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The coupling between electronic and lattice degrees of freedom lies at the core of many important properties of
solids. Nevertheless, surprisingly little is known about the entanglement between these degrees of freedom. Here,
we calculate the entanglement entropy at zero temperature as well as the mutual information and the logarithmic
entanglement negativity at finite temperatures between the electrons and the lattice for a one-dimensional chain.
The electrons are described within Luttinger-liquid theory. Our results show that the entanglement entropy
diverges when one approaches the limit of stability, the so-called Wentzel-Bardeen singularity. We find that
the mutual information and the logarithmic entanglement negativity decrease with temperature. The mutual
information reaches a finite value in the infinite-temperature limit, which is a consequence of the infinite linear
electron spectrum of Luttinger theory. The logarithmic entanglement negativity becomes exactly zero above a
certain temperature; that is, the lattice and the electrons become nonentangled above this temperature. If the
electron-electron interaction is unscreened or weakly screened, this characteristic temperature diverges with
the system size. However, if the interaction is strongly screened, the characteristic temperature is finite and
independent of size, indicating a phase transition in the thermodynamic limit.
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I. INTRODUCTION

In the study of solids, one often starts with the adia-
batic (and approximate) decoupling of the electronic and
lattice degrees of freedom. However, these subsystems are
not independent, and their coupling causes many interesting
phenomena in condensed matter systems, for example, BCS-
type superconductivity [1–6], the Peierls instability [7–9], and
charge-density-wave formation [10–12]. The description of
the coupled electron-phonon system is a nontrivial problem.
Sophisticated approximations, such as diagrammatic pertur-
bation theory [13,14], Monte Carlo simulations [15–17], and
the tensor-network approach [18], have been developed.

Advances in quantum information theory in the last two
decades have made it possible to quantify correlations and
entanglement between subsystems without depending on con-
crete correlation functions and observables [19,20]. This has
led to a better understanding of thermalization [21] and
simulability [22] of quantum systems. In this context, the
entanglement entropy between the electron and the protons
in the H+

2 molecular ion has been calculated [23], but we are
not aware of similar studies for extended systems. This paper
describes a step in this direction.

In order to obtain precise knowledge about the whole spec-
trum and the wave functions of all excited states, we use an
integrable model, which, on the other hand, should have the
power to describe strongly interacting systems. Such a model
exists for one dimension, namely, the Luttinger liquid coupled
to acoustic phonons, which was introduced by Wentzel [24]
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and Bardeen [25]. This model is best known for the Wentzel-
Bardeen singularity: For sufficiently strong electron-phonon
coupling, the Hamiltonian becomes unbounded from below.
Early work on the Wentzel-Bardeen singularity was motivated
by its suspected analogy with superconductivity in higher-
dimensional systems [24–26], which, however, was ultimately
not productive.

Similar models can be used to describe the electron-
phonon coupling in carbon nanotubes [27–31], and there has
been speculation that the Wentzel-Bardeen singularity could
be realized in these systems [30]. Notably, in certain nanotube
systems the electron-phonon interaction is tunable by adding
quantum dots to the nanotube [32]. In Refs. [29–31], models
with multiple phonon branches and multiple electronic bands
are employed, and the phonons are described by a continuum
model. For the sake of a transparent and compact treatment,
we here consider one electronic band and one acoustic phonon
branch. The inclusion of multiple electronic bands and several
phonon branches, as required for a realistic description of
specific nanotubes, is technically straightforward. Moreover,
we start from a discrete lattice, which is more natural and
avoids the necessity of a cutoff.

We will characterize the correlations and entanglement
using the following measures: At zero temperature, the en-
tanglement entropy will be used [33,34]. The system is in
its ground state |GS〉, and its density matrix is the projector
ρ = |GS〉〈GS|. One divides the system into two complemen-
tary parts A and B, which in our case are the electrons and the
lattice. The reduced density matrices of the two subsystems
are

ρA = TrBρ, ρB = TrAρ, (1)
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where TrA and TrB denote the partial trace over subsystem A
and B, respectively. The entanglement entropy is defined as
the von Neumann entropy of the reduced density matrices,

S = −TrBρB ln ρB = −TrAρA ln ρA. (2)

At nonzero temperatures, the total (quantum and classical)
correlations are characterized by the mutual information [35].
To define the mutual information, one first introduces the
entropies of the reduced density matrices,

SA = −TrAρA ln ρA, (3)

SB = −TrBρB ln ρB. (4)

These two entropies are generally different, SA �= SB. The
mutual information is defined as

I (A : B) = SA + SB − SA∪B, (5)

where SA∪B = −Trρ ln ρ is the entropy of the whole system.
In order to characterize the quantum correlations at

nonzero temperatures, we use the entanglement negativity
[36,37]. Its definition relies on the concept of the partial trans-
pose ρTA of the density matrix, which is defined in terms of
matrix elements with respect to the product basis of subsys-
tems A and B as

〈ai, b j |ρTA |an, bm〉 = 〈an, b j |ρ|ai, bm〉. (6)

The partial transpose is unitarily equivalent to a time rever-
sal in subsystem A since the time reversal of observables
is represented by a product of a unitary transformation and
a transposition. It turns out that classical states, i.e., states
without entanglement, have no knowledge about the common
time direction. The partial transpose of the density matrix is
then also a valid density matrix with all eigenvalues positive
[36,37]. On the other hand, if the state is entangled, negative
eigenvalues may occur in the partial transpose. The sum of
these negative eigenvalues is a so-called entanglement mono-
tone; that is, it does not decrease in absolute value under local
operations and classical communication (LOCC) [38].

The negativity is defined as the sum of the absolute values
of the negative eigenvalues of the partial transpose,

N =
∑
λi<0

|λi| = ||ρTA ||1 − 1

2
, (7)

where the λi are the eigenvalues of ρTA and || • ||1 is the trace
norm, which is defined as the sum of the absolute values of
the eigenvalues. The logarithmic negativity is then defined as

EN = ln(2N + 1) = ln ||ρTA ||1. (8)

The remainder of this paper is organized as follows: In
Sec. II, we define our model and present its solution. The
values of the relevant correlation functions are also given. In
Sec. III, we then express the entanglement measures in terms
of integrals, which are evaluated numerically in Sec. IV. (The
continuum limit is briefly discussed in Appendix.) Finally, we
summarize and discuss our results in Sec. V.

II. MODEL

The lattice is modeled as a harmonic-oscillator chain with
periodic boundary conditions, which is coupled to a one-
dimensional Luttinger liquid [24–26]. If one turns off the
electron-electron interaction, this model is equivalent to the
original Wentzel-Bardeen model studied in Refs. [24–26].
We note that this problem can be treated by integrating out
the phonons, which gives an effective electronic model [39].
Here, we do not follow this approach since we need to keep
the phonons in order to characterize the electron-phonon
entanglement and correlations. After bosonization, we use
methods derived for oscillator systems [40–42] to characterize
the entanglement.

The system is defined by the Hamiltonian

H = −
∑

σ=±1/2

∫ L

0

dx

2π
v f [∗∗�

†
σ,L(x) i∂x�σ,L(x) ∗

∗

− ∗
∗�

†
σ,R(x) i∂x�σ,R(x) ∗

∗]

+
N∑

j=1

p2
j

2
+ 1

2
κ (q j − q j+1)2

+ 1√
L

L∑
j=1

q j

∫ L

0
dx [n̂L(x) + n̂R(x)]g(|x − ja0|L )

+ 4

L

∫ L

0

∫ L

0
dx dy (n̂L(x), n̂R(y))

×
(

h(x − y) 1
2 f (x − y)

1
2 f (x − y) h(x − y)

)(
n̂L(x)
n̂R(y)

)
, (9)

where L is the length of the system and the symbol ∗
∗•∗

∗
denotes normal ordering. The lattice constant is a0 = L/N ,
where N is the number of the oscillators. The equilibrium
positions of the atoms are x j = j. The field operators �

†
σ,L(x),

�
†
σ,R(x) create an electron with spin σ = ±1/2 at site x,

where L and R stand for the left-going and right-going elec-
trons, respectively. The first two terms in Eq. (9) denote the
kinetic energy of the electrons, where the factor 2π stems
from the normalization of the fields [43]. The third line de-
scribes the lattice system, where qj and p j are the Hermitian
canonical position and momentum operators of atom j. The
fourth line corresponds to the electron-phonon coupling. The
local electron densities are n̂L(x) =∑σ �

†
σ,L(x)�σ,L(x) and

n̂R(x) =∑σ �
†
σ,R(x)�σ,R(x). The displacements of the oscil-

lators couple to the electron density in a nonlocal manner
described by the function g(|x − j|L ), where |x − j|L is the
shortest distance between x and j, taking periodic boundary
conditions into account.

In Refs. [24–26], it was supposed that the Fourier trans-
form gk of g(	x) is linear for small k, i.e., gk ∼ k. This may go
back to old work by Bloch [44], which indeed predicts linear
electron-phonon coupling. It has become clear, though, that
the picture of a homogeneous positive background used in the
derivation of the Bloch formula is too crude [45] and that the
electron-phonon coupling is generally not linear in the wave
number k. In a number of real one-dimensional systems, the

035405-2



ENTANGLEMENT OF ELECTRONS AND LATTICE IN A … PHYSICAL REVIEW B 104, 035405 (2021)

electron-phonon coupling is found to be gk ∼ √
k [29,45]. We

will discuss both forms of electron-phonon coupling below.
The last two lines in Eq. (9) describe the electron-electron

interaction, which is assumed to be spin independent. The
interaction between electrons moving in the same direction
(opposite directions) is described by the function h(x − y)
[ f (x − y)]. Since the function h(x − y) describes processes
with small momentum transfer, whereas f (x − y) corresponds
to processes with large momentum transfer on the order of
2kF , h(x − y) is expected to be larger than f (x − y). De-
pending on screening, the Fourier transform hk of h(x − y)
may be singular at k = 0. We will discuss singularities of
the power-law form hk ∼ 1/kα below. We suppose that the
function f (x − y) and its Fourier transform are regular. The
factor of 4 is included in Eq. (9) for later convenience.

The electron operators in momentum space are

ck,σ,ν =
√

2π

L

∫ L/2

−L/2
dx eikx �σ,ν (x), (10)

c†
k,σ,ν

=
√

2π

L

∫ L/2

−L/2
dx e−ikx �†

σ,ν (x), (11)

where k = (2π/L) n with n ∈ Z. The factor
√

2π results from
the normalization of the field [43]. In the next step, we con-
struct the bosonic operators

bσ,ν,q = 1√
nk

∞∑
k=−∞

c†
σ,ν,k+qcσ,ν,k, (12)

b†
σ,ν,q = 1√

nk

∞∑
k=−∞

c†
σ,ν,kcσ,ν,k+q. (13)

Using these operators, we define Hermitian position and mo-
mentum operators for the electronic degrees of freedom as

qk,η,1 =
∑

σ=±1/2

(−1)η(σ+1/2)

√
8
√

k

× (b†
k,σ

+ bk,σ + b†
−k,σ

+ b−k,σ ), (14)

qk,η,2 =
∑

σ=±1/2

−i(−1)η(σ+1/2)

√
8
√

k

× (b†
k,σ

− bk,σ − b†
−k,σ

+ b−k,σ ), (15)

pk,η,1 =
∑

σ=±1/2

i
√

k (−1)η(σ+1/2)

√
8

× (b†
k,σ

− bk,σ + b†
−k,σ

− b−k,σ ), (16)

pk,η,2 =
∑

σ=±1/2

√
k (−1)η(σ+1/2)

√
8

× (b†
k,σ

+ bk,σ − b†
−k,σ

− b−k,σ ), (17)

where k � 0 and η = 0 (η = 1) corresponds to the charge
(spin) modes. These operators satisfy the canonical com-
mutation relations [qk,η, j, qq,η,i] = [pk,η, j, pq,η,i] = 0 and
[qk,η, j, pq,η′,i] = iδq,kδη,η′δi, j . The frequency k is defined as
k = v f k + (5/4π ) hkk.

Turning to the lattice degrees of freedom, we introduce the
Hermitian sine and cosine modes

QS,k =
√

2

L

L∑
n=1

sin(kn) qn, (18)

PS,k =
√

2

L

L∑
n=1

sin(kn) pn, (19)

QC,k =
√

2

L

L∑
n=1

cos(kn) qn, (20)

PC,k =
√

2

L

L∑
n=1

cos(kn) pn. (21)

The inverse transformations read as

qn =
√

2

L

∑
k

[cos(kn) QC,k + sin(kn) QS,k], (22)

pn =
√

2

L

∑
k

[cos(kn) PC,k + sin(kn) PS,k]. (23)

We finally obtain the Hamiltonian in oscillator form,

H =
∞∑

k=0

∑
η=0,1

(
k + 1

2
p2

k,η,1 + 1

2
2

kq2
k,η,1

+ 1

2
p2

k,η,2 + 1

2
2

kq2
k,η,2

)

+
π∑

k=0

P2
S,k

2m
+ 1

2
ωkmQ2

S,k + P2
C,k

2m
+ 1

2
ωkmQ2

C,k

+
π∑

k=0

gk

√
2nkk (QC,kqk,0,1 + QS,kqk,0,2)

+
π∑

k=0

5

4π
k fk

(
1

2
kq2

k,0,1 − 1

2k
p2

k,0,1

+ 1

2
kq2

k,0,2 − 1

2k
p2

k,0,2

)
, (24)

where the frequency of the phonon modes is ωk =
2
√

κ |sin k/2|.

A. Diagonalization

The Hamiltonian in Eq. (24) can be diagonalized by a
canonical transformation. The charge modes with |k| > π do
not couple to the lattice and are thus left unchanged during
the diagonalization. Similarly, the spin modes, represented by
qk,1,1, qk,1,2, pk,1,1, pk,1,2, do not couple to the lattice for any
k and are also unchanged.

The diagonalized Hamiltonian is

H =
∞∑

k=0

(
k + 1

2
p2

k,1,1 + 1

2
2

kq2
k,1,1

+ 1

2
p2

k,1,2 + 1

2
2

kq2
k,1,2

)
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+
∞∑

k=π

(
1

2
p2

k,0,1 + 1

2
2

kq2
k,0,1

+ 1

2
p2

k,0,2 + 1

2
2

kq2
k,0,2

)

+
π∑

k=0

(
P2

1,+,k

2
+ 1

2
λ+,kQ2

1,+,k + P2
1,−,k

2

+ 1

2
λ−,kQ2

1,+,k + P2
2,+,k

2
+ 1

2
λ+,kQ2

2,−,k

+ P2
2,−,k

2
+ 1

2
λ−,kQ2

2,+,k

)
, (25)

with

λk,± = 1

2

[
ω2

k +
(

2
k + 5

4π
k fk

)
α2

k

]

± 1

2

√[
ω2

k −
(

2
k + 5

4π
k fk

)
α2

k

]2

+ 4

π
g2

kkkα
2
k ,

(26)

where

αk =
√

1 − fk
4π
5 vF + hk

. (27)

The nontrivial eigenfrequencies of the diagonalized Hamilto-
nian are given by

√
λk,±. The radicand λk,± can be negative

if the Hamiltonian is not bounded from below and the system
is unstable. This is the Wentzel-Bardeen singularity [24,25].
The stability criterion reads as [26]

ω2
k

[
v f + 5

4π
( fk + hk )

]
>

g2
k

π
. (28)

The coupled electron-lattice eigenmodes appearing in the di-
agonalized Hamiltonian in Eq. (25) are given by

P1,±,k =αk (A±,kPC,k + B±,k pk,0,1), (29)

Q1,±,k = A±,kQC,k + B±,kqk,0,1

αk
, (30)

P2,±,k = αk (A±,kPS,k + B±,k pk,0,2), (31)

Q2,±,k = A±,kQS,k + B±,kqk,0,2

αk
, (32)

where

A±,k = − 1√
Nk

gk

√
kk

4π

√√√√1 −
5

4π
fk

vF + 5
4π

hk
, (33)

B±,k = 1√
Nk

(
ω2

k − λ±
)
, (34)

Nk = (ω2
k − λ±

)2 + g2
k

kk

4π

√√√√1 −
5

4π
fk

vF + 5
4π

hk
. (35)

Finally, these oscillator eigenmodes can be expressed in terms
of the bosonic operators

ai,±,k = λ
1/4
k,±√
2

(
Qi,±,k + i

1

λ
1/4
k,±

Pi,±,k

)
, (36)

a†
i,±,k = λ

1/4
k,±√
2

(
Qi,±,k − i

1

λ
1/4
k,±

Pi,±,k

)
. (37)

With the solution in hand, we can calculate the pair correlation
functions.

B. Correlation functions

The entanglement measures can be calculated from pair
correlation functions. The correlation functions of the lattice
sine and cosine modes read as

〈
Q2

S,k

〉 = 〈Q2
C,k

〉 = 1

α2
k

[
A2

k,+
2λ

1/2
k,+

(
2

eβλ
1/2
k,+ − 1

+ 1

)

+ A2
k,−

2λ
1/2
k,−

(
2

eβλ
1/2
k,− − 1

+ 1

)]
, (38)

〈
P2

S,k

〉 = 〈P2
C,k

〉 = α2
k

[
A2

k,+λ
1/2
k,+

2

(
2

eβλ
1/2
k,+ − 1

+ 1

)

+ A2
k,−λ

1/2
k,−

2

(
2

eβλ
1/2
k,− − 1

+ 1

)]
. (39)

The correlation functions of the coupled electronic charge
modes are

〈
q2

k,0,1

〉 = 〈q2
k,0,2

〉 = 1

α2
k

[
B2

k,+
2λ

1/2
k,+

(
2

eβλ
1/2
k,+ − 1

+ 1

)

+ B2
k,−

2λ
1/2
k,−

(
2

eβλ
1/2
k,− − 1

+ 1

)]
, (40)

〈
p2

k,0,1

〉 = 〈p2
k,0,2

〉 = α2
k

[
B2

k,+λ
1/4
k,+

2

(
2

eβλ
1/4
k,+ − 1

+ 1

)

+ B2
k,−λ

1/4
k,−

2

(
2

eβλ
1/4
k,− − 1

+ 1

)]
. (41)

Finally, the correlation functions connecting the lattice and
electronic charge modes read as

〈QS,k qk,0,2〉 = 〈QC,k qk,0,1〉

= A+,kB+,k

2λ
1/2
k,+

(
2

eβλ
1/2
k,+ − 1

+ 1

)

+ A−,kB−,k

2λ
1/2
k,−

(
2

eβλ
1/2
k,− − 1

+ 1

)
, (42)

〈PS,k pk,0,2〉 = 〈PC,k pk,0,1〉

= A+,kB+,kλ
1/2
k,+

2

(
2

eβλ
1/2
k,+ − 1

+ 1

)

+ A−,kB−,kλ
1/2
k,−

2

(
2

eβλ
1/2
k,− − 1

+ 1

)
. (43)
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The correlation functions connecting the electronic spin
modes to the charge or lattice modes are zero, as are the
correlation functions connecting the electronic charge modes
with |k| > π to the lattice.

III. ENTANGLEMENT AND CORRELATION MEASURES

In this section we describe the calculation of the measures
of entanglement and correlations. Most of them are expressed
by sums of analytical terms. The starting point is the equi-
librium density matrix of the system, which is a bosonic
Gaussian operator.

A. Entanglement entropy

At zero temperature, we consider the entanglement en-
tropy between the electron and lattice degrees of freedom.
The entanglement entropy is calculated using the correlation-
function method [46], which has been used to investigate
momentum-space entanglement in a Luttinger liquid [47] and
entanglement entropy in multicomponent Luttinger systems
[48,49]. We first define the correlation matrices of the lattice,

Qi, j = 〈GS|qiq j |GS〉, Pi, j = 〈GS|pi p j |GS〉. (44)

Let the spectrum of the matrix C = QP be ν1 . . . , νL. The
entanglement entropy is then

S =
L∑

j=1

[(√
ν j + 1

2

)
ln

(√
ν j + 1

2

)

−
(√

ν j − 1

2

)
ln

(√
ν j − 1

2

)]
. (45)

Introducing the function s(x) = (
√

x + 1/2) ln(
√

x + 1/2) −
(
√

x − 1/2) ln(
√

x − 1/2), we can rewrite this as

S = Tr s(C), (46)

where the trace has to be computed on the L-dimensional
space C acts on. Performing the trace with respect to the
common eigenbasis of Q and P, i.e., the sine-cosine basis, we
obtain a simple equation for the entanglement entropy:

S =
π∑

k>0

[
s
(〈

Q2
S,k

〉〈
P2

S,k

〉)+ s
(〈

Q2
C,k

〉〈
P2

C,k

〉)]
. (47)

This sum is easily calculated numerically. The results are
shown in Sec. IV. In the thermodynamic limit, L � 1, the sum
is replaced by the integral

S = L

2π

∫ π

0
dk
[
s
(〈

Q2
S,k

〉〈
P2

S,k

〉)+ s
(〈

Q2
C,k

〉〈
P2

C,k

〉)]
. (48)

Since the integral is finite, the entropy scales as S ∼ L.
The reduced density matrix ρph of the phonons can be writ-

ten in a simple form using the Hermitian canonical operators
of the sine and cosine modes. For any temperature including
T = 0, it reads as

ρph = 1

Z

π∏
k>0

e−βeff
k ( 1

2 P2
C,k+ 1

2 ωeff
k Q2

C,k )

× e−βeff
k ( 1

2 P2
S,k+ 1

2 ωeff
k Q2

S,k ), (49)

where

βeff
k = σ

Q
k

σ P
k

ln
σ

Q
k σ P

k + 1/2

σ
Q
k σ P

k − 1/2
, (50)

ωeff
k = σ P

k

σ
Q
k

, (51)

and

σ
Q
k =

√〈
Q2

C,k

〉 = √〈Q2
S,k

〉
, (52)

σ P
k =

√〈
P2

C,k

〉 = √〈P2
S,k

〉
(53)

are the variances of the position and momentum operators,
respectively.

B. Mutual information

At nonzero temperatures, we calculate the mutual infor-
mation between the electron and lattice degrees of freedom,
which characterizes the total correlation between the two sub-
systems. The mutual information is defined as

I = Sph + Sel − Sph∪el. (54)

The density matrix of the whole system can be written as

ρph∪el = ρ1 ⊗ ρs ⊗ ρc, (55)

with

ρ1 = 1

Z1

∞∏
|q|>π,σ

e−β|q|v f b†
q,σ bq,σ , (56)

ρs = 1

Zs

∏
|q|<π

e−β|q|v f b†
S,q,σ bS,q,σ , (57)

ρc = 1

Zc

π∏
k>0,±, j=1,2

e−βλ
1/2
k,±a†

k,±, j ak,±, j . (58)

Here, ρ1 describes the uncoupled short-wavelength excita-
tions, which are present because the fermions are described by
a continuum model, ρs describes the uncoupled electronic spin
modes, and ρc describes the coupled electron-phonon modes.
Z1, Zs, and Zc are the corresponding partition functions, which
simply ensure that the density matrices have unit trace.

The terms referring to the uncoupled electronic modes
cancel each other in Eq. (54) so that the mutual information is
determined only by the density matrix of the coupled modes,

I = S(Trphρc) + S(Trelρc) − S(ρc). (59)

The three terms are given by

S(Trphρc) =
π∑

k>0

[
s
(〈

Q2
S,k

〉〈
P2

S,k

〉)+ s
(〈

Q2
C,k

〉〈
P2

C,k

〉)]
, (60)

S(Trelρc) =
π∑

k>0

[
s
(〈

q2
k,0,1

〉〈
p2

k,0,1

〉)+ s
(〈

q2
k,0,2

〉〈
p2

k,0,2

〉)]
, (61)
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S(ρc) = 2
π∑

k>0,±

[ √
λk,±

exp(β
√

λk,±) − 1

− ln(1 − exp(−β
√

λk,±))
]
. (62)

These sums are easily calculated numerically. The results are
presented in Sec. IV.

C. Entanglement negativity

The logarithmic negativity has been defined in Eq. (8).
The partial transpose can be considered for any factor space
of the Hilbert space. Here, we would like to characterize
the electron-phonon entanglement; therefore we consider the
partial transpose for the phonon sector. The density matrix of
the system is the tensor product

ρph∪el = ρ1 ⊗ ρs ⊗ ρc. (63)

The partial transpose only affects the third term. We write the
result as

ρ�
ph∪el = ρ1 ⊗ ρs ⊗ ρ

Tph
c . (64)

We introduce the following notation for the eigenvectors and
eigenvalues of the operators ρ1, ρs, and ρ

Tph
c :

ρ1vi = aivi, (65)

ρsu j = b ju j, (66)

ρ
Tph
c wk = ckwk. (67)

Here, ai, b j ∈ [0, 1], whereas ck can be negative. The eigen-
values of the partially transposed full density matrix ρ�

ph∪el are
λi, j,k = aib jck . Then the negativity reads as

N =
∑

λi, j,k<0

|λi, j,k|

=
∑

i

ai︸ ︷︷ ︸
= 1

∑
j

b j

︸ ︷︷ ︸
= 1

∑
k with ck<0

|ck| =
∑

k with ck<0

|ck|. (68)

The sum of the magnitudes of the negative eigenvalues of
the partially transposed full density matrix ρ�

ph∪el equals the

sum of the magnitudes of the negative eigenvalues of ρ
Tph
c .

Hence we obtain the negativity by investigating only ρ
Tph
c .

Since this is a Gaussian density matrix, we can determine
the logarithmic entanglement negativity from its covariance
matrix, which has dimension 4N × 4N [40]. This method has
been used to investigate the front dynamics of the harmonic
chain [42] and later to analytically derive the dynamics after
a sudden quench [50]. The elements of the covariance matrix
are the real parts of all possible expectation values of coor-
dinate and momentum products, for any arbitrary but fixed
ordering of the operators. We order the rows and columns of
the covariance matrix in such a way that it is block diagonal.
It then takes the form

⎛
⎜⎝

Re〈Qk,cQk,c〉 Re〈Qk,cqk,0,1〉 0 0
Re〈Qk,cqk,0,1〉 Re〈qk,0,1qk,0,1〉 0 0

0 0 Re〈Pk,cPk,c〉 Re〈Pk,c pk,0,1〉
0 0 Re〈Pk,c pk,0,1〉 Re〈pk,0,1 pk,0,1〉

⎞
⎟⎠ (69)

for the cosine modes and ⎛
⎜⎝

Re〈Qk,sQk,s〉 Re〈Qk,sqk,0,2〉 0 0
Re〈Qk,sqk,0,2〉 Re〈qk,0,2qk,0,2〉 0 0

0 0 Re〈Pk,sPk,s〉 Re〈Pk,s pk,0,2〉
0 0 Re〈Pk,s pk,0,2〉 Re〈pk,0,2 pk,0,2〉

⎞
⎟⎠ (70)

for the sine modes. To get the covariance matrix of the partial
transpose, we have to multiply every Pk,s and Pk,c by −1 in
Eqs. (69) and (70). We then obtain the logarithmic negativity
from the symplectic eigenvalues of the covariance matrix of
the partial transpose [46],

EN = −
∑

λ

ln min(1, λ), (71)

where the sum runs over all symplectic eigenvalues. For our
case, we find

EN = −4
∑
k,±

ln min(1,
√

�k,±), (72)

where

�k,± = 1
2

[
ak ±

√
a2

k + 4bk − 4dk
]
, (73)

with

ak = 〈Qk,sQk,s〉〈Pk,sPk,s〉 + 〈qk,0,2qk,0,2〉〈pk,0,2 pk,0,2〉
+ 2〈Pk,s pk,0,2〉〈Qk,sqk,0,2〉, (74)

bk = (〈Qk,sqk,0,2〉〈Pk,sPk,s〉 − 〈qk,0,2qk,0,2〉〈Pk,s pk,0,2〉)

× (〈Qk,sqk,0,2〉〈pk,0,2 pk,0,2〉 − 〈Pk,s pk,0,2〉〈Qk,sQk,s〉),
(75)

dk = (〈Qk,sQk,s〉〈Pk,sPk,s〉 − 〈Pk,s pk,0,2〉〈Qk,sqk,0,2〉)

× (〈qk,0,2qk,0,2〉〈pk,0,2 pk,0,2〉 − 〈Pk,s pk,0,2〉〈Qk,sqk,0,2〉).
(76)

In the general case, a positive value of the logarithmic neg-
ativity implies violation of separability, but a zero value
does not imply separability. However, our model effectively
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(a)

(b)

FIG. 1. Ground-state entanglement for the original noninteract-
ing Wentzel-Bardeen model. (a) Entanglement entropy S between the
lattice and the electrons for a chain of length L = 200, as a function
of the lattice stiffness κ and the Fermi velocity v f . In the black
regions close to the axes, the system is unstable since v f < πg2

0/16κ .
(b) Entanglement entropy per length as a function of the stiffness κ

for v f = g0/2 for various system sizes.

consists of pairs of mutually coupled harmonic oscillators. It
has been shown in Ref. [51] that in this case, zero logarithmic
negativity is equivalent to separability.

Since Loss and Martin [39] and, recently, Dorn et al. [52]
for topological-insulator nanowires have employed continuum
descriptions of the phonons, the continuum limit of our lattice
description is also of interest. This limit can be obtained in a
straightforward manner, as shown in Appendix.

IV. RESULTS

In this section, we evaluate the expressions derived in
Sec. III for two sets of parameters. The first set corresponds to
the original Wentzel-Bardeen model without electron-electron
interaction and with linear electron-phonon coupling, gk ∼ k,
whereas the second describes a more realistic setting includ-
ing electron-electron interaction and with the electron-phonon
coupling scaling as gk ∼ √

k.

A. Noninteracting model

In this section, we investigate the original form of the
Wentzel-Bardeen model [24,25], with the electron-phonon

FIG. 2. Logarithmic negativity EN of the noninteracting
Wentzel-Bardeen model as a function of temperature for L = 100,
κ = v f = 1, and g0 = 0.1. Inset: Mutual information as a function
of temperature for the same parameters.

coupling gk = g0k. The stability criterion then becomes

2ω2
kk > g2

k

k

2π
, (77)

which agrees with the results of Refs. [24,25]. If one would
consider gk ∼ √

k, which we do not do in this section, the
noninteracting model would be unstable for every coupling
strength since the left-hand side of Eq. (77) scales with ∼k3

and the right-hand side would then scale with ∼k2. We return
to this point in the following section.

For a sine-shaped dispersion of the phonons, first the
highest-energy k = π mode becomes unstable, and the stable
region is characterized by

v f >
π

16

g2
0

κ
. (78)

In the literature [24,25,30], there was a series of investiga-
tions to clarify the physical nature of this singularity. From
our point of view, we use here a simple model without any
anharmonic terms, which is only physical for a subset of the
possible parameters. If the lattice is unstable in this model,
the only consequence is that in the corresponding regime the
anharmonic terms cannot be neglected.

The entanglement entropy at temperature T = 0 is shown
as a function of the lattice stiffness and the Fermi velocity
in Fig. 1. The entropy diverges close to the Wentzel-Bardeen
singularity and is proportional to the system size, S ∝ L.

The logarithmic entanglement negativity is plotted in
Fig. 2. It decreases with increasing temperature and becomes
exactly zero at and above a certain temperature. In this non-
interacting case the transition temperature is independent of
the system size. Similar behavior was observed in Ref. [40]
for the logarithmic entanglement negativity of a bisectioned
harmonic chain.

The mutual information is shown in the inset of Fig. 2.
It decreases with increasing temperature and for high
temperatures approaches a nonzero constant. This nonzero
high-temperature value is a consequence of the infinite band-
width of the model. In a model with a finite bandwidth, the
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bandwidth sets a temperature scale, and one expects the mu-
tual information to fall exponentially to zero above this scale.

B. Interacting Wentzel-Bardeen model

In this section, we consider a nonzero electron-electron
interaction and electron-phonon coupling of the form gk =
g̃0

√
k. As noted above, for the noninteracting model this type

of coupling always causes an instability. We assume that the
interaction between electrons moving in the same direction is
not too strongly screened, i.e., that it shows a singularity of
the form

hk = h0

|k|1+α
(79)

for small k, with sufficiently large α. The interaction between
electrons moving in opposite directions is assumed to show
the same functional relationship but shifted by the momentum
transfer 2kF between right-moving and left-moving electrons
at the Fermi energy, i.e.,

fk = f0

(|k| + 2kF )1+α
. (80)

Since fk is nearly constant for low-energy modes, its specific
form should not affect the qualitative results.

Under these assumptions, the left-hand side of the stability
criterion, Eq. (28), is proportional to k2+2α , while the right-
hand side is proportional to k2+α . We conclude that for α � 0
the system can be stable. Detailed stability investigation can
be performed by plotting the two sides of Eq. (28).

Results for the zero-temperature entanglement entropy of
the interacting model are shown in Fig. 3(a). The entangle-
ment increases with the electron-phonon coupling constant g̃0

and decreases with the electron-electron interaction parameter
h0. Too large h0 or too large g̃0 render the system unstable.
The entanglement entropy diverges when g̃0 approaches the
stability limit [see Fig. 3(b)] but remains finite if the stability
limit is reached by increasing h0.

It is also of interest to check how the entanglement entropy
of a finite region scales with its size. It is known that the
entanglement entropy of a coupled-oscillator system defined
on a lattice follows an area law, i.e., the entanglement entropy
between two subsystems scales with the size of the surface
dividing the subsystems, which for a chain is a point, scaling
with L0. On the other hand, the entanglement entropy of a
fermionic system generally follows an area law with log cor-
rections [53,54]. We have calculated the entanglement entropy
between a finite part of the lattice of length l < L and the
rest of the system, consisting of the rest of the lattice and
all electronic degrees of freedom; see Fig. 3(c). We evidently
find volume-law scaling, Sl ∼ l . The entanglement entropy
between the whole lattice and the electrons is proportional
to the full system size, S ∼ L. Similar behavior has been
reported [55] for the intercomponent entanglement entropy
of a two-component bosonic gas. We suggest that a similar
phenomenon may also occur for trapped cold atoms in an
optical resonator, where the photons play the role of the cou-
pled bosons.

Results for the mutual information are shown in Fig. 4(a).
The mutual information first decreases for increasing tem-

FIG. 3. (a) Entanglement entropy S for the interacting Wentzel-
Bardeen model as a function of the electron-electron interaction
parameter h0 and the electron-phonon coupling parameter g̃0. The
Fermi velocity and the lattice stiffness are taken to be v f = κ = 1.
The black region denotes that the system is unstable. (b) Entangle-
ment entropy as a function of g̃0 for the same parameters as in (a) and
h0 = 0.35. (c) Entanglement entropy between a finite interval of the
lattice of length l < L and the rest of the system, including the other
part of the lattice and all electronic degrees of freedom.

perature, reaches a minimum, and then increases again,
approaching a nonzero constant for high temperatures.

To address the range of validity of our description, we
plot in the inset of Fig. 4(a) the von Neumann entropy of
the reduced density matrix of the electrons. While our cal-
culations are exact for the investigated model, the model is
artificial in that the electronic bands are strictly linear over all
momenta and energies. A real material is expected to show
a linear spectrum close to the Fermi energy but deviations
from linearity away from it. In this case, one can still describe
the low-energy excitations within Luttinger-liquid theory, but
results become unphysical beyond this regime. Let us consider
a system with Ntot single-particle states, of which Nlin < Ntot
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(a)

(b)

FIG. 4. (a) Mutual information I per length for the interacting
system as a function of temperature for L = 200, κ = v f = 1, and
g̃0 = h0 = f0 = 1. The inset shows the von Neumann entropy Sel

of the reduced density matrix of the electrons; the horizontal lines
denote the maximal possible entropies in a system with electron den-
sity ρel = 1 and different lengths of the linear part of the spectrum,
given in percent of the spectrum, as explained in the text. (b) Log-
arithmic negativity EN per length as a function of temperature for
κ = v f = 1, g̃0 = 0.1, and various system sizes. The inset shows the
finite-size dependence of the characteristic temperature TL at which
EN vanishes for α = 1.0.

belong to the linear part of the spectrum. The maximal von
Neumann entropy per length of the reduced density matrix of
the states in the linear spectrum is

Smax
Neumann

L
= Smax

Neumann

Ntot/ρel
= ρel

Ntot
ln

(
Nlin

Nlin/2

)
, (81)

where ρel is the real-space electron concentration and the
argument of the logarithm is a binomial coefficient. In the
thermodynamic limit Nlin � 1 and Ntot � 1 with Nlin/Ntot =
const, one gets

Smax
Neumann

L
∼= ln(2) ρel

Nlin

Ntot
. (82)

Comparing the von Neumann entropy Sel of the electrons with
this limit, one can check the validity of the Luttinger-liquid
description. The limits are shown in the inset of Fig. 4(a).
Comparing with the main panel, we conclude that the initial

decrease in and the minimum of the mutual information are
correctly described since in this regime Sel is still far below
the entropic bound. The high-temperature plateau may also
be reached, but in realistic systems with finite bandwidth this
plateau is truncated when Sel reaches the bound.

Figure 4(b) shows the logarithmic entanglement negativity.
The logarithmic negativity is extensive, EN ∼ L, for large L.
It decreases with increasing temperature and in a finite system
becomes exactly zero above a characteristic temperature TL.
The temperature TL is connected to the smallest wave number
2π/L in the system. By expanding Eq. (73) for small k, using
hk � g̃0

√
k � vF k, we obtain a real number.

TL = 5

4π (2π )α ln 2
h0 Lα. (83)

Hence, for α = 0 the characteristic temperature TL is inde-
pendent of the system length L. Note that α = 0 is lying at
the edge of the range of stability but the stability criterion,
Eq. (28), can be satisfied for suitable system parameters. For
less strongly screened interaction, i.e., α > 0, the character-
istic temperature grows with the system size and diverges in
the thermodynamic limit. A similar sharp disappearance of the
negativity has been reported in Refs. [40,56].

V. SUMMARY AND CONCLUSIONS

To summarize, we have addressed correlations and entan-
glement between the electronic (charge) and lattice degrees of
freedom of a one-dimensional chain as a prototype for crys-
talline solids. We have calculated the entanglement entropy
at zero temperature and the mutual information and loga-
rithmic entanglement negativity at finite temperatures. This
has been done for two models: on the one hand, the original
Wentzel-Bardeen model without electron-electron interaction
and with electron-phonon coupling linear in momentum and,
on the other hand, a generalized Wentzel-Bardeen-Luttinger
model with electron-electron interaction and electron-phonon
coupling scaling as the square root of momentum. For the arti-
ficial model with infinite bandwidth, the entanglement entropy
diverges for sufficiently strong electron-phonon coupling at
the Wentzel-Bardeen singularity. The Luttinger description is
expected to break down as this singularity is approached. We
conjecture that in systems with finite bandwidth the entan-
glement entropy per length reaches a maximum instead of
diverging. This is an interesting issue for future studies.

As noted above, the entanglement entropy of a coupled-
oscillator system follows an area law, whereas the entan-
glement entropy of a fermionic system generally follows
an area law with log corrections [53,54]. However, if we
consider these systems in their most natural physical real-
izations, i.e., the phonon and electron subsystems of a solid,
the situation changes. We have found that the entanglement
entropy between a subset of the lattice of length l < L and
the rest of the system shows volume-law scaling, Sl ∼ l , due
to the interaction between the electron and lattice subsystems.
Consequently, the entanglement entropy between the whole
lattice and the electrons is proportional to the full length,
S ∝ L.

To check the validity of the Luttinger description for
real systems with finite bandwidth, we have evaluated the
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von Neumann entropy of the reduced density matrix of the
electrons (at T = 0 this is the entanglement entropy). This
electronic entropy must satisfy an upper bound, the violation
of which signals the breakdown of our description. We find
that at temperatures corresponding to thermal energies that are
low compared with the electronic bandwidth, our description
is valid.

Both the mutual information and the logarithmic negativity
initially decrease with increasing temperature. The mutual
information goes through a minimum and approaches a finite
constant for T → ∞. For sufficiently large electronic band-
width, this plateau can still exist, but we conjecture that it is
cut off at high temperatures when the electronic entropy starts
to violate the aforementioned bound. The logarithmic negativ-
ity monotonously decreases with increasing temperature and
becomes zero above a characteristic temperature, which im-
plies that the entanglement disappears [51]. The characteristic
temperature increases with system size if the electron-electron
interaction is unscreened or weakly screened. However, for
sufficiently strong screening, i.e., for an interaction of suf-
ficiently short range, the characteristic temperature remains
finite in the thermodynamic limit, indicating the presence
of a real phase transition with the logarithmic entanglement
negativity acting as its order parameter. This result is quite dif-
ferent from the finite-temperature transition found earlier for
a bisectioned harmonic chain [40]. In our case, the electronic
and lattice subsystems are coupled over the full length of the
chain and nevertheless lose all entanglement at a characteristic
temperature.

The entanglement entropy can be used as a self-consistency
tool to check whether we have a sufficiently large bandwidth
in a real system for a Luttinger description; see Eq. (82).
This check would be especially useful when interesting
physics emerges close to the Wentzel-Bardeen instability. For
example, in Ref. [52], a topological-insulator nanowire is in-
vestigated, and the authors set up an effective model where
one electron band is coupled to the lattice modes described
by a continuum theory. They find an interesting transition
between a normal-metal-like region and a superconductor-like
region in the vicinity of the Wentzel-Bardeen instability.

A further point is that the entanglement entropy seems to
be analytical in the whole region of stability, which may be
surprising since coupled Luttinger-liquid–phonon systems are
known to have nontrivial “phase diagrams” [39,52]. The ori-
gin of this analytical behavior is that the transitions displayed
in these phase diagrams are not true quantum phase transi-
tions but rather signal the strongest (most slowly decreasing)
correlation function. Usually, all correlation functions decay
with a power law. In non-Luttinger systems with finite band-
width coupled to phonons, true quantum phase transitions
do exist. An interesting question for future research is what
the electron-phonon entanglement entropy looks like in the
proximity of these transitions.
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APPENDIX: CONTINUUM LIMIT

Although the mass distribution of a real lattice is discrete, a
continuum description has been used successfully to describe
the low-energy sector of carbon nanotubes and topological-
insulator nanowires [27,28,30,52]. In the main text, we have
started from the physically more natural discrete description
of the lattice. In this Appendix, we consider the continuum
limit of N → ∞ and a0 → 0 with constant L, constant mass
density ρ, and constant strain. We define

κ̌ ≡ a0κ = const, (A1)

ρ̌ ≡ m

a0
= const (A2)

and replace

g(|la0 − x|)
a0

→ ǧ(|x − y|), (A3)

a0

N∑
l=1

→
∫ L

0
dy. (A4)

The fields describing the lattice in the continuum limit are
φ(x) = limN→∞ q[x/a0] and π (x) = limN→∞ p[x/a0]. We in-
troduce a cutoff wave number kcut in the electron-phonon
coupling. This cutoff is physically necessary since the con-
tinuum limit introduces low wavelengths, which are simply
not there in real physical systems. Starting from the discrete
description, the wave number is automatically cut off by the
finite Brillouin zone.

In the continuum limit for the phonons (the electrons are
described by continuum fields in any case), the Hamiltonian
becomes

H = −
∑

σ=±1/2

∫ L

0

dx

2π
v f [ ∗

∗�
†
σ,L(x) i∂x�σ,L(x) ∗

∗

+ ∗
∗�

†
σ,R(x) i∂x�σ,R(x) ∗

∗]

+
∫ L

0
dx

1

2ρ̌
π2 + κ̌

2
(∂xφ)2

+ 1√
L

∫ L

0
dx φ(x)

∫ L

0
dy [n̂L(y) + n̂R(y)] ǧ(|y − x|L )

+ 4

L

∫ L

0
dx
∫ L

0
dy (n̂L(x), n̂R(y))

×
(

h(x − y) 1
2 f (x − y)

1
2 f (x − y) h(x − y)

)(
n̂L(x)
n̂R(y)

)
. (A5)
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Furthermore, our equation for the entanglement entropy be-
comes

S = L

2π

∫ kcut

0
dk
[
s
(〈

Q2
S,k

〉〈
P2

S,k

〉)+ s
(〈

Q2
C,k

〉〈
P2

C,k

〉)]
. (A6)

Note that the only difference compared with the previous
equation (48) is the cutoff wave number in the integration
limit. The entanglement entropy can also be expressed using
the variables of the fermionic subsystem,

S = L

2π

∫ ∞

0
dk
[
s
(〈

q2
k,0,1

〉〈
p2

k,0,1

〉)+ s
(〈

q2
k,0,2

〉〈
p2

k,0,2

〉)]
. (A7)

This equation may be useful if one prefers integrating out the
phonons and working only with the fermionic variables. We
note that the two Eqs. (A6) and (A7) give equal results at zero
temperature, where the entropy of the reduced density matrix
is the entanglement entropy, and give different results at finite
temperatures, as discussed in Ref. [57]. The mutual informa-
tion is given by Eq. (59), which we repeat for convenience:

I = S(Trphρc) + S(Trelρc) − S(ρc). (A8)

In the continuum limit, the three terms are given by

S(Trphρc)

= L

2π

∫ ∞

0
dk
[
s
(〈

Q2
S,k

〉〈
P2

S,k

〉)+ s
(〈

Q2
C,k

〉〈
P2

C,k

〉)]
, (A9)

S(Trelρc)

= L

2π

∫ ∞

0
dk
[
s
(〈

q2
k,0,1

〉〈
p2

k,0,1

〉)+ s
(〈

q2
k,0,2

〉〈
p2

k,0,2

〉)]
,

(A10)

S(ρc) = 2
L

2π

∫ ∞

0
dk

[ √
λk,±

exp(β
√

λk,±) − 1

− ln(1 − exp(−β
√

λk,±))
]
. (A11)

When one takes the difference in Eq. (A8), the parts between
kcut and ∞ in the integrals cancel each other.

To summarize, we find that the formulas derived for the
discrete harmonic lattice can be generalized to the continuum
limit in a straightforward way.
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