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Friedel oscillations in graphene gapped by breaking P and T symmetries: Topological and
geometrical signatures of electronic structure
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The measurement of Friedel oscillations (FOs) is conventionally used to recover the energy dispersion of
electronic structure. Besides the energy dispersion, the modern electronic structure also embodies other key
ingredients such as the geometrical and topological properties; it is one promising direction to explore the poten-
tial of FOs for the relevant measurement. Here, we present a comprehensive study of FOs in substrate-supported
graphene under off-resonant circularly polarized light, in which a valley-contrasting feature and topological
phase transition occur due to the combined breaking of inversion (P) and time reversal (T ) symmetries.
Depending on the position of the Fermi level, FOs may be contributed by electronic backscattering in one single
valley or two valleys. In the single-valley regime, the oscillation periods of FOs can be used to determine the
topological phase boundary of electronic structure, while the amplitudes of FOs distinguish trivial insulators
and topological insulators in a quantitative way. In the two-valley regime, the unequal Fermi surfaces lead to a
beating pattern (robust two-wave-front dislocations) of FOs contributed by intravalley (intervalley) scattering.
This study implies the great potential of FOs in characterizing topological and geometrical properties of the
electronic structure of two-dimensional materials.
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I. INTRODUCTION

Friedel oscillations (FOs) represent the basic interference
phenomenon of electronic waves when they are scattered by
unintentional or intentional imperfection in crystalline mate-
rials [1]. FOs are determined by the electronic backscattering
on the Fermi surface, then are used as a conventional tool
to reconstruct the energy dispersion of the electronic struc-
ture by performing the energy-resolved scanning tunneling
microscopy (STM) measurement [2,3]. Besides the energy
dispersion, the geometrical and topological properties further
enrich the modern electronic structure; their possible mea-
surement by FOs has become one promising topic.

Graphene has been studied for nearly two decades since
its seminal discovery [4]. However, the unique lattice and
electronic structure make graphene the model system for the
exploration of various interesting phenomena [5]. Among
these phenomena, FOs have attracted wide theoretical [6–18]
and experimental [19–23] interest since one can intentionally
introduce a single-atom vacancy on sublattice site A or B
in the present experimental conditions [23]. In particular, by
counting the wave-front dislocations of FOs, two recent exper-
iments [24,25] realized the measurement of the geometrical
nature of the wave functions, namely, the Berry phase [26]. It
underlies a lot of exotic phenomena such as Klein tunneling
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[27,28] and the index shift of the quantum Hall effect in
graphene [29–31] and is regarded as another key ingredient of
the electronic structure [32,33]. The successful measurement
of the geometrical Berry phase [24,25] without applying the
magnetic field as usual [28–30,32] encourages us to explore
the potential of FOs to identify the topology of the electronic
structure.

Graphene can be made topological by using external meth-
ods; the key is the gap opening, which also dictates a lot
of novel physics [34,35] and potential applications [36]. The
usual ways to open the gap of graphene can be classified
into two mechanisms, i.e., inversion symmetry (P) breaking
and time reversal symmetry (T ) breaking. In experiments and
devices, graphene is usually placed on a specific substrate,
i.e., substrate-supported graphene, in which proximity cou-
pling effectively breaks P of graphene and then induces gap
opening [37]. The Floquet engineering, namely, the control
of the electronic structure using periodic driving, provides
the other popular T -breaking mechanism for gap opening
[38], e.g., illuminating graphene by using off-resonant circu-
larly polarized light [39]. The substrate-supported graphene
under off-resonant circularly polarized light hosts a valley-
contrasting feature and topological phase transition even
without spin-orbit coupling [40], which provides an ideal
platform to study the potential of FOs to characterize the topo-
logical and geometrical properties of the electronic structure.

One recent experiment [41] probed the band topology of
a one-dimensional photonic insulator through the wave-front
dislocations of FOs using the celebrated Su-Schrieffer-Heeger
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FIG. 1. Schematic measurement of vacancy-induced electronic
Friedel oscillations by STM in substrate-supported graphene under
off-resonant circularly polarized light. The honeycomb lattice of
graphene with two inequivalent sublattice A and B is colored black,
while the substrate is gray. The vacancy is represented by the green
dot at the origin of the coordinate system. The substrate-supported
graphene is radiated by the light from above (the red wavy lines).
And the Brillouin zone in reciprocal space is shown in the inset, in
which there are two inequivalent valleys, K and K′.

model [42] as one example. In this study, we study FOs
in substrate-supported graphene under off-resonant circularly
polarized light. Depending on the position of the Fermi level,
FOs may be contributed by the electronic scattering in one
single valley or two valleys. In the single-valley regime, the
oscillation periods of FOs trace the evolution of the electronic
structure and then signify the topological phase boundary,
while the amplitudes of FOs straightforwardly distinguish
trivial insulators and topological insulators in a quantitative
way without resorting to the edge states as in angle-resolved
photoemission spectroscopy [43] and transport measurement
[44]. In the two-valley regime, the unequal Fermi surfaces
lead to the beating pattern of FOs contributed by intraval-
ley scattering, and the robust two-wave-front dislocations of
FOs are contributed by the intervalley scattering due to the
energy-independent pseudospin texture. Therefore, beyond
the conventional ability of FOs to recover energy dispersion„
this study shows the great potential of FOs in identifying
the topological and geometrical properties of the electronic
structure in two-dimensional materials.

The rest of this study is organized as follows. In Sec. II, we
introduce the model structure and the T -matrix approach to
describe the electronic scattering by one intentional vacancy.
In Sec. III, we present our numerical calculations to show the
unique features of the FOs in the single-valley and two-valley
regimes and identify the signatures of the topological and
geometrical properties of electronic structure by using the
analytical formulas. Finally, we briefly summarize this study
in Sec. IV.

II. THEORETICAL FORMALISM

Figure 1 illustrates the schematic model structure in this
study; it shows the substrate-supported graphene under off-
resonant circularly polarized light and can be described by the

effective Hamiltonian (see the Appendix)

Hξ = vF (ξσxkx − σyky) + (� − ξF )σz (1)

by using the sublattice basis of {A, B}, where ξ = ± repre-
sents two inequivalent valleys, K and K′, in graphene, e.g.,
K = ( 2π

3 , 2π

3
√

3
) and K′ = ( 2π

3 ,− 2π

3
√

3
), as shown in the inset

of Fig. 1, and σx,y,z is the Pauli matrix acting on the pseu-
dospin space. Hξ includes two gap terms induced by the
P-breaking and T -breaking mechanisms, �σz and ξFσz (see
the Appendix for its derivation), which are very different in
the sense of their independence and dependence on the valley
index ξ . In addition, vF is the Fermi velocity of graphene
[45]. The energy dispersion and the spinor wave function are,
respectively,

Eλ(k) = λvF

√
κ2

ξ + k2 (2)

and

ψλ,k = 1√
1 + k2/(qλ + κξ )2

[
1

ξkx−iky

qλ+κξ

]
. (3)

For convenience, we define the reduced quantities κξ = (� −
ξF )/vF and qλ = Eλ/vF , with λ = ±1, for the conduction
and valence bands. Due to the combined effect of gap opening
induced by breakingP and T , graphene can realize the valley-
contrasting feature and topological phase transition even
without the spin-orbit coupling [40]. The valley-contrasting
and topological physics will bring new features to FOs in-
duced by the intentional introduction of a single-atom vacancy
on an arbitrary sublattice site of graphene [23], e.g., on sublat-
tice A, as shown by the green dot in Fig. 1. And the physics is
essentially the same for the other vacancy configuration [46].
One can use STM to measure the corresponding change in
the space-resolved and energy-resolved local density of states
(LDOS) [17,47]:

δρ(R, ε) = − 1

π
Im [Tr δG(R, R, ε)], (4)

where

δG = G − G0 = G0(R2, 0, ε)T(ε)G0(0, R1, ε) (5)

represents the change in the total Green’s function (GF) G
incorporating the effect of the vacancy relevant to the un-
perturbed GF G0 of the host system. Due to the translation
invariance of the host system, the position arguments of G0

can be abbreviated by R = R2 − R1 as used below. Equations
(4) and (5) together show a clear physical meaning; that is,
the STM tip at R emits the electron wave, as shown by the
GF G0(0, R, ε), leading to scattering by the vacancy at 0 back
to the STM tip, as shown by the GF G0(R, 0, ε). Here, we
use the T -matrix approach to describe the effect of a vacancy
whose potential is simulated by V0δ(r). The accurate value of
V0 is irrelevant to our physical results, and we use V0 = 3 eV
in the specific numerical calculations. And the T matrix is [17]

T(ε) = V
[

I −
∫

d2kG0(k,ε)V
]−1

. (6)

In the T -matrix approach, V is usually a matrix, and its form
depends on the specific position of the vacancy. For Fig. 1 and
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using the sublattice basis of {A, B}, V has the form

V =
[
V0 0
0 0

]
. (7)

Then, the T -matrix has the explicit expression

T(ε) =
[

t (ε) 0
0 0

]
, (8)

where t (ε) = V0/[1 − V0G0
AA(0, ε)] is the only nonvanishing

matrix element of the T matrix. Turning to the GF, for the

Hamiltonian Hξ , the valley-contrasting GF in the momentum
space is defined as G0

ξ (k,ε) ≡ (z − Hξ )−1 and has the form

G0
ξ (k,ε) = 1

z2 − v2
F

(
k2 + κ2

ξ

)[
ε+,ξ ξvF keiξθk

ξvF ke−iξθk ε−,ξ

]
. (9)

Here, z = ε + i0+, with 0+ for the retarded properties of
the GF, and ε±,ξ = vF (q ± κξ ) = vF q±,ξ , with q = ε/vF . As
a result, one can obtain the GF in real space, G0(R,ε) =∑

ξ=± eiR·Kξ /(2vF )2G0
ξ (R,ε), in which G0

ξ (R,ε) is given by
the Fourier transform of G0

ξ (k,ε),

G0
ξ (R,ε) =

[ −iε+,ξH0(uξ ) ξ
√

ε+,ξ ε−,ξH1(uξ )eiξθR

ξ
√

ε+,ξ ε−,ξH1(uξ )e−iξθR −iε−,ξH0(uξ )

]
. (10)

Here, uξ = R
√

q+,ξ q−,ξ , where R (θR) is the module (azimuthal angle) of R. And Hν is the Hankel function of the first kind in
the order ν. As a result, for the intravalley scattering, the sublattice-resolved LDOSs are

δρ intra
A (R,ε) = C0 Im

[
t (ε)

∑
ξ=±

q2
+,ξH2

0 (uξ )

]
(11a)

≈ 2C0

πR
Im

[
t (ε)

∑
ξ=±

q+,ξ

√
q+,ξ

q−,ξ

ei(2uξ − π
2 )

]
, (11b)

δρ intra
B (R,ε) = C0 Im

[
t (ε)

∑
ξ=±

q+,ξ q−,ξH2
1 (uξ )

]
(11c)

≈ 2C0

πR
Im

[
t (ε)

∑
ξ=±

√
q+,ξ q−,ξ ei(2uξ + π

2 )

]
, (11d)

and for the intervalley scattering, the sublattice-resolved LDOSs are

δρ inter
A (R,ε) = 2C0 Im

[
t (ε)

∏
ξ=±

q+,ξH0(uξ )

]
cos (θA) (12a)

≈ 4C0

πR
Im

[
t (ε)

∏
ξ=±

q3/4
+,ξ q−1/4

−,ξ ei(uξ − 1
4 π )

]
cos (θA), (12b)

δρ inter
B (R,ε) = −2C0 Im

[
t (ε)

∏
ξ=±

√
q+,ξ q−,ξH1(uξ )

]
cos (θB) (12c)

≈ −4C0

πR
Im

[
t (ε)

∏
ξ=±

(q+,ξ q−,ξ )
1
4 ei(uξ + 1

4 π )

]
cos (θB), (12d)

where C0 = 1/(16πv2
F ), θA = δK · R, and θB = δK · R −

δξθR, with δK = K − K′ and δξ = ξ − ξ ′. To obtain the
approximate formulas in the long range, we have used the
asymptotic expression for the Hankel function [48],Hv (u) ≈√

2/
√

πuei(u− π
2 v− π

4 ).

III. RESULTS AND DISCUSSION

In this section, we present the numerical calculations
to show the typical features of FOs in substrate-supported
graphene under off-resonant circularly polarized light. The
light (substrate) can break the T (P) of graphene and in-
duces the gap 2F (2�). By fixing � = 0.1 eV and tuning

F , Figs. 2(a)–2(c) show the evolutive electronic structure
of graphene in the presence of two kinds of gap openings.
The combined effect of 2F and 2� gives rise to the valley-
contrasting feature inherited from the T -breaking gap. For the
K valley (blue), its gap first closes and then reopens; for exam-
ple, the values are 0.2, 0, and 0.2 eV in Figs. 2(a)–2(c), which
implies the transition from a normal insulator to a topological
insulator [40]. But the gap in the K′ valley (red) increases
monotonously; for example, the values are 0.2, 0.4, and 0.6 eV
in Figs. 2(a)–2(c). Due to the valley-contrasting electronic
structure, the Fermi surface also displays the evolution be-
haviors with changing the position of the Fermi level. (i) One
can obtain two different regimes, single-valley and two-valley
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FIG. 2. Evolutive electronic structure of graphene gapped by
breaking time reversal and inversion symmetries, 2F and 2�, re-
spectively. With � = 0.1 eV, F = 0, 0.1, and 0.2 eV in (a), (b), and
(c), respectively. The combining effect of 2F and 2� leads to the
valley-contrasting feature; the gap of the K valley (blue) first closes
and then reopens, implying the occurrence of a topological transi-
tion [40], while that of the K′ valley (red) increases monotonously.
Thus, (a) and (c) represent, respectively, the normal insulator and the
(valley-polarized) topological insulator, although the gap values of
their K valleys are equal, and (b) is gapless at the phase boundary.
(d)–(f) are the corresponding Fermi surfaces of (a)–(c) when the
same Fermi level (dashed line) is tuned to arrive at the two-valley
regime in each case. The valley-contrasting Fermi surfaces are equal
in (d), and they are unequal in (e) and (f). In the two-valley regime,
Friedel oscillations are contributed by the intravalley and intervalley
backscattering, as shown in (d)–(f).

ones. Figures 2(a)–2(c) are in the two-valley regime since the
same Fermi level is higher than the gap values of the two
valleys. Two Fermi surfaces are shown clearly in Figs. 2(d)–
2(f) for Figs. 2(a)–2(c). (ii) The Fermi surface contours of the
two valleys are unequal for graphene with nonzero F and �,
e.g., in Figs. 2(e) and 2(f), which is very different from the
case in Fig. 2(d). FOs reflect the intrinsic Fermi surface prop-
erty, which should reveal the electronic structure of graphene
gapped by broken T and P and exhibit the unique features.
In addition, FOs are dominated by the backscattering events
of electrons upon the imperfection, which can be divided into
intravalley scattering and intervalley scattering, as shown in
Figs. 2(d)–2(f). In the following, we present the unique fea-
tures of intravalley scattering and intervalley scattering to FOs
in single-valley and two-valley regimes and briefly discuss the
experimental feasibility to observe them.

A. Single-valley regime

When the Fermi level is tuned to lower than theP-breaking
gap, i.e., ε < �, the single-valley regime arises. Figure 3
shows the evolutive electronic structure of graphene in the
single-valley regime (ε = 0.09 eV and � = 0.1 eV) and the
corresponding FOs with changing the T -breaking gap F .
Here, the right-circularly polarized light is considered (see
the Appendix); then the topological transition occurs in the K
valley (ξ = +). Corresponding to different cases in Fig. 3(a),
Figs. 3(b) and 3(c) show the FOs contributed by the in-
travalley scattering on sublattices A and B, δρ intra

A and δρ intra
B ,

respectively. δρ intra
A and δρ intra

B are calculated exactly (blue)
and approximately (red) in Figs. 3(b) and 3(c), and the good
consistence at long range can be seen. The features are similar
to those in doped gapless graphene [7,14–16,49]. On the one

hand, FOs exhibit the dimension-determined decay 1/R which
can be inferred from the analytical equations (11b) and (11d);
then they are multiplied by R to account for this intrinsic
decay. On the other hand, the oscillations of δρ intra

A and δρ intra
B

have a phase difference π , which can also be obtained by
comparing Eqs. (11b) and (11d) in the single-valley regime.
And the oscillation periods are determined by half Fermi

wavelengths, πR/u+ = π/

√
q2 − κ2+. So the oscillation pe-

riods are tunable by the T -breaking gap F .
Most importantly, FOs can reflect the topological property

of the electronic structure. (i) There is a critical value that is
the shortest oscillation period signifying the gapless K valley,
which is actually at the topological phase boundary. As a
result, FOs can be used to track the topological boundary
since it can be measured easily by STM. (ii) The amplitude
of the sublattice-resolved LDOS in the normal phase can be
far larger than those in the topological phase; for example,
considering the identical gap value, δρ intra

A (R,ε) ∝ q3/2
±,ξ q−1/2

∓,ξ ,
in the normal (topological) phase, the amplitude difference is
up to one order of magnitude in Fig. 3(b). Therefore, FOs
can be used to distinguish the trivial insulator and the topo-
logical insulator in a quantitative way and do not resort to
the edge states of topological insulators as in other experi-
mental techniques, e.g., the visual observation of edge states
by angle-resolved photoemission spectroscopy [43] and the
quantized conductance plateau contributed by the edge state
in the transport measurement [44]. Note that the amplitudes
of δρ intra

B (δρ intra
A ) in different insulator phases have no quanti-

tative difference when the vacancy is on sublattice A (B).

B. Two-valley regime

When the Fermi level is tuned to higher than the sum of the
T -breaking and P-breaking gaps, i.e., ε > � + F , the two-
valley regime arises. As a result, the intravalley and intervalley
scattering events together contribute to FOs, which are both
revealed by unique features, i.e., the beating pattern and wave-
front dislocations, respectively.

1. Beating pattern

Figure 4 shows δρ intra
A and δρ intra

B contributed by intravalley
scattering in the two-valley regime. δρ intra

A (δρ intra
B ) is shown in

the left (right) column. To fix � = 0.1 eV and ε = 0.3 eV, we
consider two values of F , i.e., 0.08 and 0.12 eV in the top and
bottom rows, respectively. Due to unequal Fermi surfaces of
the two valleys, there are two basic oscillation periods, which

are πR/u+ = π/

√
q2 − κ2+ and πR/u− = π/

√
q2 − κ2− from

Eqs. (11b) and (11d). More interesting, the beating pattern

occurs, and its period is πR/(u+ − u−) = π (
√

q2 − κ2+ −√
q2 − κ2−)−1, as shown in Fig. 4. Previously, the beating

pattern in FOs was shown in the two-dimensional electron gas
[50], graphene [51], the MoS2 monolayer [52], and silicene
[53], which all require spin-orbit coupling. In our case, the ef-
fect of spin-orbit coupling is realized by the T -breaking light
field. The beating pattern reflects the unequal Fermi surfaces
and was suggested to characterize the topological transition
of silicene in a previous study [53]; the relevant discussion
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FIG. 3. Evolutive electronic structure of graphene in the single-valley regime and the corresponding Friedel oscillations. (a) is the electronic
structures of valley K with changing F when the Fermi level is ε = 0.09 eV and � = 0.1 eV. Corresponding to different cases in (a), (b) and
(c) show the Friedel oscillations δρ intra

A and δρ intra
B contributed by intravalley scattering on sublattices A and B, respectively. δρ intra

A,B is calculated
exactly (blue) and approximately (red) and is multiplied by R to account for the intrinsic 1/R decay.

there is also applicable to our case. The T -breaking field in
our case and spin-orbit coupling in silicene [53] give rise

FIG. 4. Beating pattern of Friedel oscillations δρ intra
A and δρ intra

B

contributed by intravalley scattering in the two-valley regime. δρ intra
A

(δρ intra
B ) is shown in the left (right) column. F = 0.08 eV (0.12 eV)

in the top (bottom) row. Here, � = 0.1 eV, and ε = 0.3 eV.

to the same novel phenomena, i.e., the topological transition
and beating pattern; their comparability and interplay deserve
further study, e.g., in silicene under off-resonant circularly
polarized light.

2. Wave-front dislocations

The oscillation periods of FOs are inversely proportional
to the momentum changes in the backscattering events. Com-
pared to the contribution from intervalley scattering, the
intravalley scattering contribution to FOs has a rather longer
period and is thus more remarkable. As a result, the intravalley
scattering contribution to FOs has been well studied by a lot
of theoretical [6–18] and experimental [19–23] efforts.

Recently, the importance of the intervalley scattering was
highlighted [24,25,46,54] because the corresponding FOs
may show the wave-front dislocations, which are the fin-
gerprints of geometrical quantities, e.g., the Berry phase in
gapless graphene [24,25] and the winding number in gapped
graphene [46]. In a previous work [46], the P-breaking gap
was considered, and there was no valley-contrasting feature,
and the Fermi surfaces of the two valleys were equal. By
further incorporating the T -breaking gap, the intervalley scat-
tering occurs between the unequal Fermi surfaces, as shown
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FIG. 5. Wave-front dislocations of Friedel oscillations δρ inter
A and

δρ inter
B contributed by intervalley scattering in the two-valley regime.

δρ inter
A (δρ inter

B ) is shown in the left (right) column. F = 0.08 eV
(0.12 eV) in the top (bottom) row. Here, � = 0.1 eV, and ε = 0.3 eV.

in Figs. 2(e) and 2(f). Figure 5 shows δρ inter
A and δρ inter

B con-
tributed by the intervalley scattering in the two-valley regime.
δρ inter

A (δρ inter
B ) is shown in the left (right) column, and their

amplitudes are multiplied by R to avoid the intrinsic decay
1/R based on the analytical equations (12b) and (12d). By
adopting F = 0.08 eV (0.12 eV) in the top (bottom) row,
one can see the normal oscillating wave fronts perpendicu-
lar to δK with a wavelength λδK = 2π/|δK| ≈ 0.37 nm in
δρ inter

A (R, ε) and two wave-front dislocations at R = 0 accom-
modating the phase accumulated along a contour enclosing
the singular point of the phase θR [55] in δρ inter

B (R, ε). These
features are identical to those in graphene with a single P-
breaking gap � in the previous work [46], which demonstrates
the robustness of wave-front dislocations against the gap
opening explained by the invariant winding number of the
pseudospin vector. The pseudospin vector can be defined as
s = 〈ψλ,k|(σx, σy)|ψλ,k〉 = (sx, sy), with

sx = 2ξkx(q
λ
+ κξ )

(q
λ
+ κξ )2 + k2

= ξkx

qλ

, (13a)

sy = − 2ky
(
q

λ
+ κξ

)
(q

λ
+ κξ )2 + k2

= − ky

qλ

. (13b)

Obviously, the pseudospin texture, which is determined
by the azimuthal angle of s, is invariant on different Fermi
surfaces. Therefore, this study further demonstrates the ro-
bustness of wave-front dislocations of FOs in graphene
against the T -breaking light field, which causes the unequal
Fermi surfaces for the intervalley scattering. In light of the
topological origin of wave-front dislocations (i.e., originating
from the topological winding number [46]), one can recall
the edge states of the topological insulator, but the edge
states of topological insulators are susceptible to T -breaking
perturbation [56]. These different responses, i.e., robustness

(susceptibility), of wave-front dislocations (edge states) to
T -breaking external field (perturbation) should reflect their
bulk and edge nature.

3. Experimental feasibility

Here, we briefly discuss the possible observation of
the topological and geometrical properties of the elec-
tronic structure by using FOs. First, we consider a realistic
model structure, i.e., substrate-supported graphene under off-
resonant circularly polarized light, as shown by Fig. 1. The
key is the magnitude of the gap opening induced by the
P-breaking and T -breaking mechanisms. On the one hand,
when the proper substrate is chosen, e.g., graphene epitax-
ially grown on a silicon dioxide substrate, the P-breaking
gap ranges from several to hundreds of meV [57,58]. So
it is proper to adopt � = 0.1 eV in our numerical cal-
culations. In addition, the substrate with a high dielectric
constant for two-dimensional graphene, effectively reducing
the electron-electron interaction [59], which is significant
in the one-dimensional system [60], is a better choice for
experiments. On the other hand, the T -breaking gap F is
manipulated by the amplitude (or intensity) and frequency of
the off-resonant light (see the Appendix), which can be up
to the same magnitude as the P-breaking one, as discussed in
Ref. [40], e.g., F = 0.1 eV induced by the experimental avail-
able soft x-ray regime with frequency 3500 THz and intensity
1013 W/cm2. In particular, the light-induced anomalous Hall
effect was observed in graphene [61], which indicated the
giant experimental advance of transport measurement under
intense light. Second, the Fermi level in Fig. 1 can be adjusted
through a global back gate [45]; then the single-valley regime
and two-valley regime can be addressed handily. To avoid the
trigonal warping effect of the Fermi surface, the Fermi level
should not go beyond the linear dispersion region of graphene,
i.e., less than 1 eV relative to the Dirac point [45]. Third,
in ballistic graphene, the residual weak disorders are up to
several nanometers or more away from each other, so they
have a trivial effect on the FOs induced by a single vacancy
[54]. FOs have been used to measure the geometrical Berry
phase by using STM [24,25]. Our work is the direct theoretical
extension of these two experiments [24,25], so future verifica-
tion is very feasible.

IV. CONCLUSIONS

In this study, we studied Friedel oscillations of electrons
in substrate-supported graphene under off-resonant circularly
polarized light, in which there are a valley-contrasting feature
and topological phase transition induced by the combined
breaking ofP andT symmetries. By tuning the position of the
Fermi level, two regimes arise, i.e., the single-valley regime
and the two-valley regime, in which FOs are contributed by
the electronic backscattering in one single valley and two
valleys, respectively. In the single-valley regime, FOs can
reflect the topological property of the electronic structure. A
critical oscillation period corresponds to the topological phase
boundary, and their amplitudes can be used to distinguish a
trivial insulator and a topological insulator in a quantitative
way without resorting to edge states as in angle-resolved
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photoemission spectroscopy or transport measurements. In
the two-valley regime, the Fermi surfaces of two valleys are
unequal, which leads to the beating pattern for the intravalley
scattering and the robust two-wave-front dislocations due to
the energy-independent pseudospin texture for the interval-
ley scattering. This study used graphene as an example to
show the great potential of FOs to identify the topological
and geometrical properties of the electronic structure of two-
dimensional materials, which expands the ability of FOs as a
conventional tool to recover energy dispersion.
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APPENDIX: THE DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In this Appendix, we present the derivation of the
Hamiltonian of substrate-supported graphene under intense
off-resonant circularly polarized light [40], i.e., Eq. (1) in the
main text. The intrinsic Hamiltonian of substrate-supported
graphene is

H0 = vF (ξσxkx − σyky) + �σz, (A1)

where � depends on the breaking degree of P of graphene by
the substrate. For the electrons in graphene, the off-resonant
circularly polarized light of the frequency ω introduces the
time-dependent vector potential, which is

A(t ) = A0[−η sin(ωt )ex + cos(ωt )ey]. (A2)

Here, η = ∓ denotes the right (left) circularly polarized light.
Including the vector potential, we have to make the replace-
ment kx → kx − ηeA0 sin(ωt ) and ky → ky + eA0 cos(ωt ) in
the Hamiltonian H0. Under the condition eAvF � ω, the
electron-photon scattering is limited to two low-order pro-
cesses, i.e., the emission and the absorption of a single virtual
photon and its conjugate process; one can express the effective
time-independent Hamiltonian as

Hξ ≈ H0 + [H−1, H1]

ω
, (A3)

where

Hm = 1

T

∫ T

0
dteimωH0, (A4)

with T = 2π/ω being the period of light. H±1 =
1
2 eAvF (±ησx + ξσy) leads to [H−1, H1] = −ηξe2A2v2

F σz.
As a result, the effective Floquet Hamiltonian is

Hξ = h̄vF (ξσxkx − σyky) + (� − ξFη )σz, (A5)

where Fη = η(eAvF )2/ω. The right or left circularly polarized
light leads to the same physics, so η = −1 is used and not
explicitly shown in Eq. (1) in the main text.
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