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Exchange interaction, disorder, and stacking faults in rhombohedral graphene multilayers
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We apply the mean-field Hartree Fock theory of gapped electronic states at charge neutrality in bilayer
graphene to thin films of rhombohedral graphite with up to thirty layers. For the ground state, the order parameter
(the separation of bands at the valley center) saturates to a constant nonzero value as the layer number increases,
whereas the band gap decreases with layer number. We consider chiral symmetry breaking disorder in the form
of random layer potentials and chiral preserving disorder in the form of random values of the interlayer coupling.
The former reduces the magnitude of the mean band gap whereas the latter has a negligible effect, which is due
to self-averaging within a film with a large number of layers. We determine the ground state in the presence
of an individual stacking fault which results in two pairs of low-energy bands and we identify two separate
order parameters. One of them determines the band gap at zero temperature, the other determines the critical
temperature leading, overall, to a temperature dependence of the band gap that is distinct to that of pristine
rhombohedral graphite. In the presence of stacking faults, each individual rhombohedral section with m layers
contributes a pair of low-energy flat bands producing a peak in the Berry curvature located at a characteristic
m-dependent wave vector. The Chern number per spin-valley flavor for the filled valence bands in the ground state
is equal in magnitude to the total number of layers divided by two, the same value as for pristine rhombohedral
graphite.
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I. INTRODUCTION

Recently, topological flat bands have been the subject of
intense research in twisted bilayer graphene [1,2] as well as
other two-dimensional systems including the Lieb, honey-
comb, and kagome lattices [3–11]. There are also topological
flat bands in rhombohedral multilayer graphene (RMG)
[12–18] in which alternating intra- and interlayer coupling
act like staggered hopping in the Su-Schrieffer-Heeger (SSH)
model [19–22], as shown in Fig. 1. Now there is fresh interest
in RMG due to progress in fabricating and characterizing
samples with a large layer number [23–31] culminating in the
realization of high-quality films with up to fifty layers [32].

In high mobility samples, at charge neutrality, low tem-
perature and for zero external fields, low energy bands have
been observed to be gapped in bilayer graphene [33–38],
Bernal multilayers with up to N = 8 layers [39–41], rhom-
bohedral multilayers with up to N = 4 layers [42–44] and
recently with N ≈ 12 [32]. A number of different interaction-
induced broken symmetry states have been proposed for
bilayer graphene [17,45–59] including pseudospin layer anti-
ferromagnetic (AF) states [17,45,46,51,55] in which electrons
with different spin and valley flavors spontaneously accu-
mulate on different layers, creating an odd parity state that
breaks inversion symmetry and opens a gap. Owing to the
antiferromagnetic configuration of four flavors, there is no net
charge accumulation on summing over them and, thus, no cost
in terms of Hartree energy. The evolution of similar gapped
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states with layer number has been discussed for both Bernal
[60,61] and rhombohedral multilayers [17,62–64].

In this paper, we apply the Hartree Fock mean-field theory
[45,46,60–62] of the pseudospin AF state to RMG with a
large number of layers (up to N = 30) in order to determine
the layer dependence of the interaction-induced band gap at
charge neutrality. We find that the strength of the interacting
state, as characterized by the separation of the bands exactly
at the valley center, saturates with layer number, but that the
actual band gap decreases with layer number; this agrees with
density functional theory (DFT) which predicted the band gap
for RMG with up to eight layers [64].

We then consider the robustness of the AF state to de-
fects by including values of tight-binding parameters that
are constant within each layer (thus preserving translational
invariance within each layer) but that vary randomly between
layers. We compare disorder that preserves chiral symmetry
(random values of the interlayer hoppings) with disorder that
breaks chiral symmetry (random layer potentials). For weak
disorder, we find that the mean band gap is diminished by
chiral breaking disorder, but it is almost insensitive to chiral
preserving disorder; this is similar to the behavior of gapless
edge states in the noninteracting SSH model [65–69].

Another type of defect is a localized stacking fault
[32,70,71] within a large RMG system, namely a Bernal fault
or a twin boundary fault, Fig. 1. They are particularly inter-
esting because they introduce additional flat bands into the
energy spectrum. For a Bernal fault, we find that it introduces
a weak connection between two sections of RMG and that
the interacting ground state is a straightforward generalization
of the AF state with odd parity. The twin boundary fault,
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FIG. 1. Schematic side view of the lattice of rhombohedral
graphene with N = 7 layers showing the pristine lattice, a lattice
with a single Bernal stacking fault, and a lattice with a single twin
boundary stacking fault. Labels indicate the An and Bn atomic sites
on the nth layer, horizontal solid lines indicate intralayer hopping
with parameter γ0, vertical solid lines indicate interlayer hopping γ1.

however, creates a stronger connection between two RMG
sections: The interacting ground state is also a AF state, but
with even parity within each spin-valley flavor. For both of
these types of ground state, the Chern number per spin-valley
flavor has magnitude N/2, as is the case for pristine RMG
[20,72,73].

With two pairs of flat bands near low energy in a system
with a single stacking fault, we identify two order parameters:
�1 is the separation at k = 0 of the lowest conduction band
and the highest valence band and �2 is the separation at
k = 0 of the second lowest conduction band and the second
highest valence band. For a stacking fault that splits RMG
into two sections, �1 is attributed to the shorter section, �2

to the longer one. Although �1 � �2, we find that the tran-
sition temperature for the AF state is determined by �2. The
temperature dependence of �2 resembles that of an isolated
section of RMG, whereas the temperature dependence of �1

is affected by proximity to the longer section. This ensures
that �1 (and the overall band gap) remains nonzero up to the
relatively high Tc determined by the longer section and �2,
and the temperature dependence of �1 (and the band gap) is
generally quite distinct from that of pristine RMG.

Section II describes the methodology including the nonin-
teracting Hamiltonian and the Hartree Fock mean-field theory.
We use the minimal model with nearest-neighbor intralayer
and interlayer hopping parameterized by γ0 and γ1, respec-
tively, but neglecting other tight-binding parameters. This is
done for simplicity and, in particular, it dramatically simplifies
the calculation of the exchange interaction allowing us to
consider large layer number N � 1. Section III describes the
AF state in pristine RMG. We introduce a toy two-band model
that can be solved analytically to give simple expressions for
the parameter dependence of the band gap that are broadly
in qualitative agreement with the full numerical model. With
the full numerical model, we determine the layer and tem-
perature dependence of the band gap. Then, our main results
are described in Sec. IV for disorder, Sec. V for the Bernal
stacking fault, and Sec. VI for the twin boundary fault. Finally,
in Sec. VII, we determine the temperature dependence of the
order parameters of the AF state for a single stacking fault,
Bernal, or twin boundary.

II. METHODOLOGY

A. Effective mass model

The lattice of RMG with N layers consists of two inequiva-
lent sites An and Bn on each layer, n = 1, 2, . . . , N , with sites
Bn located below An+1, Fig. 1. In the tight-binding model, in-
terlayer coupling between pz orbitals on the Bn and An+1 sites
hybridizes those orbitals leading to gapped bulk conduction
and valence bands. In the surface layers, however, the A1 and
BN sites don’t have neighbors in the next layers so their pz

orbitals aren’t hybridized by interlayer coupling, resulting in
low-energy surface states within the bulk gap in the vicinity
of each of two valleys K±1.

In a basis of pz orbitals on A1, B1, A2, B2, ..., AN , BN

sites, the noninteracting Hamiltonian of RMG with N layers
[12,15,16] may be written near each valley as

H =

⎛
⎜⎜⎜⎜⎝

D V 0 0 · · ·
V † D V 0 · · ·
0 V † D V · · ·
0 0 V † D · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠, (1)

where we use 2 × 2 blocks

D =
(

0 γ1κ
†

γ1κ 0

)
, V =

(
0 0
γ1 0

)
, κ = ξkx + iky

kc
.

Here k = (kx, ky) is the wave vector measured from the center
of valley Kξ with valley index ξ = ±1, and kc = γ1/(h̄v).
Block D describes intralayer nearest-neighbor hopping with
velocity v = (

√
3/2)aγ0/h̄ and in-plane lattice constant a,

block V describes interlayer hopping with parameter γ1

between successive Bn and An+1 sites. For numerical diago-
nalization of (1) we use γ0 = 3.16 eV, γ1 = 0.381 eV [74],
and a = 2.46 Å.

B. Mean-field theory

Electron-electron interactions are included within a mean-
field Hartree-Fock approximation [45,46,62] and, in partic-
ular, we follow the methodology applied to Bernal-stacked
multilayer graphene in Refs. [60,61]. The total Hamiltonian
is Ĥtot = Ĥ + V̂MF where

Ĥ =
∑

kσXX ′
HkXX ′c†

kσX ckσX ′ , (2)

V̂MF =
∑

kσXX ′

[
U (H)

X δXX ′ + WkσXX ′
]
c†

kσX ckσX ′ . (3)

Here X = A1, B1, A2, B2, . . . indexes the sublattices, σ =
1, 2, 3, 4 is a flavor index combining spin (↑,↓) and valley
(K+, K−) degrees of freedom, and c†

kσX and ckσX are creation
and annihilation operators, respectively. The noninteracting
term Ĥ contains HkXX ′ which is a matrix element of (1);
the interaction term V̂MF consists of the Hartree U (H) and
exchange W potentials,

U (H)
X = lim

q→0

∑
X ′

V (q; zX − zX ′ )nX ′ , (4)

WkσXX ′ = − 1

L2

∑
k′

V (k − k′; zX − zX ′ )〈c†
k′σX ′ck′σX 〉, (5)
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where nX = (1/L2)
∑

kσ 〈c†
kσX ckσX 〉 − n0, L2 is the system

area, zX is the vertical coordinate of sublattice X , and
V (q; z) = (2πe2/[εrq]) exp(−q|z|) is the two-dimensional
Fourier transform of the Coulomb potential [75], εr is the
dielectric constant and we use d = 3.35Å for the interlayer
separation. Parameter n0 represents the background density
of positive charge and, in the charge neutral case considered
here, it is determined by

∑
X nX = 0. In this case, the Hartree

term (4) simplifies as U (H)
X = −(2πe2/εr )

∑
X ′ |zX − zX ′ |nX ′ .

The strength of the electronic interactions is characterized
by the effective fine structure constant for graphene,

αg = e2

εr h̄v
. (6)

For example, for εr = 2 then αg ∼ 1. However, the Hartree-
Fock approximation tends to overestimate the strength of the
exchange interaction by neglecting screening effects so we
treat αg as a fitting parameter in the range 0 < αg � 0.5.

The label σ = 1, 2, 3, 4 takes four different values cor-
responding to flavors combining valleys and spin (K+,↑
), (K+,↓), (K−,↑), (K−,↓). We neglect interactions between
different valleys because they are described by the Coulomb
interaction V (q; z) with large wave vectors q ≈ K+ − K− and
this approximation treats the four flavors on an equal footing.
Within a given flavor, the exchange potential breaks chiral
symmetry and charge density is transferred between layers.
In addition, the four flavors have a certain relative config-
uration. By beginning the iterative procedure with different
initial exchange profiles, we find different self-consistent so-
lutions, and we evaluate the total energy of each solution in
order to determine the ground state. For example, for the AF
state, exchange for a given flavor has odd parity with respect
to spatial inversion, and the four flavors are arranged in an
antiferromagnetic configuration so that there is no net charge
polarization and, hence, no cost in terms of Hartree energy.
Thus this state has lower energy at charge neutrality than,
say, a ferrimagnetic or ferromagnetic configuration of the
four flavors. Since our approximation treats the four flavors
equally, it is unable to differentiate three distinct combinations
[17,45,46] of spins and valleys within the antiferromagnetic
configuration: layer-antiferromagnetic in which the polariza-
tion of flavors (K+,↑), (K−,↑) is opposite to that of (K+,↓
), (K−,↓), quantum anomalous Hall when (K+,↑), (K+,↓)
are opposite to (K−,↑), (K−,↓), or quantum spin Hall when
(K+,↑)(K−,↓) are opposite to (K+,↓), (K−,↑).

The ground state at charge neutrality is found by nu-
merically diagonalizing the Hamiltonian [(2 and 3)] using
an iterative procedure to determine a self-consistent solution
taking the expectation values in U (H) and W into account.
The summations over k are performed within a circle k <

k� around the K point with a cutoff k�, and we choose
h̄vk� ≈ 1 eV [61]. For fixed cutoff k�, the ground state is
determined for different values of the system size L (i.e.,
different densities of k points), then the band gap is eval-
uated by extrapolation to L → ∞. The numerical precision
of our results is high so that uncertainties are negligible, and
error bars are only shown in Sec. IV when we study random
disorder. Nevertheless, there are many sources of systematic
uncertainty including the choice of cutoff k�, the omission of

tight-binding parameters in the minimal model, and the value
of the interaction parameter αg. As described in Sec. III B, we
find very close agreement of band gap values at αg = 0.3 with
those obtained using DFT by Ref. [64] for N = 3 to N = 8
layers, and so we use αg = 0.3 in subsequent sections.

Using the minimal model, the energy spectrum is isotropic
around each K point and the eigenstates of the noninter-
acting Hamiltonian (1) at an arbitrary angle may be related
to those at a specific angle by a stacking-dependent unitary
transformation [45,76]. We assume that the eigenstates of the
interacting mean-field theory [(2 and 3)] also satisfy this rota-
tional transformation [60], allowing for the k summations to
be performed in only one specific direction with the exchange
interaction (5) being determined via an integration with re-
spect to the polar angle of wave vector k′. This simplification
dramatically reduces the numerical cost of the calculations
allowing for a study of multilayers with a large number of
layers.

C. Berry curvature and Chern number

The noninteracting Hamiltonian (1) obeys chiral symmetry
[20]: matrix elements only connect A and B sites (not A to A or
B to B) and chiral symmetry ensures particle-hole symmetry
of the electronic spectrum. When the spectrum is gapped due
to interactions, which generally break chiral symmetry, we use
the wave functions in k space to determine the non-Abelian
Berry curvature [72] for the occupied valence bands.

In particular, at a discrete point in k space, we determine
the wave functions |un(k)〉 for the valence bands with indices
n = 1, . . . , N . Following Ref. [72], we consider a lattice of
cells with vertices at the discrete k points. For a cell centered
at k and with j vertices at k1, k2, . . . , k j−1, k j , the Berry flux
Fk [77] is determined as

Fk = i ln
(
Uk1,k2Uk2,k3 . . .Uk j−1,k jUk j ,k1

)
, (7)

where the link variables Uka,kb are evaluated for every side
between vertices ka and kb, and taken around the cell in the
anti-clockwise direction. For a side that connects vertices ka

and kb, the link variable Uka,kb is given [72] by

Uka,kb = det Ska,kb∣∣ det Ska,kb

∣∣ , (8)

(
Ska,kb

)
mn = 〈um(ka)|un(kb)〉. (9)

Here, Ska,kb is a N × N matrix of scalar products between
(valence) band wave functions with indices m, n.

Once the Berry flux (7) is determined, then the Berry
curvature �k and Chern number C are given by

�k = Fk

Sk
; C = − 1

2π

∑
k

Fk, (10)

where Sk is the area of the cell at k. In the continuous limit
with many cells,

C = − 1

2π

∫
BZ

�(k)d2k. (11)

The sum in (10) and integral in (11) are taken over the first
Brillouin zone (BZ).

Note that the cells do not need to have any particular
shape (such as square), but k space should be covered by the
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FIG. 2. Low-energy band structure of RMG with N = 16 layers
with (a) noninteracting electrons described by Hamiltonian (1) and
(b) interacting electrons described by the mean-field theory [(2 and
3)] with interaction strength αg = 0.3 and at zero temperature. Black
lines are bulk bands, blue lines are surface bands for k � kc where
h̄vkc = γ1. Eg is the band gap (at k ≈ kc), � is the order parameter
(the separation of the surface bands at k = 0). (c) The values of the
exchange potential Wk=0σXX at the valley center k = 0 and for each
site X ′ = X for RMG with N = 8 layers [78]. The black solid line
shows the exchange for two flavors, the blue dashed line is exchange
for the other two flavors.

cells and the cells should be sufficiently dense to achieve a
convergent result for the Chern number [72]. As we determine
wave functions in the radial direction (from the valley center)
and, then, relate them to wave functions at other angles by
a rotation [45,76], we use cells that are parts of an annulus.
In our case, the Berry curvature is isotropic about the valley
center, so the continuous case may be simplified as

Cσ = −
∫ ∞

0
�(k)kdk. (12)

In the system we study, the Berry curvature is peaked at k � kc

near a given valley and then falls to zero, and we integrate
in the vicinity of a single valley (with a nominal upper limit
at infinity) in order to determine the Chern number per spin-
valley flavor Cσ [73].

III. RHOMBOHEDRAL GRAPHENE

The band structure of RMG with N = 16 layers for a single
spin-valley flavor is shown in Figs. 2(a) and 2(b) for nonin-
teracting and interacting electrons, respectively, the latter as
determined by numerical solving the mean-field theory [(2
and 3)] for 2N bands, Eq. (1). The orbitals on the surface
sites, A1 and BN , contribute to a pair of low-energy bands
that are flat for k � kc where kc = γ1/h̄v. The wave vector
kc corresponds to the point of the phase transition between

nontrivial and trivial topological phases in the SSH model
[19–22]. For the interacting ground state, the band structure
displays flavor degeneracy, Fig. 2(b). The band gap, Eg, is at
finite wave vector k between the surface state bands, this is the
difference in energy between the conduction band minima and
the valence band maxima. We also consider the separation of
the surface state bands at k = 0 which we refer to as the order
parameter �. In principle, it is possible to have nonzero �

even when Eg = 0 and, generally, � � Eg.
The exchange potential Wk=0σXX at the valley center k = 0

and for each site X ′ = X for RMG with N = 8 layers is shown
in Fig. 2(c) [78]. For two flavors, the exchange is negative on
A sites and positive on all B sites, with large magnitude on
the surface sites A1 and BN (solid black line); for the other
two flavors, the exchange has an inverted profile (dashed blue
line). We refer to this as being the odd antiferromagnetic state
because the exchange potential has odd parity within each fla-
vor, and the four flavors are arranged in an antiferromagnetic
configuration.

Before discussing the layer number N and temperature T
dependence of Eg and � arising from the numerical calcula-
tions, we consider a very simple two-band model that may be
solved analytically in order to develop a qualitative picture of
the AF state.

A. Two-band model

We consider a mean-field Hamiltonian [79,80] for each of
the four σ flavours with two sublattices A1 and BN , and order
parameter � = 2|w| due to the exchange interaction w which
breaks sublattice symmetry:

H2 =
(

E0 + w −γ1(−κ†)N

−γ1(−κ )N E0 − w

)
, (13)

where N � 2. Note that similar two-band models have been
considered in similar contexts previously [45,81]. The eigen-
values and eigenstates of H2 may be written as

Es = E0 + s
√

w2 + γ 2
1 (k/kc)2N , (14)

ψs = 1√
2(Es − E0)(Es − E0 + w)

(
Es − E0 + w

−γ1(−κ )N

)
, (15)

where s = ±1 indexes conduction and valence bands, and
k = |k| ≡

√
k2

x + k2
y . We will show this is a self-consistent so-

lution under the approximation that we only take into account
the contribution exactly at the valley center (k = 0) in the
exchange (5). This means that parameter w is independent of
k, and that the off-diagonal in sublattice exchange potential
WkσA1BN is zero because the summation over all k′ includes
a factor such as exp(iNφ′) arising from the chiral wave func-
tions (15), where φ′ is the polar angle of the wave vector k′.

Considering the diagonal in sublattice exchange potential
WkσA1A1 (5), then

w = −2π h̄vαg

L2

∑
s=±1

∑
k′

f (Es)

|k′|
w

2(Es − E0)
, (16)

where f (Es) = 1/(exp[(Es − E0)/(kBT )] + 1) is the Fermi-
Dirac distribution, E0 is the chemical potential, kB is

035404-4



EXCHANGE INTERACTION, DISORDER, AND STACKING … PHYSICAL REVIEW B 104, 035404 (2021)

FIG. 3. The band gap of rhombohedral multilayer graphene at
zero temperature as a function of layer number N for different values
of interaction strength αg showing (a) the band gap Eg and (b) the
order parameter �. Solid lines are a guide for the eye. Red squares in
(a) show the results of Ref. [64] for N = 3 to N = 8 obtained using
density functional theory. The inset of (a) shows the position of the
band gap kg in units of kc as a function of N for αg = 0.3.

Boltzmann’s constant and T is absolute temperature. Then,
the equation for the order parameter � = 2|w| is

� = 2γ1

[
αg

2
gN

(
�

kBT

)]N/(N−1)

, (17)

gN (x) =
∫ ∞

0

dy√
1 + y2N

sinh
(

x
2

√
1 + y2N

)
1 + cosh

(
x
2

√
1 + y2N

) . (18)

At zero temperature, gN (∞) is simply a number, and the order
parameter is explicitly given by

�(T = 0) = 2γ1

(
αggN (∞)

2

)N/(N−1)

, (19)

gN (∞) = 1√
π

�

(
1 + 1

2N

)
�

(
1

2
− 1

2N

)
, (20)

where �(x) is the gamma function. For bilayer graphene, N =
2, then g2(∞) = 1.854 and �(T = 0) = 1.719α2

gγ1, whereas,
for N � 1, then gN (∞) = 1 and �(T = 0) = αgγ1. For finite
T , the temperature dependence of the order parameter (17) is
similar to the self-consistent equation for the magnetization in
the Weiss mean-field approximation [82] and, for N � 1, we
find that the critical temperature is given by kBTc = αgγ1/4.

B. Full band model

We now discuss the results of the numerical calculation
to solve the mean-field theory [(2 and 3)] for 2N bands. The
band gap, Eg, and the order parameter (the band separation at
k = 0), �, are plotted in Fig. 3 as a function of layer number N
for different interaction strengths αg. Red squares in Fig. 3(a)
show the results of Ref. [64] for Eg for N = 3 to N = 8
obtained using DFT. Our results are in qualitative agreement
and, by choosing αg = 0.3, close quantitative agreement with
those of Ref. [64]: The band gap, Eg, grows for small N , until
it peaks around N = 6 and, then, falls for larger N . The order
parameter, �, also grows for small N , but it saturates for larger
N values (as in the simple two-band model).

The increase of Eg and � for small N is attributed to an
increasing density of states of progressively flatter and flatter
bands [44,64]. The decrease of Eg at large N is largely due

FIG. 4. Berry curvature �(k) as a function of the magnitude of
the wave vector k plotted from the valley center (the Berry curvature
is isotropic in the minimal model) for N = 16, αg = 0.3, and T =
0 K. (a) is for pristine RMG in the odd parity ground state, (b) is
for RMG with a Bernal stacking fault at its center in the odd parity
ground state, (c) is for an off-centre Bernal stacking fault in the odd
parity ground state, (d) is for an off-centre Bernal stacking fault in an
even parity state (which is not the ground state).

to the noninteracting band structure, as described by Hamil-
tonian (1), in that the position of the band gap moves from
k ≈ 0 for N = 2 to k ≈ kc for N � 1 as shown in the inset of
Fig. 3(a); the bulk gap [i.e. between the bulk bands shown in
black in Fig 2(b)] closes at k ≈ kc for N � 1 [18,24].

For the odd parity ground state, the Berry curvature �(k) is
plotted in Fig. 4(a) as a function of the magnitude of the wave
vector k plotted from the valley center (the Berry curvature
is isotropic in the minimal model) for N = 16. The position
of the maximum in �(k) is given by kmax ≈ sN kc(�/γ1)1/N ,
sN = ((N − 1)/(2N + 4))1/2N , which moves from k = 0 to
k = kc as N increases [17,18,83,84]. The integral of �(k)
with respect to the wave vector area also increases with N ,
as characterized by the Chern number per flavor which has
magnitude N/2 [20,72,73].

Finite temperature is taken into account through the Fermi-
Dirac distribution in the mean-field theory Eqs. (4) and (5)
and �(T ) is shown in Fig. 5(a) for different N values and
interaction strength αg = 0.3. We fit �(T ) to a form suggested
in Ref. [64],

�(T )

�(0)
=

[
A
(

1 − T

Tc

)
+ (3 − 2A)

(
1 − T

Tc

)2

+ (A − 2)
(

1 − T

Tc

)3]1/2

, (21)

with A and Tc as temperature independent fitting parameters.
As shown in Fig. 5(a), the quality of this fit is generally
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FIG. 5. (a) the order parameter �(T ) of rhombohedral multilayer
graphene as a function of temperature T for interaction strength αg =
0.3 and layer number N = 2, 3, 4, 5, 6, 8, and 16 from bottom to
top. Solid lines are fits according to Eq. (21). (b) Critical temperature
Tc as a function of layer number N for interaction strength αg = 0.3
obtained using the fit (21). The solid line is a guide to the eye. Red
squares show the results of Ref. [64] for N = 3 to N = 8 obtained
using density functional theory.

excellent. The resulting layer dependence of the critical tem-
perature Tc(N ) is shown in Fig. 5(b). Red squares in Fig. 5(b)
show the results of Ref. [64] for N = 3 to N = 8 obtained
using density functional theory (DFT); our results are in close
agreement. As in the simple two-band model, Tc saturates
at a finite value for N � 1, and, for αg = 0.3, the numeri-
cal calculation gives �(T = 0)/(kBTc) ∼ 5 which is slightly
larger than �(T = 0)/(kBTc) = 4 for the two-band model.
Note that we fit using �(T ) rather than Eg(T ) (as in Ref. [64])
because Eg values are determined at finite k, and the use of
a finite number of discrete k points introduces slightly more
uncertainty (than the determination of �(T ) which is always
at k = 0).

IV. INTERLAYER DISORDER

In this section, we consider the influence of interlayer
disorder on the interacting mean-field state in RMG, i.e., we
preserve translational invariance within each graphene layer,
but take into account random tight-binding parameters in
the perpendicular-to-layer direction. This has a close analogy
with studies of the SSH model [19,20] wherein the effects on
the zero-energy edge states of chiral-symmetry-preserving or
breaking disorder are considered [65–69]. A major difference
here is that we consider the influence of disorder on the
interacting mean-field state in which the exchange potential
has already broken chiral symmetry and gapped the spectrum.

We take into account two types of disorder. The first is due
to random layer energies which break chiral symmetry. For
a given realization of disorder, the diagonal elements of the
noninteracting Hamiltonian (1) take values HAnAn = HBnBn =
δn for layer index n = 1, 2, 3, . . . , N where each δn takes a
random value uniformly distributed in the range [−δ, δ] for
disorder strength δ. We consider weak disorder up to δ =
10 meV so that δ � {Eg, γ1} for typical values of the band gap
Eg. Figure 6(a) shows the mean band gap Eg for N = 12 layers
as a function of disorder strength δ for the odd parity antifer-
romagnetic state, Fig. 6(b) shows the mean order parameter.
Each data point (triangles) is an average over twenty different

FIG. 6. The mean band gap of rhombohedral multilayer
graphene with N = 12 layers in the odd parity antiferromagnetic
state at zero temperature and αg = 0.3 as a function of disorder
strength δ showing (a) the mean band gap Eg and (b) the mean order
parameter �. Triangles show data for random layer energies, circles
show data for random interlayer coupling. Mean values and error bars
are found by averaging over twenty disorder realizations. Note that
the scale on the vertical axes is offset from zero, and is different in
(a) and (b).

realizations of disorder; error bars increase with disorder in
Fig. 6 because the standard deviation increases while the
number of realizations is constant. The mean values of both
Eg and � decrease with disorder δ, although they appear to be
quite robust for weak disorder. We restrict the study to weak
disorder values because the ground state will change (e.g.,
to an odd ferrimagnetic state as modeled in bilayer graphene
[46]) for certain realizations at higher disorder.

The second type of disorder is due to random values of the
interlayer coupling γ1 which preserve chiral symmetry. For a
given realization of disorder, elements of the noninteracting
Hamiltonian (1) describing interlayer coupling take random
values, i.e., HB1A2 = HA2B1 = γ1 + δ1, HB2A3 = HA3B2 = γ1 +
δ2, etc., n = 1, 2, 3, . . . , N − 1, where each δn takes a random
value uniformly distributed in the range [−δ, δ] for disorder
strength δ. Figure 6 shows the dependence of the mean values
of Eg and � for N = 12 layers as a function of disorder
strength δ for the odd parity antiferromagnetic state, each data
point (circles) is an average over twenty different realizations
of disorder. We find that the mean value of � is not affected
by disorder (within the error bars), and that disorder slightly
reduces the mean value of Eg for the weak disorder values
we consider. This is in line with studies of the SSH model
[65–69] where one expects chiral-preserving disorder to have
a negligible effect on the zero-energy edge states, although
the exchange interaction has already broken chiral symmetry
in the interacting mean-field state considered here.

The influence of disorder may be understood by consider-
ing the form of the two-band Hamiltonian (13). For random
layer energies, the energies of the outer layers would appear
directly in the two-band Hamiltonian as random diagonal
elements for HA1A1 and HBN BN , having a direct impact on
the exchange potential and the band gap in the form of
random numbers δ1 and δN . Interlayer coupling, however,
appears in the off-diagonal term as HA1BN = −γ1(−κ†)N =
−(−h̄v[ξkx − iky])Nγ 1−N

1 , i.e., the connection between the
surface states involves a product of the N − 1 parameters
γ1 + δn for n = 1, 2, 3, . . . , N − 1. For N � 1, the system
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self-averages so that the effect of random values δn is negli-
gible for the low-energy bands.

V. BERNAL STACKING FAULT
IN RHOMBOHEDRAL GRAPHENE

Stacking faults have been considered previously in
graphene multilayer systems [15,85] and in RMG in particular
[32,70,71]. Single stacking faults, e.g., a Bernal fault or a
twin boundary fault, Fig. 1, within a large RMG system are
interesting because they introduce additional flat bands into
the energy spectrum. Here we focus on the properties of the
interacting ground state at half filling.

A. Band structure of noninteracting electrons

In order to describe the influence of a stacking fault on the
low-energy band structure, we begin by considering noninter-
acting electrons. The number of zero energy states at k = 0 is
determined by the stacking structure of the multilayer, partic-
ularly the degree of hybridization of pz orbitals (one per site)
caused by interlayer coupling γ1 with a neighboring site in an
adjacent layer directly above or below. For n atoms coupled
in a vertical line by interlayer coupling γ1, even n (e.g., a
dimer) contributes n bulk bands, but no zero energy states at
k = 0. For odd n (e.g., a monomer not directly connected to a
neighbor in an adjacent layer or a trimer), there are n − 1 bulk
bands and one zero energy state at k = 0 [86].

For RMG, all sites are part of a dimer apart from A1 and
BN at the surfaces which are monomers: Hence there are two

zero energy states as shown in Fig. 2. For a Bernal-stacked
multilayer with N layers, there is one N-mer contributing one
zero energy state if N is odd and in addition there are N
monomers. Thus, overall, there are N zero energy states if N
is even, N + 1 if N is odd.

We consider RMG with a single Bernal stacking fault, as
illustrated in Fig. 1 (central panel) for N = 7 layers. Specifi-
cally, we use integers (m, n) to denote a rhombohedral section
with m layers and sites A1, B1, ..., Am, Bm connected by a
Bernal stacking fault to a rhombohedral section with n layers
and sites Am+1, Bm+1, ...AN , BN where the total layer number
is N = m + n and m � 2, n � 2. Thus, the example in the
central panel of Fig. 1 is a (3,4) Bernal stacking fault. At the
stacking fault, there are four vertically connected atomic sites
(sites B2, A3, B4, A5 in Fig. 1) which make up a 4-mer; this
is even, so it contributes four bulk bands, but no zero energy
states at k = 0. Rather, the zero energy states arise from the
sites not directly connected to a neighbor in an adjacent layer,
namely A1, Bm, Am+1, BN (sites A1, B3, A4, B7 in Fig. 1), so
there are four low-energy states per spin and valley flavor.

The low-energy bands of noninteracting electrons for N =
16 layers with a Bernal stacking fault at the center n = m =
8 are shown in Fig. 7(a). For m, n � 1, the noninteracting
low-energy bands behave almost as if they arise from two dis-
connected pieces of RMG with m and n layers, respectively.
This may be understood by deriving an effective low-energy
four band Hamiltonian, following the procedure described
previously for bilayer graphene [79,87], in a basis of orbitals
on A1, Bm, Am+1, BN sites. For k � kc and E � γ1, we find

H (m,n)
Bernal = γ1

⎛
⎜⎜⎝

0 −(−κ†)m 0 (−κ†)m+n−2

−(−κ )m 0 −cmn(k/kc)2(�−1)κ2 0
0 −cmn(k/kc)2(�−1)(κ†)2 0 −(−κ†)n

(−κ )m+n−2 0 −(−κ )n 0

⎞
⎟⎟⎠, (22)

where cmn = (1 + δmn)/2 and � = min(m, n). As the Hamiltonian is chiral, every matrix element between two A sites or between
two B sites is zero. For the nonzero elements (between A and B sites), we keep only the leading terms in k/kc.

The diagonal 2 × 2 blocks in Eq. (22) describe isolated RMG sections with m and n layers; the off-diagonal 2 × 2 blocks
describe coupling between them. In particular, term (−κ )m+n−2 describes effective coupling between the A1 and BN sites which
are on opposite surfaces of the sample and this is very small for N � 1 and k/kc � 1. Term −cmn(k/kc)2(�−1)(κ†)2 describes
effective coupling between the Bm and Am+1 sites. Although they are on adjacent layers, this coupling is of order (k/kc)2� which
is also very small for � � 1 and k/kc � 1. Weak effective coupling between the Bm and Am+1 sites arises from the fact that the
Bernal stacking fault consists of four vertically coupled sites (B2, A3, B4, A5 in Fig. 1). Their effective coupling in the basis of
Eq. (22) is described by inverting the 4 × 4 matrix of hopping within a 4-mer,

⎛
⎜⎝

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞
⎟⎠

−1

=

⎛
⎜⎝

0 1 0 −1
1 0 0 0
0 0 0 1

−1 0 1 0

⎞
⎟⎠,

which has an exactly zero matrix element between the sec-
ond and third components. The reason that matrix element
−cmn(k/kc)2(�−1)(κ†)2 in Eq. (22) is not also identically zero
is that this small contribution arises from a slight rotation of
the low-energy basis states that is required to preserve their
normalization [87].

Since the four band Hamiltonian (22) is chiral, the energy
spectrum of noninteracting electrons displays electron-hole

symmetry and the band energies E may be determined as the
solution of a quadratic equation:

(E/γ1)2 = 1
2βB(k/kc) ± 1

2

√
β2

B(k/kc) − 4ηB(k/kc),

βB(x) = x2m + x2n + x2m+2n−4 + c2
mnx4�,

ηB(x) = x2m+2n + 2cmnx2m+2n+2�−2 + c2
mnx2m+2n+4�−4.
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FIG. 7. Low-energy band structure of RMG with N = 16 layers
and a Bernal stacking fault at its center with (a) noninteracting
electrons described by Hamiltonian (1) and (b) interacting electrons
described by the mean-field theory [(2 and 3)] with interaction
strength αg = 0.3 and zero temperature. Black lines are bulk bands,
blue lines are almost doubly-degenerate low-energy bands for k � kc

where h̄vkc = γ1 (eightfold degenerate taking into account spin and
valley degrees of freedom). (c) The values of the exchange potential
Wk=0σXX at the valley center k = 0 and for each site X ′ = X for RMG
with N = 8 layers and a Bernal stacking fault at its center [78]. The
black solid line shows the exchange for two flavors, the blue dashed
line is exchange for the other two flavors.

Of particular interest is when the fault lies exactly in the center
of a long RMG system: n = m = N/2, cmn = 1, and � = m =
N/2 with N � 1. Then, the stacking fault (as described by
the off-diagonal 2 × 2 blocks in Eq. (22)) connects the two
RMG sections and breaks the degeneracy of their spectra: E ≈
±γ1[(k/kc)N/2 ± 1

2 (k/kc)N−2] for k � kc.

B. Numerical mean-field theory

The numerical mean-field theory calculations proceed as
for pristine RMG, except that the stacking fault is taken into
account by a different position of the interlayer coupling γ1

in the noninteracting Hamiltonian (1). At zero temperature,
we find a number of self-consistent solutions with different
exchange profiles including both even and odd parity within
each flavor, and ferromagnetic, ferrimagnetic or antiferromag-
netic arrangements of flavors. However, on determining the
total energy of each, we find that the ground state is the odd
antiferromagnetic state, a generalization of the ground state in
pristine RMG (discussed in Sec. III). That the odd antiferro-
magnetic state is the ground state agrees with Refs. [60,61]
for the (2,2) fault which is the same system as N = 4 Bernal-
stacked multilayer. For benchmarking, with αg = 0.1 we find
Eg = 1.42 meV for the (2,2) fault which compares with Eg ≈
1.44 meV for the second red circle in Fig. 3(a) of Ref. [60].

FIG. 8. The band gap of RMG with a Bernal stacking fault at its
center, for even N , at zero temperature as a function of layer number
N for different values of interaction strength αg showing (a) the band
gap Eg and (b) the order parameter �1. Points are data for the system
with the stacking fault, solid lines are data from Fig. 3 for a single
RMG section with m = N/2 layers.

Since there are now four low-energy bands, we identify
the separation at k = 0 of the lowest conduction band and
the highest valence band as �1 and the separation at k = 0
of the second lowest conduction band and the second highest
valence band as �2, �2 � �1. For m, n � 1, we find that
the low-energy bands of the interacting system behave as if
they arise from two disconnected pieces of RMG. This is not
surprising as, due to their chirality, the wave functions of the
Bm and Am+1 sites have different dependences on the polar
angle in the graphene plane and, at k = 0, this suppresses the
exchange interaction matrix element between them.

In the special case of an even number of layers N = 2m
with a stacking fault on the central layer (m, m), the low-
energy bands are almost doubly degenerate (i.e., eightfold
degenerate taking into account spin and valley), as shown for
N = 16 in Figs. 7(a) and 7(b) for noninteracting and interact-
ing electrons, respectively. The exchange potential Wk=0σXX

at the valley center k = 0 and for each site X ′ = X for RMG
with N = 8 layers and a Bernal fault at its center is shown in
Fig. 7(c) [78]. This is a generalization of the odd antiferro-
magnetic state in pristine RMG, but now the exchange (and
carrier density) per flavor has a substantial magnitude on sites
Bm, Am+1 by the stacking fault as well as the surface states.
The band gap, Eg, and the order parameter �1 are plotted
as data points in Fig. 8 as a function of layer number N for
different interaction strengths αg (for clarity, we don’t plot �2

because �2 ≈ �1 when the fault is at the center). To illustrate
that the system behaves almost as two separate RMG sections
of m = N/2 layers, the solid lines in Fig. 8 are not fits, but data
taken from Fig. 3 for a single RMG section with N/2 layers;
for N > 4, the agreement is very close.

More generally, the stacking fault breaks spatial inversion
symmetry. As an example, bands for a N = 16 layer system
(m, n) = (3, 13) with a three-layer section connected to a
13-layer section are shown in Figs. 9(a) and 9(b) for non-
interacting and interacting electrons, respectively. Although
spatial inversion symmetry is absent, the band structure has
flavor degeneracy for the antiferromagnetic ground state. This
is not generally the case, e.g., within a ferrimagnetic con-
figuration, the flavors with different orientation are usually
not degenerate. For the interacting case, Fig. 9(b) shows the

035404-8



EXCHANGE INTERACTION, DISORDER, AND STACKING … PHYSICAL REVIEW B 104, 035404 (2021)

FIG. 9. Low-energy band structure of RMG with N = 16 layers
and a Bernal stacking fault between its third and fourth layers,
(m, n) = (3, 13), with (a) noninteracting electrons described by
Hamiltonian (1) and (b) interacting electrons described by the mean-
field theory Eqs. (2) and (3) with interaction strength αg = 0.3 and
zero temperature. Black lines are bulk bands, blue lines are surface
bands for k � kc where h̄vkc = γ1. (c) The values of the exchange
potential Wk=0σXX at the valley center k = 0 and for each site X ′ = X
for RMG with N = 8 layers and a Bernal stacking fault off center
[78] between the second and third layers, (m, n) = (2, 6). The black
solid line shows the exchange for two flavors, the blue dashed line is
exchange for the other two flavors.

bands of a single flavor for the antiferromagnetic ground state;
within a flavor, the four low-energy bands are not degenerate.
In Fig. 9(b), �2 > �1, where �1 (the separation at k = 0 of
the lowest conduction band and the highest valence band) is
the order parameter related to the short section m = 3, �2 (the
separation at k = 0 of the second lowest conduction band and
the second highest valence band) is related to the long section
n = 13.

The exchange potential Wk=0σXX at the valley center k = 0
and for each site X ′ = X for RMG with N = 8 layers and a
Bernal fault off center, (m, n) = (2, 6), is shown in Fig. 9(c)
[78]. Again, this is a generalization of the odd antiferromag-
netic state in pristine RMG. Although the off center stacking
fault breaks spatial inversion symmetry, we refer to this as
an odd parity state because the exchange has relative signs of
(−,+,−,+) on the four low-energy orbitals (A1, B2, A3, B8).
The exchange potential (and carrier density) per flavor has
a larger magnitude on sites with low-energy orbitals A1, B2,
A3, B8 sites, but has a much larger magnitude on sites A3, B8

associated with the longer RMG section than A1, B2 related to
the small section. This is reflected in the relative magnitudes
of �2 and �1.

Figure 10(a) shows Eg, �1 and �2 for a N = 16 system
(m, 16 − m) plotted as data points as a function of the number
of layers m in the short section (i.e., for different positions of

FIG. 10. (a) The band gap Eg and order parameters �1, �2 of
RMG with N = 16 layers and a Bernal stacking fault of structure
(m, 16 − m) consisting of a rhombohedral section of length m cou-
pled to a rhombohedral section of length 16 − m. Points are data for
the system with the stacking fault, solid lines are data from Fig. 3
for a single RMG section with m layers for �1 and Eg, and 16 − m
layers for �2. (b) The band gap Eg and order parameters �1, �2

of RMG with N = 15 layers and a twin boundary fault of structure
(m, 16 − m) consisting of a rhombohedral section of length m cou-
pled to a rhombohedral section of length 16 − m. Points are data for
the system with the stacking fault, solid lines are data from Fig. 3
for a single RMG section with m layers for �1 and Eg, and 16 − m
layers for �2. For both plots, the interaction strength is αg = 0.3 and
temperature T = 0 K.

the stacking fault). The solid lines are not fits, but they show
data taken from Fig. 3 for a single RMG section: a section of
length m is used to compare Eg and �1, a section of length
16 − m is used to compare �2. For �1 and �2 the agreement
is close, it is slightly less close for the band gap Eg; �1 and
�2 are determined at k = 0 where the approximate splitting of
the system into two parts is clearcut whereas Eg is generally
determined at nonzero k. Weak coupling due to the Bernal
stacking fault is indicated by the close agreement of the data
points and lines for �1 and �2, as well as the nearly equal
values of �1 and �2 for the spatially symmetric case m = 8
(�1 and �2 differ by about 1 meV); the stacking fault only
breaks the degeneracy slightly.

For the odd parity ground state, the Berry curvature �(k)
is plotted in Fig. 4(b) for N = 16 with a stacking fault at
the center (m, n) = (8, 8). This plot can be interpreted as the
superposition of contributions from two identical sections of
RMG summing to give a single peak. By contrast, Fig. 4(c)
shows �(k) for the odd parity ground state with the stacking
fault off-center (m, n) = (12, 4). In this case, there are two
separate peaks corresponding to the sections of length m = 12
and n = 4. For both of these cases, the Berry curvature �(k)
sums to give a Chern number of magnitude N/2 [20,72,73].
As a further interesting example, Fig. 4(d) shows �(k) for the
same system in an even parity state [the exchange has relative
signs of (−,+,+,−) on the four low-energy orbitals (A1, Bm,
Am+1, BN )] which is not the ground state. In this case, the
contributions of the two sections of length m = 12 and n = 4
appear with an opposite sign and the Berry curvature �(k)
sums to give a Chern number of magnitude |m − n|/2, i.e., it
depends on the position of the stacking fault.
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VI. TWIN BOUNDARY STACKING FAULT
IN RHOMBOHEDRAL GRAPHENE

A. Band structure of noninteracting electrons

As a second example, we consider RMG with a twin
boundary stacking fault, as illustrated in Fig. 1 (right panel)
for N = 7 layers. Specifically, we use integers (m, n) to denote
a rhombohedral section with m layers and sites A1, B1, ..., Am,
Bm connected by a twin boundary stacking fault to a rhombo-
hedral section with n layers and sites Bm, Am, ...BN , AN where
m � 2, n � 2. The total layer number is N = m + n − 1 be-
cause the two rhombohedral sections ‘share’ the layer with
sites Am, Bm. Thus, the example in Fig. 1 is a (3,5) twin
boundary stacking fault with N = 7 total layers. This fault
contrasts with the Bernal fault. For example, at the stacking

fault there are only three vertically connected atomic sites
(sites B2, A3, B4, in Fig. 1) which make up a trimer; this
is odd so it contributes two bulk bands and one band near
zero energy at k = 0 [32] in a similar way to trilayer Bernal
graphene [88]. Thus, overall, there are four low energy bands
per spin and valley related to three sites not directly connected
to a neighbor in an adjacent layer, namely A1, Bm, AN (sites
A1, B3, A7 in Fig. 1) plus an odd combination of trimer sites
(Bm−1 − Bm+1)/

√
2 [(B2 − B4)/

√
2 in Fig. 1].

Since the low-energy orbitals near the stacking fault [i.e.
those related to site Bm and to (Bm−1 − Bm+1)/

√
2] are effec-

tively shared between both sections of RMG either side of
the fault, the two sides are more strongly coupled than in the
Bernal fault case. For noninteracting electrons, the effective
low-energy four band Hamiltonian, in a basis of orbitals on
A1, (Bm−1 − Bm+1)/

√
2, AN , Bm sites, is given by

H (m,n)
twin = γ1

⎛
⎜⎜⎝

0 −(−κ†)m−1/
√

2 0 −(−κ†)m/2
−(−κ )m−1/

√
2 0 (−κ )n−1/

√
2 0

0 (−κ†)n−1/
√

2 0 −(−κ†)n/2
−(−κ )m/2 0 −(−κ )n/2 0

⎞
⎟⎟⎠. (23)

As the Hamiltonian is chiral, every matrix element between
two A sites or between two B sites is zero. For the nonzero
elements (between A and B sites), we keep only the leading
terms in k/kc. The second and fourth columns indicate that the
B orbitals at the fault are coupled to both of the RMG sections.

Since the four band Hamiltonian (23) is chiral, the energy
spectrum of noninteracting electrons displays electron-hole
symmetry and the band energies E are given by

(E/γ1)2 = 1
2βt (k/kc) ± 1

2

√
β2

t (k/kc) − 4ηt (k/kc),

βt (x) = 1
2(x

2m−2 + x2n−2) + 1
4(x

2m + x2n),

ηt (x) = 1
2 x2m+2n−2.

When the fault lies exactly in the center of a long RMG
system: n = m = (N + 1)/2 ≈ N/2 with N � 1, then E ≈
±γ1(k/kc)N/2 and E ≈ ±(γ1/

√
2)(k/kc)N/2. The low-energy

dispersion of a pair of the bands acquires an additional fac-
tor of 1/

√
2 as compared to the dispersion of a stack with

N/2 layers, indicating that the twin boundary stacking fault
strongly affects the electronic behavior of the system.

B. Numerical mean-field theory

The numerical mean-field theory calculations proceed as
for pristine RMG, except that the stacking fault is taken into
account by a different position of the interlayer coupling γ1 in
the noninteracting Hamiltonian (1). In the special case of an
odd number of layers N = 2m − 1 with a stacking fault on the
central layer (m, m), the low-energy bands are almost doubly
degenerate (i.e., eightfold degenerate taking into account spin
and valley), as shown for N = 15 in Figs. 11(a) and 11(b)
for noninteracting and interacting electrons, respectively. Al-
though it is not clearly visible in Fig. 11(b), the low-energy
bands actually have a small separation of a few meV [this is

indicated in Fig. 10(b) where there is a nonzero separation of
�1 and �2 for m = 8].

The exchange potential Wk=0σXX at the valley center k = 0
and for each site X ′ = X for RMG with N = 9 layers and a
fault at its center is shown in Fig. 11(c) [78]. This ground state
has an even parity of exchange (and carrier density) per flavor,
with the large magnitude of exchange on the surface orbitals
A1, A9 having the same sign, low-energy orbitals at the fault
B4, B5, B6 have exchange potentials with the opposite sign.
Within the four spin-valley flavors, the ground state has an
antiferromagnetic configuration, because this minimizes the
Hartree energy as previously.

The band gap, Eg, and the order parameter �1 are plotted
as data points in Fig. 12 as a function of layer number N for
different interaction strengths αg and a fault at the center (for
clarity, we don’t plot �2 because �2 ≈ �1 when the fault
is at the center). The solid lines are data taken from Fig. 3
for a single RMG section with (N − 1)/2 layers; choosing
(N − 1)/2 gives generally better agreement of solid lines and
data points than choosing N/2 (as in Fig. 8). There is good
agreement of the solid lines and data points, but not as close
as for the Bernal fault, Fig. 8.

Bands for a N = 16 layer system (3,14) with an off center
fault, namely, a three-layer section connected to a 14-layer
section are shown in Figs. 13(a) and 13(b) for noninteracting
and interacting electrons, respectively. The exchange potential
Wk=0σXX at the valley center k = 0 and for each site X ′ = X
for RMG with N = 8 layers and a fault off center is shown
in Fig. 13(c) [78]. This is also the even parity state [the ex-
change has relative signs of (−,+,+,+,−) on the low-energy
orbitals (A1, Bm−1, Bm, Bm+1, AN )]. In the interacting case,
Fig. 13(b), the four low-energy bands are clearly not degener-
ate. Figure 10(b) shows Eg, �1 and �2 for a N = 15 system
(m, 16 − m) plotted as data points as a function of the number
of layers m in the short section. The solid lines show data
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FIG. 11. Low-energy band structure of RMG with N = 15 layers
and a twin boundary stacking fault at its center with (a) noninter-
acting electrons described by Hamiltonian (1) and (b) interacting
electrons described by the mean-field theory [(2) and (3)] with inter-
action strength αg = 0.3 and zero temperature. Black lines are bulk
bands, blue lines are doubly degenerate low-energy bands for k � kc

where h̄vkc = γ1 (8-fold degenerate taking into account spin and
valley degrees of freedom). (c) The values of the exchange potential
Wk=0σXX at the valley center k = 0 and for each site X ′ = X for RMG
with N = 9 layers and a twin boundary stacking fault at its center
[78]. The black solid line shows the exchange for two flavors, the
blue dashed line is exchange for the other two flavors.

taken from Fig. 3 for a single RMG section: A section of
length m is used to compare Eg and �1, a section of length
16 − m is used to compare �2. The agreement of the data
points and the solid lines is reasonable, although not as close
as in the case of the Bernal fault Fig. 10(a), this is due to the
larger coupling between the two RMG sections in the twin
stacking fault case. In particular, when the stacking fault is

FIG. 12. The band gap of RMG with a twin boundary stacking
fault at its center, for odd N , at zero temperature as a function of layer
number N for different values of interaction strength αg showing
(a) the band gap Eg and (b) the order parameter �1. Points are data
for the system with the stacking fault, solid lines are data from Fig. 3
for a single RMG section with (N − 1)/2 layers.

FIG. 13. Low-energy band structure of RMG with N = 16 layers
and a twin boundary fault off center at its third layer, (m, n) =
(3, 14), with (a) noninteracting electrons described by Hamiltonian
(1) and (b) interacting electrons described by the mean-field theory
Eqs. [(2) and (3)] with interaction strength αg = 0.3 and zero tem-
perature. Black lines are bulk bands, blue lines are surface bands
for k � kc where h̄vkc = γ1. (c) The values of the exchange potential
Wk=0σXX at the valley center k = 0 and for each site X ′ = X for RMG
with N = 8 layers and a twin boundary stacking fault off center [78]
at its third layer, (m, n) = (3, 6). The black solid line shows the
exchange for two flavors, the blue dashed line is exchange for the
other two flavors.

in the center and doesn’t break spatial inversion symmetry,
m = 8, there’s still a significant difference between �1 and
�2 (of about 8 meV), whereas this difference is small (about
1 meV) in the Bernal fault case, Fig. 10(a).

For the even parity ground state, the Berry curvature �(k)
is plotted in Fig. 14(a) for N = 15 with a stacking fault at
the center (m, n) = (8, 8). This plot can be interpreted as the
superposition of contributions from two identical sections of

FIG. 14. Berry curvature �(k) as a function of the magnitude of
the wave vector k plotted from the valley center (the Berry curvature
is isotropic in the minimal model) for N = 15, αg = 0.3, and T =
0 K. (a) is for a twin boundary fault at the center in the even parity
ground state, (b) is for a twin boundary fault off center in the even
parity ground state.
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FIG. 15. Temperature dependence of the order parameters �1

and �2 for RMG with N = 6 layers and the odd antiferromagnetic
state for (a) a Bernal stacking fault at the center and (b) a Bernal
stacking fault off center. The order parameters for N = 5 and the
even antiferromagnetic state for (c) a twin boundary stacking fault at
the center and (d) a twin boundary stacking fault off center. Circles
show data for �2, diamonds show data for �1, lines (solid for �2 and
dashed for �1) show fits using Eq. (21). For all plots, αg = 0.3.

RMG summing to give a single peak. By contrast, Fig. 14(b)
shows �(k) for the even parity ground state with the stacking
fault off-center (m, n) = (12, 4). In this case, there are two
separate peaks corresponding to the sections of length m = 12
and n = 4. For both of these cases, the Berry curvature �(k)
sums to give a Chern number of magnitude N/2 [20,72,73].
Although these are even parity states, they give the same
Chern numbers as the odd parity states in the system with
a Bernal fault. The reason is that the twin boundary fault
effectively flips the position of A and B sites within a layer for
the layers above the fault (right panel of Fig. 1) compensating
the change of relative sign of potential differences for the even
parity state.

VII. TEMPERATURE DEPENDENCE
OF THE ORDER PARAMETERS

For an isolated stacking fault in RMG, we consider how
the transition temperature for the mean-field AF state is deter-
mined in the presence of two order parameters. To do this, we
studied the simplest case of RMG with N = 6 layers which
can have either a Bernal stacking fault at the center, (m, n) =
(3, 3), or off center, (m, n) = (2, 4). Finite temperature is
taken into account through the Fermi-Dirac distribution in the
mean-field theory Eqs. (4,5), and the temperature dependence
of the order parameters is shown in Figs. 15(a) and 15(b).

Flavor degeneracy is generally broken (when spatial inversion
symmetry is absent), resulting in slightly different values of
�1 and �2 for two flavors as compared to the other two: In
the figures we plot the smallest values. The value of the band
gap Eg is very close to that of �1, Eg � �1 in general.

For the Bernal fault at the center, Fig. 15(a), there is weak
coupling between the two sections of RMG as indicated by
the small difference between �1 and �2 at T = 0 K. The
temperature dependence of �1 and �2 is very similar, and
similar to the behavior of trilayer RMG Fig. 5(a), and they
converge to the same critical temperature Tc ≈ 120 K which
is close to that of trilayer, Tc = 118 K, Fig. 5(b).

For a Bernal fault off center, Fig. 15(b), spatial inversion
symmetry is absent and the behavior is different. At T = 0 K,
the values of �1 ≈ 20 meV and �2 ≈ 60 meV are similar to
those of RMG with N = 2 and N = 4, respectively, Figs. 3(b)
and 5(a). The temperature dependence of �2 is described well
by the fit (21) and �2 behaves in a similar way to the order
parameter of N = 4 RMG, Fig. 5(a). However, �1 doesn’t
follow the behavior of N = 2 RMG, Fig. 5(a), which has
Tc ≈ 50 K, and the fit of �1 to Eq. (21) is very poor. Despite
the apparently weak coupling between the two RMG sections
at T = 0 K, once the magnitude of �1 falls at finite tempera-
ture, its behavior is strongly influenced by the larger section.
Thus �1 (and the band gap Eg � �1) remain nonzero all the
way up to Tc ≈ 150 K determined by �2 (which is close to
that of N = 4 RMG, Tc = 151 K, Fig. 5). Overall, this means
that when a Bernal stacking fault is off center separating the
system into a long and short section, the band gap at zero
temperature is determined by the short section (�1), but the
transition temperature Tc is determined by the long section
(�2).

Figure 15(c) shows the temperature dependence of the AF
order parameters for a twin boundary fault at the center of
an N = 5 system, Fig. 15(d) shows an off center twin fault.
For the symmetric system, Fig. 15(c), �2 and �1 are quite
different at T = 0 K because of stronger coupling by the twin
fault than the Bernal one. For both cases, Figs. 15(c) and
15(d), the temperature dependence of �2 fits Eq. (21) very
well and Tc (≈131 K and ≈151 K, respectively) is close to that
of a RMG system with N = 3 and N = 4 layers, respectively;
the �2 plots are similar to those of a Bernal fault in panels
(a) and (b). Fits to �1 are not as good, and the value of fitting
parameter A in the fit Eq. (21) is far smaller than for �2 or for
pristine RMG, indicating that �1(T ) is quite different here.
As for the off center Bernal fault, �1 (and the band gap Eg)
remain nonzero [albeit of small magnitude in Fig. 15 (d)] up
to the Tc determined by �2.

VIII. DISCUSSION

We have generalized the mean-field Hartree Fock descrip-
tion [45,46,60–62] to provide a comprehensive qualitative
description of broken symmetry ground states in RMG, in-
cluding the effects of defects including random disorder and
stacking faults. The nontrivial topology of the low-energy
bands is reflected in large Berry curvature and Chern num-
bers per spin-valley flavor. An obvious generalization is to a
number of stacking faults separating rhombohedral sections
with different numbers of layers m, each section contributing
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a pair of low-energy flat bands and a peak in the Berry cur-
vature at a characteristic m-dependent wave vector. In RMG,
each stacking fault contributes a pair of low-energy flat bands
because they are more complicated than the domain walls
usually considered in the SSH model which consist of isolated
monomers or trimers [20]. The Bernal fault corresponds to
two monomers (and a 4-mer), the twin boundary fault is a
monomer plus a trimer.

As described in Sec. III B, sources of systematic un-
certainty include the choice of cutoff k�, the omission of
tight-binding parameters in the minimal model, and the value
of the interaction parameter αg. We have assumed the interac-
tion parameter αg to be independent of layer number N , but it
is anticipated that the effective strength of interactions could
fall with N due to screening [63,89]. This would lead to a
further reduction in Eg and a fall in � for large N in Fig. 3,
say. Additional tight-binding parameters such as γ2 and γ3

will introduce trigonal warping of the dispersion around each
valley (so the Berry curvature, Fig. 4, will be anisotropic), and
γ4 will break particle-hole symmetry [16,18]; this is likely to
reduce the value of the band gap. The additional tight-binding
parameters are usually smaller in magnitude than the typical
values of the band gap that we predict, but there is a possibility

that additional parameters will change the qualitative nature
of the ground state [61]. However, even without these param-
eters, for our choice of cutoff and for αg = 0.3, we find close
agreement of band gap values in RMG with DFT calculations
of Ref. [64] (which considered N = 3 to N = 8 layers).

The mean-field Hartree Fock approach neglects strong cor-
relation effects, and there have been predictions of magnetic
ordering [90,91] and superconductivity [92–94] due to the flat
bands in RMG. We speculate that the additional flat bands
localized at stacking faults, and in close spatial proximity
to each other, are more likely to support strongly-correlated
states than the widely-separated surface states in pristine
RMG.

All relevant data present in this publication can be accessed
at [95].
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