density nSdH, and (c) spin magnetization M(H‖)
(reproduced from Ref. [31]). Red curve shows tanh(μBH/kBT )-
fitting of the experimental M(H ) data, blue curve shows H∂M/∂H
calculated from the fitting curve. The zero-field density n0 = 1.61 ×
1011 cm−2 for (a) and (b), and 1.4 × 1011 cm−2 for (c). Temperature
T = 0.1 K for (a) and (b) and 1.7 K for (c).

factor of 4 weaker than that for 0.99 × 1011 cm−2 [com-
pare Figs. 3(a) and 3(c)]. For even a higher density 10 ×
1011 cm−2, χ∗(H ) continues decreasing with field, and its
overall change does not exceed ≈6%, [see Figs. 3(c) and
3(d)]. The minimum χ∗(H ) shifts toward stronger fields, and
the V -shape is replaced with a more complex nonmonotonic
dependence. Figure 4 shows that the concomitant n(H ) depen-
dence also changes from �-shaped to a more complex one,
and the initial rise of n(H ) is replaced with the n(H ) decrease
in weak fields. Though the shapes of the dependencies n(H )
and χ∗(H ) become more complex, the correlations between
them persist (Fig. 5). This case is discussed below.

IV. CONCLUSIONS DRAWN FROM DATA

(1) The observed small (2%) density variation [Fig. 2(b)]
cannot be the driving force behind the ∼13% variations of
χ∗(H‖) [Fig. 2(a)]. Indeed, one might expect (∂ ln χ∗/∂H ) to
be only ≈0.6% per Tesla for n = 1.5 × 1011 cm−2, estimated
using the measured ∂χ∗/∂n value from Ref. [32]. Thus, the
observed δnSdH(H ) should be considered as a concomitant
effect rather than the main reason for χ∗(H ) variation.

(2) The spin susceptibility variations δχ∗(H ) measured
from SdH oscillations are relevant to the mobile carriers. This

FIG. 3. Evolution of the χ∗(H )/χb dependencies with density,
from the (a) lowest density 0.99 × 1011 cm−2 to higher densities
(b) 2 × 1011 cm−2, (c) 6.16 × 1011 cm−2, and at the highest studied
density (d) 10.0 × 1011 cm−2.

data also correlate with with thermodynamic magnetization
data [see Fig. 2(c)], which is determined mainly by the large-
spin collective localized states [14]. Thus, we believe that
the observed changes in the properties of extended states are
caused by the magnetization changes of the localized states
and by the subsequent carriers redistribution between the two
subsystems.

(3) The energy of the localized states must be located in
the close vicinity of the Fermi energy to allow for the carrier
exchange at ultralow temperatures between two electronic
phases. We refer to these states as “fast” localized states. No
temperature dependence of δnSdH was observed within the
range 0.1–0.5 K, therefore we believe that the carrier redis-
tribution occurs elastically, via tunneling. The corresponding
energy diagram for the two states is schematically shown in
Fig. 6(c). Note, that this picture is different from the conven-
tional model of the disorder-localized single-particle states in
the tail of the conduction band [40–42].

(4) The considered “fast” localized states are of a 2D nature
and, hence, are a part of the 2D electron system rather than
three-dimensional (3D) interface states because both nSdH and
χ∗ changes are observed only in the in-plane field.

V. DATA OVERVIEW

Our measurements were performed at a fixed gate voltage
Vg, whereas H‖ and T have been varied. Under this condition
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FIG. 4. Density variations as a function of the in-plane magnetic
field H‖ for the zero-field densities nSdH(0): (a) 1.153, (b) 1.265,
(c) 1.64, (d) 2.0, and (e) 9.8 × 1011 cm−2.

the total charge is conserved. The total charge in the multi-
component system includes both the extended (“mobile”) and
localized electron states. Only the “mobile” carriers contribute
to the SdH oscillations; their local density is experimentally
found from the oscillations frequency.

The localized states include “fast” and “slow” localized
states. The former states are capable of recharging and reach-
ing equilibrium with the extended states at the ms-timescale

FIG. 5. Comparison of the magnetic field dependences of
χ∗(H )/χb and n(H ) at high carrier density n ≈ 10 × 1011 cm−2.
Sample Si3-10.

after changing the gate voltage, magnetic field and temper-
ature [14,43]. We associate the “fast” localized states with
collective “spin droplets” possessing large spins. Such a con-
clusion, consistent with that found in Ref. [14], is based on
(i) the observation of the large thermodynamic spin magne-
tization exceeding the Bohr magneton [14], fast increase of
the magnetization energy with field, and (ii) the low value of
the characteristic field of the magnetization saturation H ∼
0.25kBT/μB ≈ 1 T [see Fig. 2(c)]. The magnetization resem-
bles that of free spins M ∝ tanh(μBH/kBT ), but saturates in
the field H‖ ≈ (0.8–1)T, which is four times weaker than that
anticipated for free spin-1/2 electrons; this observation points
at a large total spin S ≈ 2 of the collective state [14].

In contrast, the “slow” single-particle localized states
(SPL), which are positioned deeply below the Fermi energy, in
the tail of the conduction band, do not recharge within the time
of measurements; they do not participate in low-temperature
transport and equilibrium thermodynamics. Their presence
may be revealed, e.g., by polarizing the system with the

FL (b) (c)
EF

FIG. 6. (a) dM/dN versus H‖. Symbols are the data from
Ref. [31] for n = 1.4 × 1011 cm−2. (b), (c) Schematic spatial arrange-
ment of the two-phase state and the energy band diagram of the
two-phase system.
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in-plane field [41,42]. Since the SPL states are not recharging
in the described measurements, we will not discuss them be-
low. Correspondingly, we assume, δNmob + δNloc = 0 for the
two-component system, where the electron densities δNi in
the two phases are functions of the temperature and magnetic
field. We show below that the minimal phenomenological
model involving these two components is capable of explain-
ing our results qualitatively.

VI. MODEL

In Appendixes A and B to this paper we consider the
spin susceptibility variations within the theory of interaction
quantum corrections and the conventional thermodynamics of
the single-phase state. We show that these effects cannot ex-
plain the reported experimental data. Moreover, the observed
magnetic field variation of the mobile carrier density under
fixed total charge in the gated structure is a clear indication
of the presence of two phases in the studied electron system.
For this reason we consider below the phenomenology of the
phase separated two-phase state.

We conclude that the predicted magnetic field dependen-
cies due to interaction corrections and spin-polarization are
irrelevant (to the first approximation) to the observed sharp
changes of χ∗(H ).

A. Thermodynamics of the two-phase state

In the phenomenological model proposed below, for sim-
plicity, we neglected both monotonic quantum corrections and
the dependence of χ∗ on the degree of spin polarization.

Let us denote AFL ≡ A1 – the fraction of the total area
occupied by the FL states and ASD = A2 — the fraction of
the total area occupied by the collective localized states (spin
droplets, SD). ASD + AFL = 1, if one ignores the presence of
the single-particle localized (SPL) states (this can be justi-
fied since they do not recharge and do not thermalize during
measurements). As long as the 2D system is conductive, the
percolating-type arguments suggest that the FL phase is the
majority phase and occupies more than 50% of the sample’s
area., i.e., ASD < AFL.

The number of electrons per unit area in each phase is N1 ≡
NFL and N2 ≡ Nloc, and nFL and nSD correspond to the local
densities of the states in the regions occupied by FL and SD
phases. On the spatial scale shorter than the distance between
the gate and the 2D layer (≈200 nm) the local densities in
these two phases may only insignificantly differ from each
other and from the average density, both being dependent on
external parameters. The areal density of electrons (i.e., per
unit area of the overall 2D system) in each phase is Ni = niAi.
Then the total charge of the 2D system

Q/e ≡ N = N1 + N2 = nFLAFL + nSDASD. (1)

The gate voltage controls N rather than ni when the
total 2D system is recharged. Correspondingly, for the two-
component system at a fixed gate voltage Vg, δNFL + δNloc =
0, where δNi are functions of temperature and field. The ther-
modynamic magnetization measurements [14] show that the
individual spin droplet size is independent of N , T , and H .
Hence the local density nSD also remains constant, whereas

nFL and Ai may vary with N , T , and H . Based on the electro-
static arguments, we assume that N depends only on Vg, being
independent of H and T .

There is a fundamental difference between the parameters
probed by the transport and thermodynamic measurements.
From frequency of the SdH oscillations one determines
(i) the local density of electrons participating in the cyclotron
motion nSdH ≡ nFL = N1/A1 and (ii) χ∗ the spin susceptibility
of mobile electrons. On the other hand, both phases contribute
to the thermodynamic magnetization, whose measurements
provide dμ/dH = −dM/dN and M = ∫

(dM/dN )dN (M is
roughly proportional to N2 = nSD × A2 because the magne-
tization of the FL state is significantly smaller at low and
intermediate carrier densities). Similarly, the capacitive-type
measurements performed at low frequencies, � 1011 Hz,
probe all carriers, including SD and mobile FL states.

1. On the origin and structure of the localized states

In the absence of direct microscopic data on the spatial
extension of the spin droplets (SD) and their energy spec-
trum, we can only conjecture on the SD origin. The size of
the spin droplet was estimated in Ref. [14] as

√
2S/n, that

is ∼(40–100) nm for the total spin S = 2 and density n =
(0.5–2) × 1011 cm−2. This size is comparable with the gate
oxide thickness of 200 nm; at greater distances the potential
fluctuations are screened by the gate electrode. This compar-
ison suggests that the spin droplets might originate due to
the potential fluctuations at the Si − SiO2 interface. However,
without taking into account the intradroplet e-e interactions,
it would be difficult to explain why the total spin is so large
and why the SD size and spin remain unchanged over a wide
density range.

In our view, the most likely reason for the emergence of
SD states is the Stoner-type instability that occurs locally in
the most depleted regions. The interaction parameter rs is
the largest in these regions, similar to the case of quantum
dots discussed in Refs. [18–21,27]. An interesting issue is the
“magic” total spin S of SDs that is independent of temper-
ature and the average density. The experimentally estimated
S = 2 [14] indicates that there are at least n � 4 electrons
per SD. One might associate n = 4 with the four-fold valley
and spin degeneracy of the electrons at the (100)Si surface.
We think that the valley splitting at zero perpendicular field
and valley degeneracy are irrelevant since for the samples
studied �v = 0.4 K (for Si6-14) is less than the temperature
of the measurements in Ref. [14]. The Zeeman splitting �Z

for spins 1/2 is also irrelevant since the measurements found
in Ref. [14] as well as in this paper were performed at �Z <

kBT ; under such conditions all spins and valleys are mixed.
We therefore believe that the total spin and the number of
electrons in a droplet are set by the intradroplet many-body
interactions. Note that the maximum spin corresponds to a
maximally antisymmetric coordinate wave function, which
reduces Coulomb repulsion in restricted geometry.

Our observation that the SD states can recharge and quickly
thermalize with the FL states indicates that the energy band
of the SD states must be located in the vicinity of the
Fermi level. This enables the T -independent elastic carrier
exchange between the two bands via tunneling rather than
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the temperature-induced activation. Since the collective states
are energetically more favorable in the restricted area, the
uppermost energy level of the SD state is likely to be located
somewhat lower than EF , by the binding energy � of the
collective state.

In analogy with the conventional quantum dots and self-
organized potential traps [44], here the confining potential of
the SD state should be surrounded by a barrier preventing the
dot from filling with electrons from the neighboring FL phase
[Figs. 6(b) and 6(c)]. We believe that the SD states emerge
near the maxima of the bare fluctuating potential, where a lo-
cal collective (Stoner or spin-polarized Wigner) state emerges
in the most depleted areas. This conclusion seems counterin-
tuitive since conventional single-particle localized states are
located at the bottom of the potential landscape and therefore
fall into the band tail. The ground-state energy of SD becomes
lower by the binding energy � than EF of the surrounding
Fermi sea [Fig. 6(c)]. The uppermost level of the collective
state then goes down, below the peak of the potential hill (like
a “volcano crater”) leaving the surrounding potential barrier
almost intact. Leaving aside the origin of the emerged “crater”
(i.e., the SD energy level), the formation of the surrounding
barrier is governed further by the conventional screening sim-
ilar to that in Ref. [44].

The tunneling resistance R of the barrier and the SD
size-dependent capacitance provide the characteristic RC time
required for establishing equilibrium when T , H , or N are
varied. Note that we ignore the strongly localized states posi-
tioned well below the Fermi energy, in the band tail, since they
do not thermalize within the time of measurements. Account-
ing for these deep traps simply changes the overall density N
by an offset that is temperature and field independent [40].

2. Magnetic field variations of M and n

The free energy of a multicomponent system is [1] F =∑
i μiNi, where μ1,2 = ∂F/∂N1,2 are the electrochemical po-

tentials of the extended (FL) and localized (SD) components.
In equilibrium μ1(H, T ) and μ2(T, H ) are equal, however,
they may depend differently (and, in fact, do depend) on H
and T .

Taking into account the result of the authors of Ref. [14]
that the individual size of each SD (or quantum dot) does not
change with field and temperature, the changes N2(B) may be
induced only by variation of the number of SD states per unit
area, i.e., by A2. It is convenient to split the total free energy
per unit area into three terms:

F = Fμ + Fel + FH = [μ1N1 + μ2N2] (2)

−
[

e2N2
1

2C1
+

∑
j

Q2
SD

2CSD

]
−

[
χ1H2

2
+ M2H

]
. (3)

where μ1 = μ2 are the chemical potentials of each phase;
C1 ≈ (A1)1/2 and C2 ≈ (A2)1/2 are the capacitances of the FL
state and SD state per unit area; M2(H ) is the magnetization
of the SD state per unit area; χ∗(H ) the spin susceptibility of
the FL state per unit area; and the sum is over all SD states per
unit area. The total electrostatic energy equals N2e2/2

√
A =

N2e2/2 and is independent of H and T . In the free energy we
took into account the electrostatic energy, magnetization en-

ergy of the mobile FL states and of the localized SD states [see
Fig. 6(b)], and, for simplicity, neglected the mixing energy at
the boundaries [10].

In equilibrium, we require [1]

δF = δFμ + δFH + δFel = 0, (4)

where variation of F (H, Ni ) is taken with respect to all rele-
vant variables, H‖, and Ni. In what follows we consider only
the case of a fixed temperature since the available data [14,31]
on the T dependencies of M, χ∗, and ni have insufficient
accuracy.

After regrouping terms in Eq. (4), dividing them by δH ,
and taking into account that δN1 = −δN2, Eq. (4) reduces to

∂N1

∂H

[
N1

D̃1
− N2

D̃2
+ ∂M2

∂N2
H

]
= −∂μ2

∂H
N2 − ∂μ2

∂H
H + M2,

(5)
where D̃i = ∂Ni/∂μi, and Di = ∂ni/∂μi is the thermody-
namic density of states for the ith component

D̃i = ∂Ni

∂μi
= Ai

∂ni

∂μi
+ ni

∂Ai

∂μi
= AiDi + ni

∂Ai

∂μi
. (6)

The third term in the square brackets of Eq. (5) may be
neglected since it is by a factor of ∼70 smaller than the
first one. We also neglected the terms (χH ) and (∂χ/∂H )H2

in δFH because of their smallness. Substituting (∂μ/∂H ) =
−(∂M/∂N ) we obtain from Eq. (5)

∂N1

∂H

[
N1

D̃1
− N2

D̃2

]
= ∂M2

∂N2
N2 + ∂M2

∂H
H + M2, (7)

and after integrating both parts with respect to H :

N1(H )

[
N1

D̃1
− N2

D̃2

]

=
∫

dH

[
∂M2(H )

∂N

∂N

∂N2
N2 + ∂M2(H )

∂H
H + M2(H )

]
. (8)

Equation (8) relates changes in magnetization M2(H ) of
the SD localized states with the density variations N1(H ) in
the majority FL phase. In this equation M2(H ), ∂M2/∂H ,
and N1(H ) were determined experimentally (see Fig. 2), and
∂M2/∂N may be found from Ref. [14] for a given density.
The nominal carrier density N1 ∝ nSdH is known from the SdH
measurements, and D1, in principle, may be calculated from
the known renormalized effective mass m∗ [32].

B. Comparison of the model with experimental data

The dependence nFL(H ) ∝ N1(H ) calculated using Eq. (8)
for the representative density 1.4 × 1011 cm−2 is shown in
Fig. 7. It can be compared with direct experimental data of
Fig. 2(c).

Although the M2(H‖) and nSdH(H‖) data are available at
slightly different densities, and the model has several simplifi-
cations, the calculated δN1(H ) dependence captures the main
features of the experimental data: the density of mobile elec-
trons grows with field, reaches a maximum at approximately
the same field of 1T , and than slowly decreases. We conclude
that there is a good qualitative agreement with the experimen-
tally measured nFL(H ). On the right-hand side of Eq. (8) the
second and third terms are positive and monotonically grow
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FIG. 7. Model curve δN1(H‖) calculated from experimental data
as described in the text.

with field. Only the first term is negative and, thus, results in
the maximum and subsequent decrease in N (H ). This term is
set to (3.36 ± 0.1) × 1011 μB/cm2 to satisfy Eq. (8) and fit the
observed decrease of N (H ).

For high densities, we believe that the complex shapes
of the χ∗(H ) and n(H ) dependencies [Figs. 3(e) and 4(d)]
reflect the competition of several effects. One possibility is
that the energy of the spin magnetization of the FL states
χ∗H2/2 (which we assumed to be negligibly small at low
and intermediate density and omitted for simplicity in our
model) becomes comparable with (and may exceed) the mag-
netization energy of the SD states M2H . This is because the
number of SD states vanishes as overall density increases
[14,15]. Indeed, if we ignore the SD states magnetization for
high densities, the monotonically growing with field FL mag-
netization energy χ∗H2 (in contrast to the sharply saturating
M2H) in Eq. (6) would produce monotonic decrease of n(H ).
The observed initial n(H ) decrease with field [Fig. 3(e) is
consistent with such interpretation and indicates transfer of
electrons from FL to the SD states. However, the accuracy
and completeness of our data is insufficient to quantitatively
treat these effects at high densities.

VII. DISCUSSION

(1) The similarity of the modeled and measured nSdH(H )
data justifies our approach. In the proposed scenario, the mag-
netization of the SD states causes changes in the free energy,
which, in turn, cause redistribution of the carriers between
the extended and localized states. The changes in the free en-
ergy also affect the magnetic energy of the delocalized states
[detected experimentally as δχ∗(H )]. These changes were ne-
glected in our model since they are determined by a difference
of two much larger terms in δFH and the accuracy of our
data is insufficient to calculate them. With rising density, the
amount of the SD states diminishes [15], and the contribution
of the delocalized FL states to magnetization energy becomes
dominant. Apparently, this is the reason for the evolution of
shape of the experimentally determined nSdH(H ) and χ∗(H )
dependencies at the highest carrier density 10 × 1011 cm−2

(see Fig. 5).
(2) It is worth noting that for a 2D FL system, due to

the electron-electron interaction corrections in the diffusive
regime T τ � 1, the spin susceptibility is expected to vary
smoothly and insignificantly ∝ − ln(gμBH/2πkBT ) in fields
gμBH‖ � kBT [31,45] [see also Eqs. (A1) and (A2) in Ap-
pendix A]. With the approach to the field of complete spin

polarization of the 2D FL system [Hp ∼ 2EF /gμB ∼ 10–20 T
for the relevant densities (1–2) × 1011 cm−2], the spin suscep-
tibility is predicted to strongly increase [30]. Anyhow, χ∗ in
a single-phase 2D FL system is not expected to exhibit strong
variations in weak fields of the order of kBT/μB.

(3) Variation of the carrier concentration in 2D gated sys-
tems [46,47] in a perpendicular field is a well-known effect.
The variations δN (H ) at a constant gate voltage are commonly
treated within the framework of the single-phase picture and
related to the chemical potential jumps δμ(H ) between the
Landau levels in the spectrum of the FL state. Alternatively, in
thermodynamic magnetization measurements in the weak in-
plane field [14,48], recharging of the gated 2D structure was
predominantly caused by the SD states, whereas the transport
response of the mobile FL states was not measured. Therefore,
it is possible to treat the results within single-phase model and
almost ignore the FL states.

In the current paper we measured and analyzed both the
transport and thermodynamic data and found that the conven-
tional single-phase approach is not capable to explain the two
sets of data even qualitatively. This is because in the parallel
field the magnetization of the SD subsystem exceeds (or at
least, is comparable with) the Pauli magnetization of mobile
electrons.

(4) The carrier redistribution between the localized and
extended states is common for many types of field-effect
semiconductor-insulator structures [49,50]. This effect typ-
ically “freezes out” at lowering temperatures because it
requires temperature activation from the tail states to the
Fermi level. Here we reported the effect of redistribution
that persists down to ultralow temperatures. We associate
this temperature-independent effect with elastic tunneling
between the states of different nature but with the same
energy.

(5) The carrier redistribution between two phases in the
2D system is not easy to determine by other techniques. For
example, the capacitance measurements taken at frequencies
0–106 Hz (1 nF, 1 kOhm/�) probe the total charge density
that includes both SD and mobile states. To separate the SD
and FL states, the capacitance measurements should be done
at frequency of 1010–1012 Hz, inaccessible for the gated struc-
ture. We already noted that the FL density deduced from SdH
oscillations in the phase-separated system is determined by
the local density in the FL lakes (where the carriers possess the
highest relaxation time) rather than by the total density; this
picture holds until the delocalized states (FL lakes) percolate.
For the gated 2D system, the difference of the local density
within the FL lakes and within the SD areas is negligibly small
because of the associated electrostatic energy and neutrality
requirement.

The difference between the overall charge in the 2D sys-
tem (determined from recharging measurements) and the
mobile FL carrier density (local charge density) deduced
from SdH/QHE was measured in Ref. [46] and found to
be less than 2%, i.e., within the experimental uncertainty.
Note that the Hall voltage measurements also cannot shed
light on the mobile and SD carrier density since the Hall
voltage becomes irrelevant to the carrier density at the verge
of the localization transition (the so-called “Hall insulator”)
[51].
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(6) Though the χ∗(H‖) changes for mobile carriers were
not calculated in our model because of the smallness of the
corresponding magnetic energy changes, the changes should
occur due to the following thermodynamic arguments. The
microscopic mechanism behind these changes is as follows:
the carriers in the SD states have their spins aligned ferromag-
netically along the field, and when they tunnel elastically into
the Fermi sea, they should join the spin-minority subband. As
a result, the spin polarization degree (n ↑ −n ↓)/n measured
from the SdH oscillations beating diminishes; the spin sus-
ceptibility reported here has been found from this parameter.
Further slow restoring of χ∗ with H‖-field presumably reflects
the spatially averaged density of states for the SD’s. Qualita-
tively, we conjecture that the average width of the uppermost
energy level in the SD states amounts to ∼4 K, as estimated
from the corresponding restoration field of 3 T in Fig. 2.

(7) The observed χ∗(H‖) variations (Figs. 1 and 2) indicate
that a widely used approach for determining the spin suscep-
tibility from the monotonic magnetoresistance measurements
in parallel magnetic fields [28,29] might result in significant
errors. Indeed, the 〈g∗m∗(H‖)〉 averaged over a wide field
range (from 0 to the spin polarization field Hp) is about
10% smaller than the zero-field value g∗m∗(H → 0). If the
monotonic magnetoresistance is measured in weaker fields
H � Hp, the underestimation of χ∗ caused by finite H‖ may
be even greater (e.g., it may reach 15% for the degree of spin
polarization ≈0.05–0.1).

VIII. CONCLUSION

We observed and explored an unexpected sharp field de-
pendencies of the FL spin susceptibility χ∗(H‖) and the
density nSdH(H ) of the mobile electrons in the regime
of strong interelectron interactions (rs = 7.3–3.4). The two
effects correlate well with each other and with the thermody-
namic magnetization of the localized SD states. We suggested
a simple phenomenological two-phase model that links the
changes in the density of the mobile electrons to the magne-
tization of the collective localized states spatially separated
from the extended FL states. The qualitative agreement of
the model with experimental data suggests that the variations
of nSdH(H ) and χ∗(H ) with the in-plane field are caused by
magnetization of the minority phase of collective localized
states. Thus, our results provide the solid evidence for the
phase separation in the interacting 2D electron system even
at relatively high carrier densities, deeply in the “metallic”
regime of high conductivity [σ = (3–80) × (e2/h)] [52].

Our results also explain a long-standing disagreement
between the experimentally measured values of the spin-
susceptibility and g∗-factor obtained in weak and strong
magnetic fields. Though the presented empiric phenomeno-
logical model qualitatively explains the data at intermediate
densities, for the quantitative analysis a microscopic theoreti-
cal consideration is required that would take into account the
energy spectrum of the SD states.
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APPENDIX A: THEORETICALLY PREDICTED χ(H )
DEPENDENCE FOR THE 2D FERMI LIQUID

The Fermi liquid quantum correction to χ (H ) in the dif-
fusive interaction regime at weak fields and not too low
temperatures, (1 + γ2)gμBH‖/(2πkBT ) � 1, to the second
order in h is given in Ref. [31]:

δχ∗(H‖)

χ∗(0)
= − 1

σxx

ζ (3)

π2
g2

v[(1 + γ2)3 − 1]h2, (A1)

where h = gμBH/2πkBT , gv - valley degeneracy, γ2 =
−F σ

0 /(1 + F σ
0 ), F σ

0 is the FL coupling constant in the
particle-hole triplet channel, and χ∗(0) = gvμ

2
Bm∗/[π (1 +

F σ
0 )] is the spin susceptibility of the FL at H = 0 and T =

0. For stronger fields or lower temperatures 2πkBT � (1 +
γ2)gμBH‖,

δχ (H‖)

χ (0)
≈ − 1

σxx

g2
vγ2

π2
ln(gμBH‖τ ), (A2)

which is consistent with the theory by Al’tshuler and Zyuzin
[45].

Equations (1) and (2) predict χ (H ) to monotonically
decrease with H‖, unlike the experimentally observed V -
shaped χ∗(H ) dependence (see Fig. 1). Within an alternative
approach, by taking into account the spin polarization depen-
dence of the exchange and kinetic energy, Zhang and Das
Sarma found that χ∗ should monotonically grow with H‖
almost up to the field of complete spin polarization [30].

We stress that (i) the characteristic field (typically, H‖ ∼
1 T, see Fig. 1) of the observed χ∗(H ) minimum is much
weaker than the field of complete spin polarization of a
pure 2D system Hp = 2EF /gμB ≈ 10.88(N/1011)[T], and (ii)
there is no other characteristic field besides Hp in a homo-
geneous single-phase system. We conclude that the predicted
magnetic field dependencies due to interaction corrections and
spin-polarization are irrelevant (to the first approximation) to
the observed sharp changes of χ∗(H ).

APPENDIX B: THERMODYNAMICS OF
THE SINGLE-PHASE STATE

Consider the simplest single-phase picture that is tradition-
ally applied to the capacitive type measurements with gated
2D systems. Namely, we consider the total charge density
[47,48]

N = C0

e

(
Vg − μ2D − μg

e

)
, (B1)

where μ2D and μg are the electrochemical potentials of the
electrons in the 2D layer and the gate (Al film), Vg is the
gate voltage, and C0 is the capacitance between the 2D layer
and the gate. Here we neglect slight renormalization of the
geometric capacitance by the electron compressibility [48].
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Taking variations with in-plane magnetic field, we obtain

e2

C0

∂N

∂H
= +∂M

∂N
. (B2)

Here, we used the Maxwell relation ∂μ2D/∂H = −∂M/∂N
and disregarded the “diamagnetic shift,” i.e., magnetic field
dependence of C0. This diamagnetic shift contributes to
∂M/∂N less than 0.05μB at low densities and further drops
as N increases [48]. This equation predicts direct proportion-
ality between the magnetic field variation of dN/dH and the
magnetization per electron ∂M(H )/∂N . Both quantities were
experimentally measured: dN (H )/dH is shown in Fig. 8 and
∂M(H )/∂N in Fig. 6(a). Clearly, there is little in common
between the two dependencies, and we conclude that the
single-phase picture is inadequate for explaining the experi-
mental results.

FIG. 8. Example of the magnetic field dependence of dN (H )/
dH calculated from Fig. 4(c). Sample Si6-14. N (0) = 1.61 ×
1011 cm−2.
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