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Hall and bend resistance of a phosphorene Hall bar
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The dependence of the Hall and bend resistances on a perpendicular magnetic field and on vacancy defects
in a four-terminal phosphorene single layer Hall bar is investigated. A tight-binding model in combination with
the Landauer-Büttiker formalism is used to calculate the energy spectrum, the lead-to-lead transmissions, and
the Hall and bend resistances of the system. It is shown that the terminals with zigzag edge orientation are
responsible for the absence of quantized plateaus in the Hall resistance and peaks in the longitudinal resistance.
A negative bend resistance in the ballistic regime is found due to the presence of high- and low-energy transport
modes in the armchair and zigzag terminals, respectively. The system density of states, with single vacancy
defects, shows that the presence of in-gap states is proportional to the number of vacancies. Quantized plateaus
in the Hall resistance are only formed in a sufficiently clean system. The effects of different kinds of vacancies
where the plateaus are destroyed and a diffusive regime appears in the bend resistance are investigated.
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I. INTRODUCTION

In pursuit of the next generation of nanodevices and to
continue its downscaling, scientists have started to focus their
attention on two-dimensional (2D) materials due to their
nanoscale thickness [1]. Among these materials, black phos-
phorus, which in ambient is the most stable phosphorus crystal
at room temperature and pressure, has drawn a lot of attention
recently due to its unique electronic properties which depend
on the number of layered phosphorene [2,3]. Black phospho-
rus is a layered material where each individual atomic layer is
held together by van der Waals interactions [4–6]. This allows
the construction of phosphorene devices with an arbitrary
number of layers [6,7]. Each phosphorus atom in a phospho-
rene monolayer is bounded via sp3 hybridization forming a
puckered lattice structure. Unlike other 2D layered materials,
black phosphorus shows interesting properties such as high
carrier mobility [3,6], anisotropic optical-conductance [8,9],
and a band-gap dependence on the number of layers [9,10],
ranging from 0.3 eV for bulk and 1.5 eV for monolayer phos-
phorene. This material also has a good on/off switch, which
makes it a good candidate for field effect transistor (FET)
devices [11,12].

The above-mentioned phosphorene FET devices were
analyzed at room temperature through Hall measurements
with mobility up to ∼1000 cm2 V−1 s−1. It was found that
the carrier mobility is limited by charge impurities at low
temperature [12]. It is important to mention that Hall measure-
ments can accurately determine the carrier density, electrical
resistivity, and the mobility of carriers in semiconductors
[13]. It is well known that 2D electron gas submitted to a
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perpendicular magnetic field leads to the formation of Landau
levels and, as a consequence, it leads to the formation of
quantized levels and oscillations in the Hall and longitudi-
nal conductivity/resistance [13–15]. With the application of
a perpendicular magnetic field, it is also possible to focus
electrons injected from a narrow injector, allowing the study
of different properties of a material [16] in such a magnetic
focusing experiment.

The presence of defects is almost inevitable in materials. In
particular, vacancies in phosphorene were reported to exhibit
a highly anisotropic and delocalized charge density, with in-
trinsic vacancies resulting in in-gap resonance states [17–19].
In the absence of a magnetic field, the effects of different
types of vacancies in phosphorene monolayers were theoreti-
cally investigated in multiterminal systems, showing that the
presence of atomic defects decrease (an increase) the longitu-
dinal (transverse) conductance [20,21]. Studies on graphene
showed that vacancy disorder can cause the appearance of
new states in the Landau spectrum, which depend on the type
and density of vacancies, which can be observed in the bend
resistance and the density of states (DOS) [22]. To provide
insights on how vacancies affect the transport properties of
phosphorene, we analyze the different resistances in a Hall
bar configuration.

In this paper, the problem of magnetotransport in multi-
terminal phosphorene monolayer is addressed. This will be
done by studying the resistance of a four-terminal Hall bar
system in the presence of a perpendicular magnetic field. This
paper is organized as follows. First, we present in Sec. II the
theoretical formalism to calculate the different resistances in a
Hall bar using the Landauer-Büttiker formalism [23] and the
tight-binding model to describe the phosphorene lattice [24].
In Sec. III, the results for a pristine Hall bar with an applied
perpendicular magnetic field is presented. In Sec. IV the effect
of vacancies on the DOS and the transport properties are
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FIG. 1. The phosphorene nanoribbon along the xy plane (a), and
the representation in the zx plane (b). The different hoppings are
shown in (a) and the rectangular shaded box gives the unit cell. The
colored dots refer to P atoms belonging to different sublattices.

investigated. The perspectives and conclusions are presented
in Sec. V.

II. SYSTEM AND METHODS

A. Phosphorene

The unit cell of phosphorene contains four atoms, with
a1 = 3.32 Å and a2 = 4.38 Å being the primitive vectors and
a = 2.22 Å and θ = 96.79o are the in-plane bond length and
bond angle, see Fig. 1. For our numerical simulations, we use
the tight-binding model with five-hoppings as introduced in
Ref. [24]. The tight-binding Hamiltonian is given by

H =
∑

i

εini +
∑
i �= j

ti jc
†
i c j, (1)

where the sums run over the lattices sites, c†
i (c j ) is the cre-

ation (annihilation) operator, εi is the electron on-site energy,
and ti j are the elements of the hopping matrix. Because
all phosphorene atoms are equivalent, we may set the on-
site energy to zero. The five hopping parameters are given
by t1 = −1.220 eV, t2 = 3.665 eV, t3 = −0.205 eV, t4 =
−0.105 eV, and t5 = −0.055 eV. They describe the band
structure of phosphorene in the low-energy regime and agree
with the one obtained from DFT-GW calculations [24].

The peculiar electronic properties of the phosphorene band
structure is shown in Fig. 2(a) for the armchair edge and
Fig. 2(b) for the zigzag edge, both with width W = 50 nm.
The main difference between the two orientations is the pres-
ence of a quasiflat band within the band gap in the nanoribbon
with zigzag edges resulting in metallic behavior [25,26], while
the band structure for the armchair terminal is semiconduct-
ing. The corresponding DOS are also shown.

The phosphorene monolayer is modeled using a four-band
tight-binding model, but can be reduced to a two-band model
due to the symmetry between the sublattices A and D [27]
[see Fig. 1]. In this reduced form, the number of atoms in
sublattices, labeled A and B for convenience, are NA and
NB. For pristine phosphorene monolayer (without defects),
NA = NB (sublattice symmetry). In this system, vacancies are
introduced by randomly removing atoms from the phospho-
rene lattice, eliminating the on-site energy and the hopping of
the removed atom. Figure 3 shows sections of the defective
phosphorene Hall bar with three types of atomic vacancies:
A monovacancy (MV) where a single sublattice atom is re-
moved, a type-I double vacancy (DV1) where an atom and its

FIG. 2. Phosphorene nanoribbon band structure and density of
states for armchair (a) and zigzag (b) edges. The nanoribbons corre-
spond to the different leads in the investigated Hall bar with width
50 nm.

neighbor sublattice atom on a different z plane are removed,
and a type-II double vacancy (DV2) where the neighbor sub-
lattice atom is removed on the same z plane.

In the MV case, where only one of the sublattice atoms is
removed, the sublattice symmetry is broken (NA �= NB). For
the type-I DV, where two sublattice atoms are removed, being
two A (or two B), the sublattice symmetry is also broken
(NA �= NB). However for type II, where one A and one B are
removed, the symmetry is preserved (NA = NB).

B. Hall bar

The Hall device is schematically presented in Fig. 4. It
is a four-terminal Hall bar system with an applied magnetic
field in the z direction, where the magnetic field is introduced
through the vector potential.

The Landau gauge �AH = −By�ex is one of the standard
gauges which works only for leads with translational sym-
metry in x direction. For y-translational symmetry, we need to
change it to the gauge �AV = Bx�ey. The change from one gauge
to the other is done smoothly by implementing the scalar func-
tion f (x, y) which rotates the vector potential �A′ = �A + �∂ f ,
where f is defined as [22,28]

f (x, y) = Bxy sin2 θ + 1
4 B(x2 − y2) sin 2θ. (2)

FIG. 3. The disorders in phosphorene Hall bar for monovacan-
cies (MVs), double vacancy type I (DV1) and type II (DV2). Only
half of the Hall bar is shown.
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FIG. 4. Schematic representation of the Hall bar. The modified
vector field �A′(x, y) is shown by the arrows. In the system, contacts
1 and 3 represent the armchair terminals while contacts 2 and 4 the
zigzag terminals.

Here θ is the angle between the two leads (in our system θ =
π/2). To apply f (x, y) only in the main region, we multiply it
by a smooth step function εi(y) = 1

2 [1 + tanh(2(y − y0)/d )],
which is nonzero only close to the lead i. y0 is the crossover
position and d is the width of the crossover region. For our
numerical calculations, we took y0 = W and d = W/5, where
W = 50 nm [22]. The modified magnetic field is then imple-
mented on the tight-binding Hamiltonian Eq. (1) by making
use of the Peierls substitution ti j = ti jeiφi j . The Peierls phase
is then described as

φi j =
∫ �ri

�r j

�A · d�r. (3)

The resistances are calculated using Landauer-Büttiker for-
mula [29]. The four-terminal resistance in a cross-shaped
structure is given by

Rmn,kl = h

2e2

(
TkmTln − TknTlm

D

)
, (4)

where h is the Planck’s constant. Rmn,kl is the resistance with
the voltage being measured between the leads k and l when
the current is driven into contact m and taken out from contact
n. In Eq. (4), D = (α11α22 − α12α21)S, with

α11 = [(T21 + T31 + T41)S − (T14 + T12)(T41 + T21)]/S,

α12 = (T12T34 − T14T32)/S,

α21 = (T21T43 − T41T23)/S,

α22 = [(T12 + T32 + T42)S − (T21 + T23)(T32 + T12)]/S,

where S = T12 + T14 + T32 + T34, and Ti j is the transmission
probability from lead j to lead i. The resistances given by
Eq. (4) satisfy the relation Rmn,lk = Rnm,kl and the reciprocity
relation Rmn,kl (B) = Rkl,mn(−B) [29]. In this paper, we are
also going to analyze the longitudinal resistance defined as
R13,13 (R24,24), which represents the resistance between the
two opposite armchair (zigzag) terminals. This schematic
can also be calculated, in a first approximation [30], by the

FIG. 5. The phosphorene energy levels for nanoribbons as func-
tion of magnetic field. The nanoribbons with width Wac = 50 nm and
Wzz = 50 nm correspond to the semi-infinite leads in the Hall bar.
The points in the figure indicate the intersection of the Fermi energy
(EF ) with the Landau levels.

analogous two-terminal systems, where the resistance is sim-
ply proportional to the transmission between the terminals
[13,30].

The probabilities Ti j are numerically calculated using
KWANT [31], a software package for numerical calculation of
tight-binding systems with emphasis on quantum transport. It
uses a matching wave-function approach [32] to calculate the
transmission of an n-propagating mode in a contact terminal
to the m mode in another contact. This formulation is math-
ematically equivalent to the nonequilibrium Green’s function
but was found to be numerically more stable [31].

III. PRISTINE PHOSPHORENE HALL BAR

Due to the anisotropy of the lattice, the Landau-level split-
ting depends strongly on the orientation and the edge type
of the phosphorene nanoribbon [8,26]. This dependency is

FIG. 6. Hall (R13,42) and bend (R14,23) resistance dependency on
the Fermi energy for two different values of the magnetic field.
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FIG. 7. Longitudinal resistance, measured for the armchair ter-
minals (R13,13) and for the zigzag terminals (R24,24), varying with the
Fermi energy for two different values of the magnetic field.

shown in Fig. 5, where the electron energy spectrum for the
armchair (ac) and zigzag (zz) nanoribon is plotted against the
magnetic field for nanoribbons with width W = 50 nm. For
the zigzag orientation, the effective electron mass is much
smaller than the one for the armchair nanoribbon. That is the
origin of the different spacing and magnetic field dependency
of the Landau levels [8,26].

Next, we analyze the resistances for Fermi energy near the
intersecting points depicted in Fig. 5. The Hall (R13,42) and
bend (R14,23) resistances were calculated for a Hall bar with
terminals size 50 nm (with a total of 342 384 atoms in the
system). Figure 6 shows the resistance dependence on the
Fermi energy (EF > 0 for electrons and EF < 0 for holes)
for two different values of the applied magnetic field (5 T
and 10 T). As the energy approaches the edges of the band,
one can see the Hall resistance goes to infinity while the
bend resistance goes to zero. The transition between the two
plateaus in the Hall resistance indicate the points where the
Fermi energy crosses a semiconductor transverse mode (see
Fig. 5) formed due the presence of magnetic field. Notice
that at such points the bend resistance exhibits a negative dip.
Another interesting phenomena is the presence of negative
values in the bend resistance, indicating a ballistic regime (the
ballistic regime will be discussed further when analyzing the
resistances as a function of magnetic field).

FIG. 8. (a) Hall (black), bend (blue), and (b) longitudinal (blue)
resistances for a pristine phosphorene Hall bar for EF = 0.345 eV.
The vertical dashed lines mark the points where the Fermi energy
crosses the armchair Landau levels.

To study the effect of the ribbon orientation, the longitu-
dinal resistances R13,13 and R24,24 are shown in Fig. 7. These
resistances were calculated using the two-terminal relation for
the resistances, which is just the inverse of the transmission
between the two opposite terminals. Due to the anisotropic
spectrum in phosphorene, one would expect that σxx < σyy,
leading to R13,13 > R24,24, but for Hall bar, the opposite hap-
pens. This is due to the presence of a scattering region in
the Hall bar that affects the conductivity making σxx > σyy

and also R13,13 < R24,24, as explained in Ref. [21] for a cross-
shaped phosphorene nanoribbon.

Next, we investigate the different resistances as a function
of the magnetic field for a fixed Fermi energy. It is well known
that as the magnetic field increases, the Fermi energy crosses
the semiconductor (armchair) transverse modes, resulting in
well-defined plateaus in the Hall resistance [8]. In the sys-
tem studied here, this behavior is clear for EF = 0.345 eV
and 0.34 eV (Figs. 8 and 9). However, for EF = 0.363 eV
(Fig. 10), the plateaus in the Hall resistance are almost absent
for a weak magnetic field. This can be explained by looking
at Fig. 5. The Fermi energy EF = 0.363 (eV) is near to a
zigzag transverse mode, which is almost magnetic-field inde-
pendent [8]. Due to the metallic character, zigzag terminals
induce scattering between the transport modes, not allowing
the formation of quantized plateaus in the Hall resistance [21].
However, as the magnetic field increases, the energy of the
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FIG. 9. (a) Hall (black) and bend (blue) and (b) Hall (black) and
longitudinal (blue) resistances for the pristine phosphorene Hall bar
for EF = 0.35 eV. The vertical dashed lines marks the points where
the Fermi energy crosses the armchair Landau levels.

zigzag Landau level differs from the Fermi energy, and the
plateaus on the Hall bar are recovered.

The ballistic regime observed in Fig. 6 becomes more
evident when analyzing the magnetic-field dependency re-
ported in Figs. 8–10. The bend resistances are plotted in
panel (a) (blue curve) which goes to zero as the magnetic
field increases. A negative bend resistance indicates that the
electron trajectory does not bend to the closer nonaxial ter-
minal [33,34]. We can understand this negative value by
considering the definition of the four-terminal resistance as
Ri j,km = Vkm/Ii j [29]. For R14,23, we have V23 = V2 − V3, indi-
cating that V23 < 0, as V2 is a zigzag (lower energy) terminal
and V3 is an armchair (high energy) terminal. Even though
the bend resistance approaches zero, one can still see peaks
in the resistances, indicating an increase in the transmission
between axial terminals. These peaks happens whenever the
Fermi energy cross an armchair transverse mode, indicating
an increase in the xx conductivity.

As stated before, the R24,24 is larger than R13,13, and they
increase with different rates as the magnetic field increases.
Figures 8–10 also show that for strong magnetic fields, the
bend resistances go to zero while R24,24 takes larger values.
Another peculiar behavior for R13,13 is noticed when the Fermi
energies 0.345 eV and 0.35 eV cross the zigzag transverse
mode (respectively, at ∼8.0 T and ∼8.60 T). When that hap-
pens, a peak appears in R13,13.

FIG. 10. (a) Hall (black), bend (blue), and (b) Hall (black) and
longitudinal (blue) resistances for the pristine phosphorene Hall for
EF = 0.363 eV. The vertical dashed lines mark the points where the
Fermi energy crosses the armchair Landau levels.

FIG. 11. The transmission probability from the leads 1 (a) and
4 (b) to the other leads. The local current density is calculated for
specific magnetic fields 8.0, 8.4, 8.7, and 10.0 T, respectively, (c)–(f).
Density values were normalize, as shown by the in the color bar. The
Fermi energy is EF = 0.345 eV.
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FIG. 12. DOS of the phosphorene Hall bar for pristine and for
three types of disorder with nx = 1%.

To understand the appearance of these peaks, Fig. 11
shows the magnetic-field dependency of the different trans-
missions probabilities between the leads for EF = 0.345 eV.
An expected behavior is the decrease of Ti j between two coun-
terclockwise terminals as the magnetic field increases. The
transmission between the two armchair terminals suddenly
increases as the transmission with the next counterclockwise
zigzag transmission decreases. This behavior is an indica-
tion of the induced transport-mode scattering by the zigzag

FIG. 13. Hall and bend resistances for the phosphorene Hall bar
with different densities of vacancies for B = 10 T. The bend resis-
tances were multiplied by a defined factor to increase its visibility.
The grey vertical lines mark the place where the Fermi energy crosses
an armchair transverse mode.

FIG. 14. The magnetic-field dependency of the Hall and bend
resistances for the phosphorene Hall bar with vacancies at fixed
Fermi energy EF = 0.35 eV.

terminals. Also, the reflection probability of the zigzag trans-
port modes increase with magnetic field.

IV. EFFECT OF VACANCIES

Figure 12 shows the DOS for a phosphorene Hall bar with
MVs and DVs type I and II (see Sec. II). To get reasonable
statistics, the DOS was averaged over ten samples where the
vacancies are randomly distributed. The number of vacancies

FIG. 15. The magnetic-field dependency of the longitudinal re-
sistance for the phosphorene Hall bar with vacancies at fixed Fermi
energy EF = 0.35 eV.
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FIG. 16. Current density for the phosphorene Hall bar with vacancy defects MV (a), DV1 (b), and DV2 (c) for nx = 0.01% and MV (d),
DV1 (e), and DV2 (f) for nx = 0.05%. We fixed EF = 0.35 eV and B = 10 T.

is related to the quantity nx, which is defined as the ratio
between the atoms removed from the lattice and the total
number of atoms. The peaks shown in Fig. 12 for the MV
and DV2 systems are due to in-gap states. The intensity of the
DOS is proportional to the number of defects [18,35].

Although there are no transport modes inside the gap, the
in-gap defect states can affect the system’s conductivity via
vacancy scattering [20,36]. This is shown in Fig. 13, where the
Hall and bend resistances are plotted against the Fermi energy
for two different values of vacancy density with an applied
magnetic field B = 10 T. Each resistance was obtained as an
average R = ∑N

i Ri/N , for N = 10 random samples. For nx =
0.01%, we can still see the presence of plateaus in the Hall
resistance, but it vanishes for nx = 0.05% due to scattering.

Another interesting result is the presence of well-defined
peaks in the bend resistance, peaks that were not present in
the pristine case (see Fig. 8). This indicates that already for
small vacancy density, the system is in the diffusive regime.
These peaks, unlike in the case in graphene [22], are not due
to localization states. They occur when the Fermi energy cross
an armchair transverse mode and are related to the increase
of diffusion due to the vacancy scattering. Also, this effect
is more evident for MV disorder, as for the same vacancy
density the MV are more spread in the system than DV1
and DV2.

The DV1 does not create in-gap defect states and the re-
sistances change slightly when compared with the pristine
case. This behavior becomes more evident in Fig. 14. The
Landau plateaus are more resilient in DV1 and the range of
the bend resistance is of the same order of magnitude as in the
pristine case, while for MV and DV2 the bend resistances are
higher. Further, one can see that the presence of the defects
with broken symmetry actually suppress the scattering effect
provoked by the zigzag transport modes. Analyzing Fig. 15,
one notices that the increase in the longitudinal resistance
R24,24 at ∼9.3 T is smaller for MV and DV2, and also with the
increase of density in DV1. Thus, one can infer that the pres-
ence of resonant states reduces the scattering provoked by the
zigzag terminals. Apart from these specific effects, the general
behavior is that the MV and DV2 enhances the resistances
between two axial terminals. This behavior is in agreement

with Ref. [21]. To better understand this effect, we show in
Fig. 16 the local density of the transport modes for a system
with MV, DV1, and DV2 defects for nx = 0.01% and 0.05%
and magnetic field B = 10 T. As the density is increased, the
modes are scattered to nonaxial terminals, which is reflected
by the enhancement of the longitudinal resistance.

V. CONCLUSIONS

In summary, we analyzed the electrical transport properties
of a phosphorene Hall bar in the presence of a magnetic
field and vacancy defects. The presence of axial and nonaxial
terminals, with different characteristics, allowed us to study
different transport properties of phosphorene material [21,37]
(in this case, the Hall and longitudinal resistances). In Sec. III,
we studied the pristine system where a ballistic regime was
identified by the bend resistance to certain regimes of Fermi
energy and magnetic field, and Landau plateaus show up in
the Hall resistance mainly due the semiconductor features of
the armchair terminals [8,21]. This can be seen for magnetore-
sistance for EF = 0.363 eV which matches a zigzag transport
mode (see Fig. 5) and shows no Landau plateaus for the
Hall resistance (see Fig. 10). Also, as stated in Ref. [21], the
presence of zigzag transport modes provokes scattering of the
transport modes, resulting in a larger peak in the resistance as
the Fermi energy crosses the zigzag Landau level, see Fig. 11.

The presence of vacancies changes the magnetotransport
properties, depending on the sublattice symmetry and on the
vacancy density, as shown in Sec. IV. The effects on the
resistance are most noticeable for vacancy types with bro-
ken sublattice symmetry, with the MV being the one that
most affects the resistance. Although DV1 does not create
in-gap states (as shown in Fig. 12) the defects still affect the
phosphorene transport properties. When analyzing the mag-
netoresistance, a change in the sign of the bend resistance
appears, which indicates a diffusive regime induced by scat-
tering from the defects. The present paper clearly indicates
the much richer transport features that can be observed in
phosphorene as compared to graphene. The anisotropy of the
phosphorene lattice and the presence of a gap are responsible
for the increased complexity of its electrical response.
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