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Crystals of plasmonic metal nanoparticles have intriguing optical properties. They reach the regimes of
ultrastrong and deep strong light-matter coupling, where the photonic states need to be included in the simulation
of material properties. We propose a quantum description of the plasmon polaritons in supercrystals that starts
from the dipole and quadrupole excitations of the nanoparticle building blocks and their coupling to photons. Our
model excellently reproduces the results of finite difference time domain simulations. It provides detailed insight
into the emergence of the polariton states. Using the example of a face centered cubic crystal we show that the
dipole and quadrupole states mix in many high-symmetry directions of the Brillouin zone. A proper description
of the plasmon and plasmon-polariton band structure is only possible when including the quadrupole-derived
states. Our model leads to an expression of the reduced coupling strength in nanoparticle supercrystals that we
show to enter the deep strong-coupling regime if the metal nanoparticles take up >60% of the total volume.
In addition to the plasmon-polariton energies, we analyze the relative contributions of the dipole, quadrupole,
and photonic states to their eigenfunctions and are able to demonstrate the decoupling of light in the deep
strong-coupling regime. Our results pave the way for a better understanding of the quantum properties of metallic
nanoparticle supercrystals in the ultrastrong- and deep strong-coupling regime.
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I. INTRODUCTION

Nanoparticle supercrystals are three-dimensional lattices
of nanoparticles with long-range crystalline order [1–7]. They
have long fascinated physicists, chemists, and material sci-
entists, because they promise material properties that cannot
be found in nature [2]. Supercrystals are tailored through
a particle-particle interaction and the choice of their build-
ing blocks. Initially, the discussion focused on collective
vibrational and electronic modes of supercrystals made from
semiconducting nanoparticles [8], but interest recently turned
to collective optical excitations [9], especially when using
metallic nanoparticles as the supercrystal building blocks
[6,7,10–12]. The optical properties of metallic nanoparticle
supercrystals are dominated by the response of their free
electrons. When light interacts with a metallic nanoparticle, it
excites localized surface plasmons—the collective oscillation
of the free electrons—that strongly absorb and scatter light
[13–15]. Plasmons of different nanoparticles interact in super-
crystals over various length scales creating coherent collective
excitations that propagate through the lattice [6,16,17]. The
collective plasmonic modes couple to photons forming hybrid
quasiparticles called plasmon polaritons [18]. Supercrystal
plasmon polaritons differ greatly in their properties from the
excitations of the individual nanoparticles, as they determine
the optical response of metallic supercrystals, and open new
pathways for scientific discoveries and technological develop-
ments [6,8,19,20].

Recently, we showed that plasmonic supercrystals can be
used to explore phenomena in the ultrastrong regime of light-

matter coupling (USC) [6,10,21]. In this regime the coupling
strength is a considerable fraction of the bare frequency of
the system, which leads to peculiar properties of the polari-
ton states [22,23]. For interparticle gaps much smaller than
the nanoparticle size, light-matter coupling even enters the
regime of deep strong coupling (DSC) [6], where the in-
teraction between light and matter exceeds the energies of
the bare excitation. This means that the properties of plas-
monic nanoparticle supercrystals can only be modeled when
considering the existence of photonic states [6]. This is in
sharp contrast to the standard treatment of light as an external
perturbation. The DSC regime, moreover, promotes a wide
range of exquisite and interesting physical effects such as a
decoupling of light and matter and the breakdown of the Pur-
cell effect [6,24], the squeezing of the photonic components of
the polaritons, super-Poissonian phonon and photon statistics
[25], and ground state electroluminescence [22,23,26]. Al-
though most of these properties can be understood in terms
of the Hopfield model for light-matter interactions [27], a
microscopic model that is capable of making predictions for a
specific plasmonic supercrystal is highly desirable.

Weick et al. [28] and Lamowski et al. [17] developed
a quantum-based formalism that describes the polaritons of
plasmonic supercrystals. The microscopic structure of the
supercrystal and the dipole-dipole interactions between the
nanoparticles turned out to be key for modeling the col-
lective plasmon modes [17]. The model uses two common
approximations that appear very reasonable on first sight,
but turn out to limit its applicability: It considers only the
dipole excitation of plasmonic nanoparticles and neglects

2469-9950/2021/104(3)/035403(14) 035403-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9210-9166
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.035403&domain=pdf&date_stamp=2021-07-02
https://doi.org/10.1103/PhysRevB.104.035403


BARROS, VIEIRA, MUELLER, AND REICH PHYSICAL REVIEW B 104, 035403 (2021)

Umklapp processes when crossing the boundary of the Bril-
louin zone. The restriction to the dipole excitation is motivated
by the small size (<100 nm) of plasmonic nanoparticles that
prohibits the excitation of higher-order electrical modes in
individual particles [15,29]. This argument, while correct,
misses that higher-order modes of individual nanoparticles
combine into dipole-active eigenstates in plasmonic oligomers
and supercrystals [30,31]. These states may couple to the
dipole-induced collective plasmons and the electromagnetic
states affecting the final polariton dispersion. Umklapp pro-
cesses are usually negligible for optical excitations, because
the wavelength of visible light (500 nm) is small compared
to the translational periodicity in natural crystals (0.1 nm).
The unit cell of supercrystals, however, becomes a sizable
fraction of the light wavelength, since nanoparticle diameters
are several 10–100 nm. The quasistatic approximation breaks
down and Umklapp processes may turn out to be important.

In this paper we develop a microscopic quantum model
for plasmon polaritons in metallic supercrystals that includes
quadrupolar plasmonic excitations and Umklapp processes.
We validate it by a comparison to finite difference time do-
main (FDTD) simulations. Our model very well describes
plasmon polaritons for supercrystals with low and high pack-
ing densities. We calculate the plasmon band structure for
face centered cubic (fcc) supercrystals as a function of pack-
ing density showing that the quadrupole-derived collective
eigenmodes cross and mix with the dipole-induced states for
high packing densities. Including the coupling to the electro-
magnetic states results in plasmon polaritons in the USC and
DSC regimes. The strongest contribution to light-matter cou-
pling arises from the dipole plasmons; the quadrupole-photon
coupling is an order of magnitude weaker than the dipole-
photon interaction. However, the quadrupole contribution is
important for the polariton band structure, because the ener-
gies of the collective plasmons are overestimated by several
100 meV at the Brillouin zone boundary when neglecting
the quadrupole modes. We derive a closed expression for the
reduced coupling strength and show that it mainly depends on
the metal fill fraction. We extract the dipole, quadrupole, and
photon contribution to all polariton states. The decoupling of
light and matter clearly manifests as the three quasiparticles
dominate distinct polariton branches in the DSC regime.

This paper is organized as follows: In Sec. II, we describe
the theoretical framework and apply it to a three-dimensional
Bravais lattice of spherical metallic nanoparticles. The theory
for arbitrary crystal structures is given in the Supplemental
Material (SM) [32]. We compare the calculated polariton
dispersion to FDTD simulations. In Sec. III we calculate
the plasmon and plasmon-polariton band structure of fcc
supercrystals. We demonstrate how quadrupole modes and
light-matter coupling affect the polariton dispersion. We
discuss the properties of polaritons, the reduced coupling
strength, and demonstrate the decoupling of light and plas-
mons in the DSC regime. In Sec. IV we summarize the main
findings of the paper.

II. QUANTUM MICROSCOPIC
PLASMON-POLARITON MODEL

In this section we derive the microscopic model of plas-
mon polaritons in metallic supercrystals. We first present a

general theoretical framework that describes individual and
interacting nanoparticles with dipole and quadrupole exci-
tations and their coupling to an electromagnetic field. This
description is then applied to a Bravais lattice; we verify its
validity and limitations by comparing to FDTD simulations of
fcc nanoparticle crystals. Our microscopic quantum plasmon-
polariton model contains the nanoparticle quadrupole in
addition to their dipole excitations. Adding the quadrupole
terms was challenging, because the quantum description of the
light-matter interaction is based on the dipole approximation.
One difficulty we encountered was to find a proper description
of the conjugate momenta for higher-order multipoles. This
problem dates back to the description of nuclear excitations
and was discussed first by Bohr and Mottelson [33]. In 1978
Gulshani finally provided a formal development of canoni-
cally conjugate momenta for quadrupolar excitations [34], but
no solution has been found for higher-order multipoles.

We start from the most general Hamiltonian for a set of
charges distributed in space interacting with the electromag-
netic field,

H =
∑

n

1

2m
[ �pn − qn �A(�rn, t )]2 + VCoul + HL, (1)

where VCoul is the Coulomb interaction between the dif-
ferent n charges qn in the system, HL is the quantized
free-electromagnetic field Hamiltonian, and �pn is the conju-
gate momentum to �rn. �A is assumed to be in the Coulomb
gauge. We consider an isolated spherical metallic nanoparti-
cle at the origin. The charges are bound by the nanoparticle
volume, such that the summation n in Eq. (1) is restricted to
the free electrons in the particle. We define a set of variables

hσ = 1

N

∑
n

rn,σ , Hγ = 1

N ρ̄

∑
n,α,β

r′
n,αr′

n,βχ
γ

αβ, (2)

where hσ represents the center of mass displacement along
the σ direction and is associated with the dipole moment
of the charge distribution. n = 1, . . . , Nj runs through all
the charges in a given nanoparticle. The second term Hγ is
associated to the quadrupole moment, with α and β being dif-
ferent Cartesian directions. γ specifies one of the five possible
quadrupolar modes, and r′

nα = rn,α − hα . ρ̄ = 〈1/N
∑

n r2
n〉 ∼√

2
5ρ, with ρ the radius of the spherical particle, is the expec-

tation value of the diagonal term of the quadrupole moment.
The respective conjugate momenta are

πσ =
∑

n

pn,σ , 	γ = 1

ρ̄

∑
n,α,β

p′
n,αr′

n,βχ
γ

αβ, (3)

with p′
n,α = pn,α − πα . It should be mentioned that only

the dipole part of this transformation is formally canoni-
cal. As discussed in the SM, the quadrupole term can only
be associated with a canonical transformation (and thus
with the expected commutation relations) if the total angu-
lar momentum of the charge distribution is zero and if the
charge displacements are small compared to the bulk charge
[34]. With these two considerations, the dynamical variable∑

n r2
n,α can be substituted by its expectation value ρ̄ and

the quadrupolar moments can be described in terms of the
traceless and symmetric 3 × 3 matrices χγ which act as unit
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tensors within the dyadic double-dot product (see SM). With
this approximation, we can write the following inverse trans-
formation for the quadrupolar canonical variables,

∑
n,α,β

rn,αrn,β = N ρ̄2

(
1 + 1

ρ̄

∑
γ

Hγ χγ

)
,

∑
n,α,β

pn,αrn,β = ρ̄
∑

γ

	γ χγ . (4)

Here, 1 is the 3 × 3 unit matrix.
We now consider a system of many nanoparticles. If there

is no charge exchange between different particles, the full
Hamiltonian of the system will be given by Eq. (1) but with
the summation in n being extended to a summation for each
particle n ∈ j and a summation of the different particles in the

system. With this, the matter Hamiltonian (HM = ∑
n

p2
n

2m +
VCoul) can be written as

HM = HD
M + HQ

M + Hplpl + HHO
M , (5)

where HD
M + HQ

M represents the Hamiltonians for each
nanoparticle in the system, including the kinetic energy asso-
ciated with each of the canonical coordinates (D for dipole and
Q for quadrupole) and the intraparticle Coulomb interactions.
Both are assumed to be described in terms of harmonic os-
cillations with characteristic frequencies ω j,D and ω j,Q, which
can have different values for each nanoparticle j in the system.
The term HHO

M represents the dynamics of the higher-order
coordinates, which are disregarded in the present model.

The plasmon-plasmon interaction between the different
particles in the system is

Hplpl = HDD + HDQ + HQQ, (6)

corresponding to the dipole-dipole HDD, dipole-quadrupole
HDQ, and quadrupole-quadrupole interaction HQQ. Explicit
expressions for these terms are given in the Supplemental
Material [32].

The characteristic size of plasmonic nanoparticles is
10–100 nm. Compared to atoms and molecules, the particle
diameters are a considerable fraction of the light wavelength.
The common approach for the light-matter interaction of ex-
panding the vector potential in a Taylor series in the vicinity of
the charge distribution and disregarding higher-order terms in
k will not be effective. We perform the expansion in a slightly
different way; we start from the vector potential of a plane
wave given by

Aλ(�r, t ) =
∑

�q
A�q,λ(t ) exp(i �q · �r), (7)

where λ specifies the light polarization and �q is a vector in
reciprocal space—not to be confused with the charges q. With
this, the general light-matter interaction for a particle j can be
separated into two parts. The first-order part,

H(1)
LM = − qe

me

∑
j,(n∈ j),λ,�q

pnλA�qλ exp(i �q · �rn), (8)

corresponds to the interaction of light with excitations of
the electric charge distribution. The time dependence of �A is

implicit. The second-order part,

H(2)
LM = q2

e

2me

∑
j,n∈ j,λ,�q,�q′

A∗
�q′λA�qλ exp[i(�q − �q′) · �rn], (9)

describes the back reaction of the electric field as it accelerates
the electric charges [35]. This term is known as the A2 term in
the light-matter Hamiltonian; it becomes extremely important
in the USC and DSC coupling regime [6,22].

Let us now take the spherical harmonic expansion of the
plane wave around the position �Rj of each nanoparticle in the
system,

exp(i �q · �r j ) ∼ j0(qr j ) + 3i
j1(qr j )

qr j
�q · �r j, (10)

where �r j = �r − �Rj and we have retained only the lower-order
terms. We apply this expansion to the first-order part of the
light-matter interaction for each nanoparticle j independently
and sum to get the full Hamiltonian. It then has a dipolelike
contribution,

H(D,1)
LM = − qe

me

∑
j,λ,�q

A�qλ exp(i �q · �Rj )
∑
n∈ j

pnλ j0(qrn, j ), (11)

and a quadrupolarlike term,

H(Q,1)
LM = − qe

me

∑
j,λ,�q,α,β

iqA�qλ exp(i �q · �Rj )

× (êλêq : êα êβ )
∑
n∈ j

3 j1(qrn)

qrn
pnαrnβ, (12)

where (:) stands for a double-dot dyadic product. We now
substitute j0(qrn) and 3 j1(qrn)/qrn by their mean values in
each nanoparticle,

fD = 〈 j0(qr j )〉 = 3

(qρ j )3
[sin(qρ j ) − qρ j cos(qρ j )] (13)

and

fQ =
〈

3 j1(qrn)

qrn

〉
= 9

(qρ j )3
[Si(qρ j ) − sin(qρ j )], (14)

where Si(x) is the sine integral function. fD and fQ are
nanoparticle form factors somewhat similar to the atomic form
factors in x-ray diffraction theory [36]. The magnitude of the
form factors decreases with increasing qρ, effectively cutting
off the contribution of photons with wave vectors much larger
than 1/ρ to the light-matter interaction. This effect stems from
the field retardation within the nanoparticle.

With this definition the first-order term in the light-matter
interaction Hamiltonian becomes

H(D,1)
LM = −

∑
j,�q

fD(q)
QD

M
�π j · �A�q, �Rj

(15)

and

H(Q,1)
LM =

∑
j,�q

fQ(q)
QQρ̄ j

M
	 j,ν

[
χν : �q �A�q, �Rj

]
, (16)

where M is the total mass of the charges (M = Nme), QD and
QQ are the screened dipole and quadrupole effective charges,
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which will depend on the relative permittivity of the surround-
ing medium, and �q �A�q, �Rj

is a dyadic, with �A�q, �Rj
= �A�q exp(i �q ·

�Rj ). Note that for small nanoparticle radii (ρ) the form factors
approach unity and the plasmon-photon interaction obtained
by applying Taylor’s expansion is recovered. In that case, the
first-order light-quadrupole interaction increases linearly with
q. For the second-order term, associated to the A2 light-matter
interaction term, we have the two contributions

H(D,2)
LM =

∑
j,�q,�q′

fD(q)fD(q′)
Q2

D

2M

[ �A∗
�q′, �Rj

· �A�q, �Rj

]
, (17)

H(Q,2)
LM =

∑
j,�q,�q′

fQ(q)fQ(q′)
Q2

Qρ̄2
j

2M

[ �A∗
�q′, �Rj

�q′ · �q �A�q, �Rj

]
. (18)

The terms involving products between �A�q and ∇̄ �A�q are disre-
garded, as the expectation value 〈∑n �rn〉 = 0 vanishes. Also,
all nonquadratic terms, involving more than two dynamical
variables, are disregarded within this approximation.

A. Plasmonic nanoparticle crystals

We now apply the proposed quantum mechanical descrip-
tion of light-matter coupling with dipole and quadrupole
modes to a crystal of identical spherical nanoparticles placed
in a Bravais lattice. The position of a nanoparticle in the
crystal is determined by a lattice vector �R, and the index j
is dropped. The model can be trivially extended to crystals
with an arbitrary basis—see Supplemental Material for the
equations [32].

Following the work of Weick et al. [28] and Lamowski
et al. [17], we expand the plasmonic and photonic dynamical
variables into creation and annihilation operators defined in
reciprocal space for a periodic arrangement of particles. We
obtain the Hamiltonian for the plasmon-plasmon interaction
as

Hplpl =
∑
�q,ν,ν ′

h̄
√

ν̄ν̄ ′Sν̄,ν̄ ′
ν,ν ′ (�q)(b†

−�q,ν
+ b�q,ν )

× (b†
�q′,ν ′ + b−�q′,ν ′ ), (19)

where b �R,ν = 1/
√

Ncells
∑

�q b�q,ν exp(i �q · �R) is the annihilation
operator for multipole oscillations of the nanoparticle in the
unit cell defined by the lattice vector �R. ν̄ = D for ν = 1–3
which correspond to dipole modes while ν̄ = Q for the ν =
4–8 quadrupole modes. Ncells is the number of unit cells. The
structure function Sν̄,ν̄ ′

ν,ν ′ in Eq. (19) depends only on the Bravais
lattice; it is given by

SDD
ν,ν ′ (�q) =

∑
�R

1

2

δνν ′ − 3(êν · �n)(êν ′ · �n)

(R/R̄)3
exp(i �q · �R), (20)

when both ν and ν ′ correspond to dipole modes,

SQQ
ν,ν ′ (�q) =

∑
�R

1

6

{
35

(χν : n̂n̂)(χν ′ : n̂n̂)

(R/R̄)5

− 20
(χνχν ′ : n̂n̂)

(R/R̄)5
+ 2

(χν : χν ′ )

(R/R̄)5

}
exp(i �q · �R),

(21)

when both ν and ν ′ correspond to quadrupole modes, and

SDQ
ν,ν ′ (�q) =

∑
�R

1

2

[
−5

(
χν ′ :

n̂n̂

(R/R̄)4

)
(n̂ · êν )

+ 2

(
χν ′ :

n̂êν

(R/R̄)4

)]
exp(i �q · �R), (22)

when ν corresponds to a dipole mode and ν ′ corresponds to a
quadrupole mode. Here, âb̂ corresponds to dyadics formed by
the two unit vectors â and b̂. Also, n̂ = �R/R and R̄ = (Vuc)1/3,
with Vuc being the volume of the unit cell. The dipole-dipole
interaction does not converge for q → 0 in a filled three-
dimensional space [17,37]. For wave vectors below a cutoff
value qc, i.e., |q| < |qc|, the dipole-dipole structure func-
tion SDD is replaced by SDD

ν,ν ′ = −2π [δνν ′ − (êν · q̂)(êν ′ · q̂)]/3.
The value of qc that allows for a smooth dispersion relation
depends on the Bravais lattice and on the number of unit
cells considered. The plasmon-plasmon interaction Hamil-
tonian in Eq. (19) contains coupling factors ν̄ ; they are
given by

D = Q2
D

8πε0εmMωDVuc
(23)

and

Q = (QQρ̄ )2

8πε0εmMωQV 5/3
uc

, (24)

where εm is the dielectric constant of the surrounding medium,
which is assumed to be a positive constant.

We now turn to the interaction between plasmons and pho-
tons. The first-order part of the plasmon-photon coupling can
be written as

H(1)
plpt = ih̄

∑
�q, �G,λ,ν

ων̄ξ
ν

λ, �G(b†
−�q,ν

− b�q,ν )(c−�q− �G,λ + c†

�q+ �G,λ
),

(25)

where �G runs through the reciprocal lattice vectors for the
chosen lattice and is responsible for the Umklapp effects
( �G �= 0). We defined

ξν

λ, �G(�q) = fD(| �q + �G|)ξD
0 (�q)PD

ν,λ(�q + �G) (26)

for ν̄ = D, and

ξν

λ, �G(�q) = ifQ(| �q + �G|)| �q + �G|R̄ξ
Q
0 (�q)PQ

ν,λ(�q + �G) (27)

for ν̄ = Q, where

ξ ν̄
0 (�q) =

√
2πν̄

ωpt (�q)
(28)

and

PD
ν,λ(�q) = êν · êλ

PQ
ν,λ(�q) = 1

2 [χν : êqêλ + êλêq], (29)

with êλ being functions of �q, since for both values of λ the
vector potential is perpendicular to the wave vector �q.
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Finally, the second-order part of the plasmon-photon inter-
action is

H(2)
plpt = h̄

∑
�q,λ,λ′, �G, �G′

�λλ′
�G, �G′ (�q)(c†

−�q− �G′,λ′ + c�q+ �G′,λ′ )

× (c−�q− �G,λ + c†

�q+ �G,λ
), (30)

where

�λλ′
�G, �G′ (�q) =

∑
ν

ων̄ξ
ν∗
λ′ �G′ (�q)ξν

λ �G(�q). (31)

It is interesting to note that for each photon mode the second-
order photon coupling is obtained in terms of a sum involving
the matrix elements of the first-order interactions. In the
weak-coupling regime, this term can be obtained using the
Thomas-Reiche-Kuhn (TRK) sum rule and has the impor-
tant effect of balancing out the first-order term as q goes
to zero, thus preventing superradiant phase transitions [38].
Recently, a generalized sum rule was obtained for the strong-
coupling regime [39]. It is written in terms of the eigenstates
of the full Hamiltonian and cannot be directly applied to sim-
plify our calculations. However, the existence of such a rule
indicates that even in the strong-coupling regime, the second-
order terms perfectly balance out the first-order interactions
as �q → 0.

We also comment on how Umklapp processes contribute to
the plasmon-polariton formation. As the light-plasmon cou-
pling become large, photons with wave vectors beyond the
first Brillouin zone effectively couple to the plasmons in the
first Brillouin zone through Umklapp effects, although these
photons have a much larger energy. In addition, as the system
approaches the DSC regime, Umklapp effects contribute to the
second-order photon-photon interaction through the �G �= �G′
terms in Eq. (30). The second-order term also couples photon
modes with different polarizations λ and λ′, effectively mixing
these two otherwise independent photon states and opening
pathways for different types of chiral activity in strongly cou-
pled systems.

To calculate the polaritonic modes, we can follow the work
of Xiao [40], and define a Bogoliubov vector operator

��q =

⎛
⎜⎜⎝

b̄�q
c̄�q

b̄†
−�q

c̄†
−�q

⎞
⎟⎟⎠, (32)

where b̄�q and b̄†
�q are column vectors with each entry being

an operator corresponding to a different plasmonic mode ν. c̄�q
and c̄†

�q are column vectors with operators for each polarization

λ and each reciprocal lattice vector �G considered. The values
of �q are limited to the positive half of the Brillouin zone. ��q
obeys the following dynamical equation [40],

ih̄
d

dt
��q = D�q��q, (33)

with

D�q = h̄

(
ᾱ�q γ̄�q

−γ̄
†
�q −ᾱ�

�q

)
, (34)

where

ᾱ�q =
(

ω̄pl + ̄(S̄�q + S̄−�q ) ω̄pl ξ̄�q
ω̄pl ξ̄

†
�q ω̄

pt
�q + 2�̄�q

)
(35)

and

γ̄�q =
(

̄(S̄�q + S̄−�q ) ω̄pl ξ̄�q(�q)
−ω̄pl ξ̄

†
�q 2�̄�q

)
. (36)

Here, ω̄pl and ω̄pt are diagonal matrices with the energies of
each of the plasmonic modes ν of the metallic nanoparticle
and the photon modes (labeled by λ and �G) that are taken into
consideration. The matrix ̄ is given by ̄ = √

νν ′ , S̄�q is
given by Eqs. (20)–(22), ξ̄�q by Eqs. (26) and (27), and �̄�q by
Eq. (31). A detailed description of these matrices is given in
the Supplemental Material.

The dynamical matrix D�q is diagonalized by a Bogoliubov-
Valentin transformation T −1

�q D�qT�q, which leads to a new set of

creation and annihilation operators, �†
pp(�q) and �pp(�q), given

by �pp(�q) = T�q��q with eigenvalues h̄ωpp(�q) [40]. These op-
erators correspond to the creation and annihilation of mixed
excitations called plasmon polaritons which have properties
of both plasmons and photons [17]. The eigenvalues can be
associated with the plasmon-polariton dispersion. It should
be mentioned that the transformation matrices T�q mix terms
with both creation and annihilation operators of plasmons and
photons, giving rise to many of the phenomena expected in
the extreme regimes of light-matter coupling [22,23,25,26].

B. Quasistatic approximation

In this section we discuss the input parameters of our mi-
croscopic model. We want to calculate the plasmon-polariton
dispersions of plasmonic supercrystals and compare them to
experimental results as well as calculations performed with
other techniques. To do so, we need the frequencies of the
dipole ωD and quadrupole ωQ plasmon resonances in metallic
nanoparticles as well as their coupling factors D and Q.

The dipole and quadrupole frequencies are obtained within
the quasistatic approximation. We consider a Drude metal
with permittivity ε(ω) = εd − (ωp/ω)2, neglecting losses. ωp

is the plasma frequency of the metal and εd a dielectric con-
stant that accounts for the screening by bound charges [15].
This yields the frequencies [41,42]

ωD = ωp√
εd + 2εm

(37)

and

ωQ = ωp√
εd + (3/2)εm

. (38)

The coupling parameters are obtained by considering the
screened effective charges,

Ql = (2l + 1)εm

lε(ω) + (l + 1)εm
Q0

l , (39)

where l = 1 for dipole and l = 2 for quadrupole modes [43].
This leads to

D = 9εmωD

8π (εd + 2εm)
F (40)
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and

Q =
(

3

4π

)5/3 5εmωQ

12[εd + (3/2)εm]
F 5/3, (41)

where F = 4πρ3/3Vuc is the metal fill fraction, i.e., the frac-
tion of the unit cell volume that is filled by metal. The
expressions for D and Q allow a first estimate of the
importance of the dipole and quadrupole contributions to
the plasmon-polariton dispersion and light-matter coupling.
The quasistatic approximation is valid for small particles as
the dipole and quadrupole plasmon frequencies start to de-
crease with increasing nanoparticle radius, and the relative
contributions of the higher-order multipoles to scattering and
absorption become more relevant. The approximation applies
for gold and silver nanoparticles up to ρ ∼ 50 nm [41]. For
larger particles, the plasmon frequencies and effective charges
must be calculated using a more detailed model or be taken
as fitting parameters to the model and the contribution from
higher-order multipoles should be considered [44].

Within this quasistatic approximation, the ratio between
the quadrupole and dipole coupling factors,

Q

D
= 5

18

(
3

4π

)2/3(
εd + 2εm

εd + (3/2)εm

)3/2

F 2/3, (42)

scales with F 2/3. The prefactor ranges from ∼0.10 for εd 
εm to ∼0.16 for εm  εd . In simple crystals (Bravais lattices)
of spherical nanoparticles F � 0.74, with the largest packing
density for fcc and hcp lattices. The quadrupole-quadrupole
(QQ) interaction is in this case limited to about 13% of
the dipole-dipole (DD) interaction and the dipole-quadrupole
(DQ) interaction to 36%. Especially for smaller packing frac-
tions the dipole-derived terms are expected to dominate the
polariton dispersion, but we expect important contributions
of the quadrupole terms for high packing. Even larger metal
fill fractions may be obtained with nonspherical nanoparticles
and in supercrystals with more than one nanoparticle per unit
cell [1,5]. The QQ and DQ coupling terms are much weaker
than the DD interaction. Even for large filling, we expect
the dipole and quadrupole excitations of the nanoparticles
to dominate the supercrystal optical response. Higher-order
multipoles will not strongly affect the results obtained with
this model even as filling reaches its maximum (gapless super-
crystals). The main limitation of our model with increasing the
filling factor stems from the fact that we neglect the charge ex-
change between the particles. Our model is therefore limited
to interparticle gaps on the order of 1 nm, depending on the
dielectric properties of the surrounding medium [45].

The Rabi frequency associated to the interaction of light
with the dipole and quadrupole plasmons can be esti-
mated as �ν

R = ων̄ξ
ν
0 (ων̄/c), where ν̄ = D, Q for dipoles and

quadrupoles, respectively. Within the quasistatic approxima-
tion we obtain the explicit expressions

�D
R = ωD

√
3F0

4

(
3εm

εd + 2εm

)
f 1/2 (43)

and

�
Q
R = ωQ

√
π

3

(
3F0

4π

)5/3( 5εm

2εd + 3εm

)
f 5/6, (44)

where we define the fill factor f = F/F0 and F0 is the max-
imum fill fraction for a given lattice. For an fcc supercrystal
the Rabi frequencies are limited to �D

R = 0.91ωD and �
Q
R =

0.31ωQ, which is obtained by setting εm  εd , f = 1, and
F0 = 0.74 in Eqs. (43) and (44). This places the Rabi frequen-
cies on the order of eV for high packing densities, in excellent
agreement with our recent experimental results [6].

C. Validating the model

Before discussing and analyzing the band structure and
properties of plasmon polaritons, we demonstrate the valid-
ity of our model by comparing it to FDTD simulations. We
first describe the parameters used in both simulations. We
considered an fcc nanoparticle crystal and the high-symmetry
�L and �K directions. The nanoparticle diameters were
d = 50 nm with an interparticle (center to center) distance
of a = 65 nm, which yields a metal fill factor f = 0.46.
The calculations were done with the Drude model using a
plasma frequency h̄ωp = 9 eV and εd = 1. The nanoparticles
were placed in vacuum (εm = 1). According to the quasistatic
approximation, the dipole plasmon of the isolated nanoparti-
cle has energy h̄ωD = 9/

√
3 ∼ 5.19 eV and the quadrupole

plasmon is at h̄ωQ ∼ 5.69 eV. We note that this choice of
parameters places the nanoparticle dipole plasmon at about
the middle of the energy range spanned by the photons within
the first Brillouin zone of the crystal. We argue that this is an
appropriate condition to verify the validity of the model. Real
metallic nanoparticles will have different plasma frequencies
and effective dielectric constants that lead to lower dipole and
quadrupole plasmon energies. Therefore, the lattice param-
eters for which the above condition is fulfilled will depend
on the choice of nanoparticle supercrystal. For instance, for
gold nanoparticles, the dipole plasmon energy is ∼2.3 eV. An
average photon energy of ∼2.3 eV requires a gold nanoparti-
cle supercrystal with a lattice constant ∼150 nm. We should
also stress that the dipole and quadrupole coupling constants
depend on the effective dielectric constants εd and εm.

For the microscopic quantum calculation we considered
Umklapp processes with �G within up to six Brillouin zones.
Plasmon-polariton energy differences of up to 10% were ob-
tained for some of the modes if Umklapp processes were
neglected (see Fig. S1 for details). The lattice vector sum-
mation in real space for calculating SDD was performed for
| �R| below a cutoff radius RD = 60R̄. For SDQ and SQQ a
cutoff radius of RQ = 7R̄ sufficed to achieve full conver-
gence. This reflects the fact that the dipole-quadrupole and
quadrupole-quadrupole interactions fall off faster with dis-
tance than dipole-dipole coupling. A cutoff wave vector qc =
0.3π/a was used for the lattice sums. These parameters were
used throughout the paper, unless otherwise stated.

The FDTD simulations were done with the commercial
software package Lumerical FDTD Solutions. We constructed
the unit cell of an fcc crystal that is composed of spherical
nanoparticles. The simulation geometry is described in detail
in the Supplemental Material, Fig. S2 [32]. The nanoparticles
were assigned the dielectric function ε(ω) = εd − ω2

p/(ω2 −
iγω) with a loss rate h̄γ = 65 meV (see above for the other
parameters). We used a mesh size of 1 nm to discretize space.
To calculate the polariton dispersion we used local emitters

035403-6



PLASMON POLARITONS IN NANOPARTICLE … PHYSICAL REVIEW B 104, 035403 (2021)

FIG. 1. Polariton band structure of an fcc crystal of spherical
nanoparticles along the (a) �L and (b) �K high-symmetry directions.
Solid lines were calculated with the microscopic quantum model.
The color map shows the magnitude (in log scale) of the normal-
ized electric field obtained from FDTD simulations as a function of
energy and momentum. h̄ωp = 9 eV, εm = εd = 1, a = 65 nm, and
f = 0.46.

and point monitors inside the crystal [46]. The point dipoles
radiated light along the [111] (�L) or [110] (�K) direction. To
avoid artifacts from the discretized boundaries of the nanopar-
ticles we placed the point dipoles and monitors at a single
lattice site that was far away from the metal (see Fig. S2). A
0.7 fs light pulse was injected and the electric field recorded
in the time interval from 10 to 50 fs by the point monitor. To
avoid the detection of the electric field from the light sources
we excluded the time interval from 0 to 10 fs with a Gaussian
apodization filter. The frequency-dependent electric field was
then obtained by a Fourier transformation. We used Bloch
periodic boundary conditions to choose a specific wave vector.
By running a sweep of simulations for different wave vectors
we obtained the polaritonic band structure.

Figure 1 compares the band structure obtained with FDTD
and the microscopic model. The background of the figure is a
color map of the integrated intensity of the electric field as
a function of ω and q, which corresponds to the polariton
dispersion predicted by the FDTD simulations. The black
lines show the plasmon-polariton dispersion calculated with
the microscopic quantum model. Our model reproduces the
FDTD dispersion very well. The far-field response of the
supercrystal is dominated by the two dipole-derived bands
[6]. These are the bands with the lowest and highest energy
in Fig. 1, which are excellently described by the quantum
mechanical model. Along the �L direction [Fig. 1(a)], the
quadrupole bands between the two dipole-derived states agree
also between FDTD and the microscopic model. The FDTD
simulation appears to contain more states, which originate
from hexapole eigenmodes of the nanoparticles or artifacts
of the simulation. The �K direction [Fig. 1(b)] is the high-
symmetry direction of the fcc lattice that is most strongly
affected by the quadrupole modes. As discussed below,
the dipole-only model strongly overestimates the energy of
the lowest lying polariton band near the K point, whereas

the inclusion of the quadrupole modes results in reasonable
agreement with the FDTD results.

The two FDTD simulations shown in Fig. 1 took several
hours each, whereas the microscopic quantum mechanical
band structure was obtained in seconds. Our model allows a
rapid screening of many supercrystal structures, fill factors,
nanoparticle shapes, and so forth. Its true strength, however,
goes beyond its computational capability: The microscopic
model allows an in-depth study of the origin of the plasmon-
polariton band structure and its properties, as we will show in
the following section.

III. RESULTS AND DISCUSSION

We modeled the plasmon-polariton band structure of fcc
nanoparticle supercrystals using our microscopic model. With
the simulations we can explain the contribution of the interac-
tion between the nanoparticles and with the electromagnetic
modes to the final polariton states. We are able to extract
the coupling and mixing of dipole- and quadrupole-derived
states in this particular Bravais lattice. Finally, we show how
to extract the dipolar, quadrupolar, and photonic contribution
to each polariton state. The results impressively reproduce
the decoupling of light and matter in the USC and DSC
regime [6,24].

A. Collective plasmon modes

We model the optical properties of plasmonic nanoparticle
supercrystals in a step-by-step approach. We start with the
interaction between the dipole and quadrupole states of differ-
ent nanoparticles that gives rise to collective plasmon modes.
This initial plasmonic band structure omits the coupling to
electromagnetic states [6,17,28]. Including the photons will
later create the supercrystal plasmon polaritons.

In Fig. 2 we show the plasmonic band structure of an fcc
crystal considering both dipole and quadrupole nanoparticle
excitations. In each panel we also show the band structures
for the dipole (blue) and quadrupole (red) modes when turning
off the interaction between the dipole and quadrupole states.
For the lowest fill factor f = 0.06 in Fig. 2(a) the dipole
and quadrupole states do not cross and are largely decoupled,
as can be seen by the agreement between the black and the
blue/red lines. The lowest plasmonic state at the � point
[∼5.1 eV in Fig. 2(a)] is a twofold degenerate dipole-induced
state [17]. It remains degenerate along the �X and �L di-
rections but splits along �K . These two bands are associated
with transverse oscillations of the plasmons, i.e., the electrons
oscillate perpendicular to the propagation direction. The up-
permost dipole-induced band [∼5.4 eV at � in Fig. 2(a)] is
a longitudinal oscillation that does not couple directly with
light.

The quadrupole states are constant across the Brillouin
zone for f = 0.06, but become dispersive for the larger
fill factors f = 0.31 [Fig. 2(b)] and 0.90 [Fig. 2(c)]. The
quadrupole states consist of five bands that are two- and
threefold degenerate at the � point [for example, at 5.62 and
5.75 eV in Fig. 2(c)]. Along the �L direction the threefold
degenerate state splits into a twofold and a nondegenerate
band, while the lower branch remains twofold degenerate.
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FIG. 2. Collective plasmon dispersion along the high-symmetry directions of an fcc lattice for fill factors (a) f = 0.06, (b) 0.31, and
(c) 0.90. The blue (red) lines are induced by the dipole (quadrupole) plasmons of the nanoparticles neglecting dipole-quadrupole interactions.
The black lines are a full calculation including dipole and quadrupole modes and their interaction. The insets show a sketch of the supercrystal
structure for each configuration. h̄ωp = 9 eV, εm = εd = 1, and a = 62 nm.

Along the high-symmetry lines the bands split and cross, but
overall the quadrupole dispersion is much narrower (0.3 eV
for f = 0.9) than the dispersion of the dipole bands (5 eV
for f = 0.9). The reason is that the dipole-dipole coupling is
much stronger than the quadrupole-quadrupole coupling, with
a ratio of D/Q ∼ 13.

The dispersion of the dipole-derived plasmon band in-
creases rapidly with the metal fill fraction (Fig. 2). For f >

0.1 the dipole band crosses the energy of the quadrupole
states. The two types of bands overlap and the dipole-
quadrupole interaction strongly affects the plasmonic disper-
sion. The magnitude of this interaction can be qualitatively
evaluated by observing the differences between the black lines
(including the DQ interaction) and the blue and red lines
in Fig. 2. For f = 0.31 and 0.90 the differences are very
pronounced, especially in the �K and the XW L directions.
This is in contrast with the results for f = 0.06 [Fig. 2(a)],
where the black and blue/red lines are identical throughout
the Brillouin zone.

The dipole-quadrupole mixing depends on the symme-
try of the plasmonic bands. For example, along the �L
direction the states remain unchanged by the coupling, in-
dicating that dipole and quadrupole modes cannot couple in
this high-symmetry direction. This explains why the dipole
approximation worked very well for analyzing the optical
spectra of gold nanoparticle supercrystals where the light
propagated normal to the (111) surface [6] (see the discussion
further below). In contrast, DQ coupling is allowed along the
�K and the XW L high-symmetry lines. The mixing prevents
the crossing of the transverse and longitudinal dipole-derived
bands at W and close to K (see Fig. 2). Dipole-quadrupole
coupling also reduces the splitting of the transverse states.
For the �K direction, two out of the five quadrupole bands
are strongly mixed with the dipole modes, while the other

three remain practically unchanged. We also note that the
lowest transverse dipole bands are less affected by the dipole-
quadrupole coupling, because of the larger energy difference
between the states.

B. Plasmon polaritons

After having examined the bare plasmon bands, we in-
clude the coupling to free-space photons and calculate the
plasmon-polariton dispersion. The polaritons are coupled
electronic and electromagnetic eigenstates of the nanoparticle
supercrystals [6,17,31,47]. In experiments with gold nanopar-
ticle supercrystals these excitations determined the optical
response for energies below the interband transitions [6].
Figures 3(a)–3(c) show the plasmon-polariton bands obtained
by including the plasmon-photon interaction, considering
Umklapp processes up to the sixth Brillouin zone (nBZ = 6).
To allow for a comparison, we also show as dashed lines the
bare plasmon (black) and photon (yellow) energies. For the
smallest fill factor ( f = 0.06), the light-matter interaction is
determined mainly by the dipole excitations. The coupling
of the transverse dipole bands and photons gives rise to a
pronounced level anticrossing, resulting in plasmon-polariton
bands with a dispersion Epp that is very different from the
uncoupled states [6,17,31,47]. We observe two nearly degen-
erate parabolic bands centered at the � point, which we will
refer to as the upper plasmon polariton (UPP), and two lower
bands, the lower plasmon polaritons (LPPs). The LPPs start
off as linear bands with vanishing energy at the � point. They
bend down and become almost flat at the zone edges. The
quadrupole bands remain flat over the entire Brillouin zone
in Fig. 3(a), because the interaction with light is negligible at
this metal fill fraction. The longitudinal dipole-derived bands
do not couple with light and their polariton dispersion remains
unchanged compared to the bare plasmons.
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FIG. 3. Plasmon-polariton dispersion along the high-symmetry directions of an fcc crystal with metal fill factors (a) f = 0.06, (b) 0.31,
and (c) 0.90. Black lines are calculated including all terms and interactions, while green dashed lines show the dispersion of the bare plasmons.
Yellow dashed lines show the bare photon dispersion. The insets show a sketch of the supercrystal structure for each configuration. h̄ωp = 9 eV,
εm = εd = 1, and a = 62 nm.

With increasing metal fill factor quadrupole modes mix
with the dipole plasmons and the photons, resulting in six
intermediate plasmon polaritons (IPPs) [Figs. 3(b) and 3(c)].
This occurs because the coupling between the plasmon and
between plasmons and photons increases with metal fill
fraction. The topmost IPP band corresponds mainly to the
longitudinal dipole-derived band that does not couple directly
with light and only weakly with the quadrupole modes. The
five other bands are mainly composed of quadrupolelike os-
cillations which are downshifted by their interaction with the
electromagnetic field. This downshift is different for each
of the bands, effectively increasing the bandwidth of IPPs.
For instance, for f = 0.90, the energy difference between the
lower and upper quadrupole-derived plasmon polaritons at the
X point is ∼1.3 eV. This is more than four times larger than
the width obtained for the plasmon bands without coupling to
photons, 0.3 eV (see the dashed lines).

The UPP and LPP bands in the �L direction are de-
rived from the dipole modes without quadrupole mixing,
due to the absence of a dipole-quadrupole interaction along
this high-symmetry direction. This explains why the polari-
ton band structure observed along the [111] direction of
gold nanoparticle supercrystals was excellently described by
a single-band Hopfield model and microscopic calculations
within the dipole approximation [6]. The situation is different
along the �K and the XW L directions, for which the dipole-
quadrupole coupling is strong, as seen in Fig. 2. Along these
directions, the dipole-quadrupole and the light-quadrupole in-
teractions lead to an anticrossing between the quadrupole and
dipole bands, thus effectively pushing down the topmost LPP.
This result shows that a complete and accurate description
of metallic supercrystals requires that quadrupole modes and
Umklapp processes (see Supplemental Material) are included
in the model [32]. The strong dependence of the coupling on
the direction in the Brillouin zone points towards symmetry-

based selection rules for dipole-quadrupole and light-matter
coupling, which would be interesting to study for various
crystal symmetries.

We now examine the coupling and level anticrossing of
the dipole and quadrupole modes and the photons in greater
detail. In Fig. 4(a) we show the energies of the bare plasmon
and photon bands at q = 0.17 �K as a function of the metal
fill factor and in Fig. 4(b) the corresponding energies of the
plasmon-polariton bands. The colors indicate the magnitude
of the contribution of dipole (blue) and quadrupole (red)
modes and photons (yellow) to the states according to the
color code triangle in Fig. 4(a). Without light-matter cou-
pling, the longitudinal dipole-derived plasmon modes [blue
lines in Fig. 4(a)] upshift almost linearly with filling, while
the quadrupole energies remain nearly constant. At f ∼ 0.12,
the energies of the two sets of bands cross. For one of the
quadrupole modes, the interaction with the longitudinal dipole
band causes an avoided crossing with a gap on the order
of 0.01 eV [see the enlarged panel in Fig. 4(c)]. The other
quadrupole and dipole bands are only weakly affected by the
DQ interaction.

Without light-matter coupling the photon energy remains
at E = 2.6 eV, independent of filling. When light-matter
coupling is “turned on,” plasmon polaritons form. The UPP
band is mainly composed of transverse dipole-derived plas-
mon states at 0.17 �K and for vanishing metal content f ∼
0. With increasing filling the UPPs become more photon-
like (yellow color); at the same time, their energy increases
in parallel with the longitudinal dipole mode (blue) that
does not interact with light. The LPP shifts to smaller ener-
gies with increasing f and obtains a strong dipole plasmon
contribution.

The spectral range of the anticrossing of the UPPs
and the quadrupole bands is shown at a higher mag-
nification in Fig. 4(d). Along the �K direction, dipole
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FIG. 4. Energies of (a) the bare plasmon and photon states and of (b) the plasmon-polariton states for q = 0.17 �K . The coloring indicates
the dipole, quadrupole, and photon contribution to each state—see the inset in (a). (c) and (d) show zoomed images of the rectangular areas in
(a) and (b), respectively.

plasmons, quadrupole plasmons, and photons all mix into
polariton states. As the polarization dependences of the light-
quadrupole and light-dipole interactions are different, we
expect cross-polarized absorption and chiral activity, which
will be studied in a future work. As the fill factor increases
further, the UPP bands become increasingly photonlike and
their interaction with the quadrupole modes causes the latter
to downshift in energy, thus increasing the overall bandwidth
of the quadrupole modes.

C. Normalized coupling strength

The normalized coupling strength η = �R/ω0 compares
the Rabi frequency �R to the bare frequency ω0 of the system.
�R can be found from the minimum energy splitting between
the LPP and UPP bands (divided by two) and ω0 from a
calculation of the bare plasmon dispersion [21–23]. The nor-
malized coupling strength can be used as a figure of merit
for determining whether a given excitation of the system is in
the ultrastrong- or deep strong-coupling regimes [22,23]. For
η < 0.1 the system is considered to be in the either the weak-
or the strong-coupling regime, depending on the ratio between
�R and the losses of the system. For 0.1 < η < 1 the system
is in the ultrastrong-coupling regime, while the deep strong
coupling is reached for η > 1. In this section we derive a
closed expression for η as a function of our model parameters.
It will facilitate choosing a nanoparticle supercrystal for a
desired coupling. We will show that a wide range of USC and
DSC light-matter interactions can be realized in plasmonic
supercrystals.

The bare plasmon energies without coupling to the electro-
magnetic states depend on the plasmon coupling factors ν̄

(ν̄ = D, Q) defined in Eqs. (40) and (41). The energies are
well described by [6]

Epl,ν (�q) = h̄ων̄

√
1 + sν, f (q)ν̄, (45)

where sν, f (q) incorporates the effects of the lattice; it depends
only weakly on f . sν, f (q) measures the enhancement of the
effective plasmon-plasmon coupling due to the crystalline
structure. This value can be calculated numerically for each
of the plasmon bands at any given q [5]. However, as we are
interested in an effective expression, we use a different ap-
proach and fit the energy of the lowest lying D and Q bands at
the � and X points, respectively. These are the wave vectors of
the largest bandwidths of the dipole- and quadrupole-derived
bands, which give us an overall measure for plasmon-plasmon
coupling. Figure 5(a) shows the energies of the upper and
lower dipole and quadrupole bands at the � and X point.
These are fitted to Eq. (45) and the fitting parameters are
shown in Table I.

FIG. 5. (a) Energies of the upper and lower dipole (blue symbols)
and quadrupole (red symbols) plasmon bands for different values of
f of an fcc crystal. The dipole (quadrupole) energies are evaluated at
the � (X ) point. Red and blue lines are fits to the data points, using
Eq. (45) (see Table I). (b) Normalized coupling strength ηt of the
transverse dipole-derived plasmon band for the �L (squares), �X
(triangles), and �K (dots) high-symmetry directions. Blue and red
lines are coupling strengths predicted with Eq. (46) for the dipole
and quadrupole modes, respectively.
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TABLE I. Fit parameters for the upper and lower dipole and
quadrupolar states at q = � and X , respectively. Calculated results
were fitted to Eq. (46) with su,l

ν as a free parameter.

Label q Value

Upper dipole su
D � 16.5

Lower dipole sl
D � −8.3

Upper quadrupole su
Q X 14

Lower quadrupole sl
Q X −7

We now use the Rabi frequencies and dipole and
quadrupole coupling strengths in Eqs. (43) and (44) and com-
bine them with the plasmon energy in Eq. (46). We find a
compact expression for the maximum reduced coupling

ην =
√

2πν̄(
1 + s̄l

νν̄

) , (46)

where sl
ν are the fitting parameters for the lowest-energy

dipole and quadrupole bands at the chosen points (see Table I).
For a single plasmonic state η can be found from Eq. (46).
A more general expression is necessary for mixed dipole
and quadrupole bands. As we are mainly interested in the
maximum normalized coupling strength, we will focus on the
coupling to the lowest-energy dipole- and quadrupole-derived
bands. The solid lines in Fig. 5(b) show the dependence of
the reduced dipole and quadrupole coupling in Eq. (46) on the
fill factor. The symbols are the reduced coupling strengths of
the transverse dipole-derived bands ηt = �EUL/(2Et

pl,D) from
a microscopic quantum calculation evaluated at the crossing
|q0| ∼ Et

pl,D/h̄c of the bare dipole plasmon and the photon
dispersion along �L, �X , and �K . Et

pl,D is the energy of the
transverse dipole-induced plasmon and �EUL ∼ EUPP(q0) −
ELPP(q0) is the energy difference between the upper and
lower plasmon polariton branches. The normalized coupling
strengths obtained for the different directions correspond well
with the value obtained by the expression for the dipole cou-
pling strentgh η ∼ ηD. The fact that this is true even for the
�K direction indicates that the quadrupole contribution to
the coupling strength of the transverse dipole is negligible.
Furthermore, it shows that Eq. (46), with the parameters in
Table I, can be used to estimate the maximum coupling
strength in fcc supercrystals. With this, for a metal fill factor
of 3%, the maximum coupling strength is on the order of
η = 0.13, and therefore already in the USC regime (η > 0.1),
while the DSC regime is reached for fill factors above 80%
[Fig. 5(b)].

D. Decoupling of light and matter in the USC and DSC regimes

A fascinating signature of ultrastrong and deep strong cou-
pling is the decoupling of light and matter in space and in
frequency that leads to a breakdown of the Purcell effect [24].
The Purcell effect describes the increase in radiative damp-
ing with increasing light-matter coupling [48]. In the weak-
and strong-coupling regimes (η � 1) the radiative damping
scales with η2. De Liberato [24] predicted that the Purcell
effect saturates around η ∼ 0.5 and radiative damping de-

creases for higher values of η. Mueller et al. [6] demonstrated
the breakdown of the Purcell effect in plasmonic supercrys-
tals for η > 1. Although this breakdown can be described
classically [24], the microscopic quantum description of the
plasmon polaritons allows us to directly observe the decou-
pling with increasing fill fraction, i.e., increasing light-matter
coupling.

We use the transformation matrix T�q introduced in Sec. II A
to decompose the plasmon-polariton states into the bare dipole
and quadrupole plasmonic and the photonic components. In
Fig. 6 we show the plasmon-polariton states decomposed into
dipole plasmons, quadrupole plasmons, and photons for three
fill factors. For small filling f = 0.06 the plasmonic charac-
ters are mainly localized in the energy regions of the dipole
and quadrupole plasmon bands. The bands with linear disper-
sion are photonic in character. There is no mixing between the
dipole and quadrupole states as expected from our discussion
of the bare plasmon dispersion. The dipole plasmon and the
photon mix slightly at their crossing, so that the linear bands
show a small dipole-plasmon character while the flat band at
about 5.19 eV shows a weak photonic character.

With increasing f the mixing between the three states
becomes more apparent. For f = 0.31 the dipole plasmonic
character of the linearly dispersive bands is very pronounced.
We also see a non-negligible mixing between the dipole and
quadrupole states as well as the quadrupole modes and pho-
tons. Peaks related to quadrupole modes should start to appear
in the absorption spectra and affect the overall dispersion of
the polaritons. The top plasmon-polariton bands acquire a
finite mass, because they are composed of photons, dipole
plasmons, and even a small contribution from quadrupole
modes. Finally, the distribution of the plasmon and photon
states becomes asymmetric for lower and upper polaritons:
While the low-energy states have a stronger plasmonic com-
ponent, the upper polaritons are photonic in character.

For the high metal fill factor f = 0.9, the linear bands
starting at zero energy are almost entirely composed of
dipole states, having only weak photonic and quadrupole
plasmonic character. The weakly dispersive bands in the gap
between UPP and LPP remain strongly plasmonic in na-
ture and are predominantly composed of quadrupole modes,
but the states become mixed with photons and with dipole
plasmons. This indicates that they should be accessible op-
tically. The UPP branches developed into a pair of massive
bands mainly composed of photons. Overall, it is striking
that there is little overlap between the three different types
of quasiparticles, which is a manifestation of the light-matter
decoupling in the DSC regime [6,24]. Indeed, the distribution
of states for highest filling resembles the low-filling case:
Each component—dipole, quadrupole, and photon—is con-
centrated in a portion of the polariton dispersion with little
contribution to the other states.

The quantum model proposed here gives insight into the
nature of the plasmon-polariton states in addition to its ex-
cellent description of the plasmon-polariton band structure.
In the future, it may be applied to calculate quantum-related
properties such as the squeezing of plasmons and photons,
the population of the supercrystal ground state with photons
and plasmons, and correlation functions of the bare excitations
[22,23,25,26,49].
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FIG. 6. Decomposition of the plasmon-polariton bands into their dipole (blue), quadrupole (red), and photon (yellow) contributions for fill
factors (a) f = 0.06, (b) 0.31, and (c) 0.90. The size of the data points shows the magnitude of the relative contributions of each of these bare
excitations to the plasmon-polariton bands.

IV. CONCLUSIONS

In conclusion, we proposed a microscopic model to cal-
culate plasmon polaritons in nanoparticle supercrystals. Our
model includes the dipole and quadrupole modes of the
nanoparticle building blocks and their coupling to photons.
We show that the mixing of the dipole and quadrupole-derived
states is important for calculating the collective plasmon and
plasmon-polariton sates. The microscopic quantum model
leads to a closed expression for the reduced light-matter
coupling strength of the dipole and quadrupole modes. The
dipole-derived states of fcc nanoparticle supercrystals are in
the ultrastrong-coupling regime for all realistic fill factors
and enter deep strong coupling for fill factors larger than 0.8
(assuming vacuum between the nanoparticles in the crystal).
The quantum-based calculations give insight into the unique

properties of strongly coupled systems as we show for the
example of light-matter decoupling in the DSC regime. The
model can be applied for different lattice structures including
lattices with more than one particle in the basis. It will con-
tribute to the study and optimization of the many supercrystal
structures currently being developed.
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