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Fractal energy gaps and topological invariants in hBN/graphene/hBN double moiré systems
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We calculate the electronic structure in quasiperiodic double moiré systems of graphene sandwiched by
hexagonal boron nitride (hBN) and identify the characteristic integers of energy gaps. We find that the electronic
spectrum contains a number of minigaps, and they exhibit a recursive fractal structure similar to the Hofstadter
butterfly when plotted against the twist angle. Each of the energy gaps can be characterized by a set of integers,
which are associated with an area in momentum space. The corresponding area is geometrically interpreted as a
quasi-Brillouin zone, which is a polygon enclosed by multiple Bragg planes of the composite periods and can be
uniquely specified by the plain wave projection in the weak-potential limit.
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I. INTRODUCTION

In twisted multilayers of two-dimensional (2D) materials,
the moiré interference pattern causes the electronic band re-
construction, leading to unusual physical properties highly
tunable by the twist angle. The best-known example is twist
bilayer graphene [1–8], where the flat band formation at the
magic angle gives rise to exotic phenomena [9–12]. The
superlattice of graphene on hexagonal boron nitride (hBN)
has also been extensively studied [13–22], where the moiré
potential creates the superlattice subbands in the Dirac cone.

Recently, attention has also been paid to systems where
multiple moiré superperiods compete. The hBN/graphene/
hBN stack [23–30] is a typical example, where the moiré
pattern caused by graphene and the upper hBN layer and that
caused by graphene and the lower hBN layer form an incom-
mensurate doubly periodic potential to graphene, as shown in
Fig. 1(a). A similar situation is also found in twisted bilayer
graphene on hBN [31–33] and in twisted trilayer graphene.
[34–37]

The hBN/graphene/hBN system is realized when mono-
layer graphene is encapsulated by top and bottom hBN
substrates. There the dual moiré effect is relevant only when
the lattice orientations of the upper and lower hBN layers
are nearly aligned to graphene since, otherwise, the moiré
wavelength is too short and hardly affects the low-energy elec-
tronic states of graphene. Nearly aligned hBN/graphene/hBN
superlattices were experimentally fabricated using various
techniques, [23–26,29,30], and it was shown that the coex-
istence of the different superperiods gives rise to multiple
minigaps in the spectrum, which can never be seen in a single
moiré potential [24,25].

Theoretically, double moiré systems are generally hard
to treat because the two superlattice periods are incommen-
surate in general and then the Hamiltonian is essentially
quasiperiodic. The band structure of the hBN/graphene/hBN
system was calculated using large-scale numerical simula-
tions [27,28], where several major gaps and pseudogaps were
found as traces in the energy spectrum against the twist
angle.

Here we ask, How can we characterize energy gaps in
quasiperiodic systems? In a periodic system, the electronic
spectrum is separated into Bloch subbands accommodating
equal electron density, and the number of subbands below a
given gap is a topological invariant of zero dimension de-
fined for the Hamiltonian at a single Bloch wave number
[38–40]. In a doubly periodic system, however, the absence
of the rigorous unit cell prevents the definition of the Bril-
louin zone, so the integer characterization is not obvious. In
one dimension, an energy gap in a double period with wave
numbers Gα and Gβ is characterized by a pair of integers p
and q, where the electron density below the gap is given by
ne = (pGα + qGβ )/(2π ). This is regarded as the Bragg gap
of the (|p| + |q|)th-order harmonics. The integers p and q are
directly related to the topological properties such as adiabatic
pumping [41–44] and the quantum Hall effect [45]. In the
hBN/graphene/hBN system, similarly, some of the gaps can
be associated with the Bragg gap of a composite recipro-
cal lattice vector, pGα

1 + qGα
2 + rGβ

1 + sGβ

2 , where indexes
α, β label the two different moiré patterns [24,25,27,28]. This
scheme successfully explains a few gaps in the low-energy
region but does not generally work for all the gaps in the
spectrum.

In this paper, we calculate the electronic structure of the
hBN/graphene/hBN system in changing the twist angle and
identify the characteristic integers of all the energy gaps
by using a different scheme. First, we compute the band
structures for a series of the commensurate approximants to
simulate a continuous change in the twist angle. We find
that the electronic spectrum actually contains a number of
minigaps, exhibiting a recursive fractal structure when plot-
ted against the twist angle. The integer characterization for
the energy gaps is employed as follows. The system has
four distinct reciprocal lattice vectors Gα

1 , Gα
2 , Gβ

1 , Gβ

2 , and
we can define a momentum space area element (Gλ

i × Gμ
j )z

by taking the cross product of two distinct vectors. As a
result, we have four linearly independent areas A1, . . . , A4,
as shown in Fig. 2(a), which can be viewed as projected
areas of the four-dimensional hypercube. We find that each
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FIG. 1. (a) Incommensurate moiré structure in the trilayer sys-
tem. (b) The atomic model of the hBN/graphene/hBN trilayer
system. Top and bottom hBN layers are stacked with twist angles
θα and θβ from the middle graphene layer. (c) Top and bottom moiré
patterns. The moiré superlattice vector depends on the twist angle,
and the moiré angle φ increases as the twist angle increases.

energy gap is characterized by a set of integers m1, . . . , m4

such that the electron density below the gap is given by ne =∑
i miAi/(2π )2. Moreover, we show that the area

∑
i miAi is

geometrically interpreted as a quasi-Brillouin zone, which is a
certain polygon composed of multiple Bragg-plane segments,
as shown in Fig. 2(b). The quasi-Brillouin zone for a given
gap can be identified by the plain wave projection in the weak-
potential limit. The band-gap characterization proposed in this
work would be useful in other quasiperiodic 2D systems, such
as twisted trilayer graphene, the twisted bilayer graphene on
hBN mentioned above, and also 30◦ twisted bilayer graphene
[46–49].

This paper is organized as follows. In Sec. II, we define
the commensurate approximants and introduce the effective
continuum Hamiltonian for the hBN/graphene/hBN system.
We calculate the energy spectrum in Sec. III A and specify
the characteristic integers of the band gaps in Sec. III B. In
Sec. III C, we identify the quasi-Brillouin zone associated
with the characteristic integers by using the plain wave pro-
jection. A brief conclusion is given in Sec. IV.

II. METHOD

A. Atomic structure

We consider a hBN/graphene/hBN trilayer system, as il-
lustrated in Fig. 1, where the top (λ = α) and bottom (λ = β)
hBN layers are rotated by θα and θβ , respectively, relative
to the middle graphene layer. Graphene and hBN share the
same honeycomb structure with different lattice constants,
a ≈ 0.246 nm and ahBN ≈ 0.2504 nm, respectively [50]. We
define A and B as sublattices for graphene and Aλ and Bλ as

FIG. 2. (a) Independent unit area elements A1, A2, A3, A4 ob-
tained by the cross product of the reciprocal lattice vectors
Gα

1 , Gα
2 , Gβ

1 , Gβ

2 in the hBN/graphene/hBN double moiré system
[Eq. (19)]. A5 and A6 (dashed areas) can be expressed by other
elements as A5 = −A3 − A4 and A6 = A3. (b) Example of the quasi-
Brillouin zone (thick lines), which is composed of the Bragg planes
for composite reciprocal lattice vectors (thin lines). See Fig. 8 for
more details.

nitrogen and boron sites of the λth hBN layer, respectively.
The geometry θλ = 0 is defined by the AB bond and the AλBλ

bond being parallel to each other.
The lattice vectors of graphene are given by a1 = a(1, 0)

and a2 = a(1/2,
√

3/2), and those of hBN layers of λ = α, β

are given by

aλ
i = MR(θλ)ai (i = 1, 2), (1)

where R(θλ) is the 2D rotation matrix of θλ and M = (1 +
ε)1 represents the isotropic expansion by the factor 1 + ε =
ahBN/a ≈ 1.018. In the following, we assume the twist angles
θα and θβ are small enough (a few degree or less) that the
moiré superperiod is much greater than the atomic lattice
constant a. The primitive lattice vectors of the moiré pattern
of layer l are given by [18,51]

Lλ
i = [1 − R(θλ)−1M−1]−1ai (i = 1, 2). (2)

The corresponding reciprocal lattice vectors are

Gλ
i = [1 − M−1R(θλ)]a∗

i (i = 1, 2), (3)

where a∗
i is the reciprocal lattice vectors for graphene which

satisfy ai · a∗
j = 2πδi j .

The moiré superlattice period is given by∣∣Lλ
1

∣∣ = ∣∣Lλ
2

∣∣ = 1 + ε√
ε2 + 2(1 + ε)(1 − cos θλ)

a. (4)

The moiré rotation angle, or the relative angle of Lλ
i to ai, is

given by

φλ = arctan

( − sin θλ

1 + ε − cos θλ

)
. (5)

Figures 3(a) and 3(b) plot the moiré superlattice period L and
the moiré rotation angle φ as a function of the twist angle θ ,
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FIG. 3. (a) Moiré period L [Eq. (4)] and (b) the moiré rotation
angle φ [Eq. (5)] as a function of the twist angle θ .

respectively. The superperiod L is ∼13.9 nm at θ = 0◦, and
it decreases with increasing θ . The rotation angle φ is zero
at θ = 0 and rapidly increases in the negative direction with
increasing θ .

B. Commensurate moiré approximation

Generally, the two moiré superperiods of α and β are
incommensurate, and hence, there is no unit cell in the trilayer
systems as a whole. In any (θα, θβ ), however, we always
have a certain pair of lattice points of the two moiré patterns
which happen to be very close to each other. The situation is
expressed as

nα
1 Lα

1 + nα
2 Lα

2 = nβ

1 Lβ

1 + nβ

2 Lβ

2 + 
L, (6)

where nλ
j are integers and 
L is the difference. When 
L is

much smaller than the moiré periods, the electronic structure
of such a system can be approximated by an exactly commen-
surate system with 
L neglected. Specifically, it is obtained
by slightly rotating and expanding or shrinking the moiré
patterns so that 
L vanishes. Figure 4(a) shows an actual
example of the commensurate approximant for (θα, θβ ) =
(0, 1.1908◦), where (nα

1 , nα
2 ) = (1, 1) and (nβ

1 , nβ

2 ) = (−1, 3).
When 
L is neglected, Eq. (6) gives a primitive lattice

vector of the commensurate supermoiré structure LSM
1 (SM

stands for supermoiré). The other primitive vector LSM
2 is

obtained by rotating LSM
1 by 60◦. As a result, we have(

LSM
1

LSM
2

)
=

(
nα

1 nα
2−nα

2 nα
1 + nα

2

)(
Lα

1
Lα

2

)

=
(

nβ

1 nβ

2

−nβ

2 nβ

1 + nβ

2

)(
Lβ

1

Lβ

2

)
. (7)

FIG. 4. (a) Supermoiré unit cell and (b) the corresponding re-
ciprocal lattice of the commensurate approximant for (θα, θβ ) =
(0, 1.1908◦), where (nα

1 , nα
2 ) = (1, 1) and (nβ

1 , nβ

2 ) = (−1, 3).

Correspondingly, the reciprocal superlattice vectors
GSM

1 , GSM
2 are given by

(
GSM

1
GSM

2

)
=

[(
nα

1 −nα
2

nα
2 nα

1 + nα
2

)]−1(
Gα

1
Gα

2

)

=
[(

nβ

1 −nβ

2

nβ

2 nβ

1 + nβ

2

)]−1(
Gβ

1

Gβ

2

)
. (8)

Figure 4(b) is the reciprocal lattice corresponding to Fig. 4(a).
In the following, we consider two series of hBN/

graphene/hBN trilayer systems,

I : (θα, θβ ) = (0, θ ), 0 � θ � 2◦,

II : (θα, θβ ) = (θ,−θ ), 0 � θ � 2◦. (9)

In each case, we find a set of (θα, θβ ) satisfying that 
L
is less than 1% of |nα

1 Lα
1 + nα

2 Lα
2 | and nα

1 , nα
2 � nmax, where

nmax = 12 and 17 for series I and II, respectively. The
full list of (θα, θβ ) in series I (II) is presented in Table I
(Table II) in the Appendix. In series II, the list is domi-
nated by exactly commensurate systems (i.e., 
L = 0) which
appear when the moiré periods of α and β are equal.
For later reference, we label those commensurate cases by
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[(nα
1 , nα

2 ), (nβ

1 , nβ

2 )] as

pmn ≡ [(m, n), (n, m)],

qmn ≡ [(m, n), (m + n,−n)],

rmn ≡ [(m, n), (m,−m − n)]. (10)

C. Effective Hamiltonian

Since the hBN has a semiconducting gap, the low-energy
spectrum of the hBN/graphene/hBN system is dominated by
the Dirac cones of graphene. We can derive the continuum
Hamiltonian of the trilayer system in a manner similar to that
for the graphene-hBN bilayer [14–22]. It is written in 6 × 6
matrix form as

Heff =
⎛
⎝HG U α† U β†

U α HhBN 0
U β 0 HhBN

⎞
⎠, (11)

which works on the basis of {A, B, Aα, Bα, Aβ, Bβ}. HG (2 × 2
matrix) is the Hamiltonian for graphene, which is given by

HG ≈ −h̄vk · σξ , (12)

where ξ = ±1 is the valley index of graphene which cor-
responds to the wave point Kξ = −ξ (2a∗

1 + a∗
2 )/3, k is the

relative wave number measured from the Kξ point, and σξ =
(ξσx, σy), with Pauli matrices σx and σy. HhBN in the second
and third diagonal blocks is the Hamiltonian for monolayer
hBN. Here we adopt an approximation considering only the
on-site potential [14,18],

HhBN ≈
(

VN 0
0 VB

)
. (13)

The off-diagonal matrix U λ is the interlayer Hamiltonians
of the twist angle θλ, given by [18]

U λ = t0

[(
1 1
1 1

)
+

(
1 ω−ξ

ωξ 1

)
eiξGλ

1 ·(r−rλ
0 )

+
(

1 ωξ

ω−ξ 1

)
eiξ (Gλ

1+Gλ
2 )·(r−rλ

0 )

]
, (14)

where t0 ≈ 150 meV is the interlayer coupling energy and rλ
0

is the origin of the moiré pattern of layer λ, which can be
changed by sliding the hBN layer relative to graphene [44].

The low-energy effective Hamiltonian for graphene can be
obtained by eliminating the hBN bases by the second-order
perturbation. It is explicitly written as

H (eff)
G = HG + V α

hBN + V β

hBN, (15)

where

V λ
hBN ≡ U λ†(−HhBN)−1U λ

= V0

(
1 0
0 1

)
+

{
V1eiξψ

[(
1 ω−ξ

1 ω−ξ

)
eiξGλ

1 ·(r−rλ
0 )

+
(

1 ωξ

ωξ ω−ξ

)
eiξGλ

2 ·(r−rλ
0 )

+
(

1 1
ω−ξ ω−ξ

)
eiξGλ

3 ·(r−rλ
0 )

]
+ H.c.

}
, (16)

with

V0 = −3t2
0

(
1

VN
+ 1

VB

)
, (17)

V1eiψ = −t2
0

(
1

VN
+ ω

1

VB

)
, (18)

and Gλ
3 = −Gλ

1 − Gλ
2 , V0 ≈ 29 meV, V1 ≈ 21 meV, and ψ ≈

−0.29 rad [18].
Using the effective Hamiltonian in Eq. (11), we calculate

the band structure of the approximate commensurate systems
introduced in the previous section. The set of wave numbers
hybridized by the commensurate double moiré pattern is given
by qm1,m2 = k + m1GSM

1 + m2GSM
2 , where m1 and m2 are in-

tegers and k is a residual wave number defined inside the
first supermoiré Brillouin zone spanned by GSM

1 and GSM
2 . We

construct the Hamiltonian matrix in the bases for graphene,
{|qm1,m2 , A〉, |qm1,m2 , B〉}, with k-space cutoff |qm1,m2 | < qc.
Here we take qc = 2|Gβ

1 |, which is about 0.54 eV for θβ = 0◦
and 1.2 eV for θβ = 2◦. Finally, the band diagram is obtained
by plotting the eigenvalues of the Hamiltonian matrix as a
function of k.

III. RESULTS

A. Electronic spectrum

As a typical example, we show the band structure of
the commensurate approximant for (θα, θβ ) = (0, 1.1908◦),
which is considered in Fig. 4. Here we set the origins of
the moiré potentials rα

0 , rβ

0 to zero. Figure 5(d) shows the
energy band plotted along the symmetric line of the super-
moiré Brillouin zone. For comparison, we also present the
band structures with no moiré potential [intrinsic graphene;
Fig. 5(a)], with only the top moiré potential [Fig. 5(b)], and
with only the bottom moiré potential plotted on the same
path [Fig. 5(c)]. In all the panels, we set the origin of energy
(vertical axis) at the Dirac point of graphene. In the single
moiré systems in Figs. 5(b) and 5(c), the biggest gap in the
valence band (red and blue regions) is the first-order moiré
gap corresponding to the electron density of one electron (per
valley and per spin) for a moiré unit cell. In the double moiré
system, on the other hand, we see a series of the higher-order
gaps (green) due to the coexistence of the different moiré
periods.

To study the twist-angle dependence of the electronic spec-
trum, we perform band calculations for all the systems in
series I and II [Eq. (9)]. In any commensurate system, the
band structure generally depends on the relative translation
of the moiré potentials, 
r0 = rα

0 − rβ

0 . The dependence on

r0 is generally greater in systems with smaller LSM, and it
quickly vanishes with increasing LSM. As we see below, the
gap structure as a function the twist angle becomes continuous
only after the average over 
r0 is taken at each angle. The rea-
son is as follows: Let us consider a commensurate system A
and an incommensurate system B generated by infinitesimally
rotating system A. Now system B is regarded as a collection of
all possible relative translations in A, just as a twisted bilayer
graphene contains all the stacking structures of the nonrotated
bilayer, such as the AA stack, AB stack, etc. Therefore, the
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FIG. 5. Band structure of (θα, θβ ) = (0◦, 1.1908◦). (d) shows the energy band of the full double moiré potential plotted along the
symmetric line of the supermoiré Brillouin zone shown in (e), with the corresponding DOS on the right. For comparison, we also show
the energy bands with (a) no moiré potentials (intrinsic graphene), (b) only the top moiré potential, and (c) only the bottom moiré potential,
plotted on the same path. The first-order gap of the top (bottom) moiré potential is colored red (blue), and the double moiré gaps are in green.
The dashed blue curve in (d) is the position of the first-order gap of the bottom moiré potential, which actually does not open. The sets of
numbers on the right indicate the characteristic integers (m1, m2, m3, m4) for energy gaps (see Sec. III B).

spectrum of B smoothly connects to that of A averaged over
the relative translation. Here we average the density of states
(DOS) over 25 grid points of 
r0 for systems with LSM < 50
nm, and otherwise, we just take 
r0 = 0 since the dependence
is minor.

Figure 6(a) shows a color map of the DOS calculated for
series I [(θα, θβ ) = (0, θβ )], plotted against θβ and energy.
Here the brighter color indicates a larger DOS, and dark blue
represents the gap. The array of bars at the top represents θβ

in series I (listed in Table I). The case (θα, θβ ) = (0, 1.1908◦)
considered in Fig. 5 is marked by the label (ii). Figure 6(c)
shows the lower part of Fig. 6(a), where the first-order gaps of
the single moiré pattern λ = α and β are highlighted by red
and blue curves, respectively, and typical higher-order gaps
are marked by green curves. Figure 6(b) is the corresponding
map of the energy gaps with the vertical axis converted to the
electron density, where the size of the black dots represents
the gap width. In these plots, we see that the spectrum continu-
ously changes as a function of the twist angle, even though the
adjacent approximants in the series have completely different
supermoiré periods and thus different numbers of minibands.

Figure 7 shows similar plots for series II plotted against
θα = −θβ . The vertical lines labeled pmn, qmn, rmn represent
the commensurate angles defined in Eq. (10), and the numbers
at the top (0, 30, . . . , 120) indicate φβ − φα , or the relative
angle between the two moiré patterns. r10 (θα ≈ 0.5972◦) and
q01 (θα ≈ 1.8377◦) are special cases where the relative angles
of the two moiré patterns are 60◦ and 120◦, respectively, and
hence, the two moiré periods completely overlap. Here we
have a relatively small number of the subbands because of the
coincidence of the double period, but upon moving away from
these angles, we see that a number of tiny levels branch out
just like Landau levels in a magnetic field. As a whole, we ob-
serve a recursive pattern ruled by the commensurate lines such
as pn,n±1, qn,n±1, rn,n±1. The red dashed curves in Figs. 7(b)
and 7(c) indicate the positions of the first-order gaps of the two

moiré patterns, which exactly match because |θα| = |θβ |. We
observe that the first-order gap closes throughout Figs. 7(b)
and 7(c) (dashed line), leaving only a small-DOS region. The
reason for the absence of the first-order gap will be explained
in the next section.

B. Characteristic integers for band gaps

The microgap structure observed in Figs. 6 and 7 resembles
the Hofstadter butterfly [52], which is the energy spectrum
of the 2D periodic lattice in magnetic field. The Hofstadter
system is essentially equivalent to the one-dimensional (1D)
Hamiltonian with a double period [53,54], where the fractal
minigap structure emerges when the two periods are changed
relative to each other. Each minigap is characterized by a
pair of integers p and q, such that the electron density below
the gap is given by ne = (pGα + qGβ )/(2π ), where Gα and
Gβ are the wave numbers for the two periods. The present
hBN/graphene/hBN system is a 2D version of this, where
the double period is specified by (Gα

1 , Gα
2 ) and (Gβ

1 , Gβ

2 ).
Actually, as shown in the following, all the gaps observed in
Figs. 6 and 7 can be uniquely characterized by four integers
associated with a specific k-space region.

Let us consider a general situation where the two moiré
patterns are incommensurate. We can define four indepen-
dent unit areas by combining the four independent reciprocal
lattice vectors Gα

1 , Gα
2 , Gβ

1 , Gβ

2 as

A1 = (
Gα

1 × Gα
2

)
z, A2 = (

Gβ

1 × Gβ

2

)
z,

(19)
A3 = (

Gα
1 × Gβ

1

)
z, A4 = (

Gα
1 × Gβ

2

)
z,

which are illustrated in Fig. 2(a). Here (· · · )z represents the z
component perpendicular to the plane, and it can be negative
depending on the relative angles between the two vectors. A1

and A2 are the Brillouin zone areas of the individual moiré pat-
terns of λ = α and β, respectively, while A3 and A4 are cross
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FIG. 6. (a) Color map of the density of states (DOS) of series I [(θα, θβ ) = (0, θβ )], plotted against θβ and energy. The array of bars at the
top represents θβ listed in Table I. (c) The lower part of (a), where the first-order gaps of the single moiré pattern λ = α and β are highlighted
by red and blue curves, respectively, and higher-order gaps are marked by green curves. (b) The corresponding map of the energy gaps with
the vertical axis converted to the electron density, where the size of the black dots represents the gap width.

FIG. 7. Plots similar to Fig. 6 for series II [(θα, θβ ) = (θ,−θ )]. The vertical lines labeled by pmn, qmn, rmn represent the commensurate
angles defined in Eq. (10), and the numbers at the top (0, 30, . . . , 120) indicate the relative angle between the two moiré patterns, φβ − φα .

035306-6



FRACTAL ENERGY GAPS AND TOPOLOGICAL … PHYSICAL REVIEW B 104, 035306 (2021)

terms which combine the reciprocal vectors of the different
moiré patterns. We can also define two more unit areas,

A5 = (
Gα

2 × Gβ

1

)
z, A6 = (

Gα
2 × Gβ

2

)
z, (20)

which are shown as dashed parallelograms in Fig. 2. In the
hBN/graphene/hBN system, however, they are not indepen-
dent and can be expressed as A5 = −A3 − A4 and A6 = A3,
considering that the angle between Gλ

1 and Gλ
2 is fixed to 120◦.

Therefore, a complete set of independent unit areas is given
by (A1, A2, A3, A4). The areas A1, . . . , A6 can be regarded as
the projection of the faces of a four-dimensional hypercube
onto the physical 2D plane, which is analogous to the general
argument of a quasicrystal [55].

In a conventional periodic 2D system with primitive re-
ciprocal lattice vectors G1 and G2, the electronic spectrum is
separated into Bloch subbands, each of which accommodates
the electron density |G1 × G2|/(2π )2. In a doubly periodic
2D system, in contrast, the areas A1, . . . , A4 all serve as units
of the spectrum separation. More specifically, we find that the
electron density (per spin and valley) from the Dirac point to
any gap in the hBN/graphene/hBN system can be uniquely
expressed by four integers, m1, m2, m3, m4, as

ne = (m1A1 + m2A2 + m3A3 + m4A4)/(2π )2. (21)

These integers never change as long as the gap survives in a
continuous change of the moiré pattern.

Figure 6(c) shows m1, m2, m3, m4 found for some major
gaps in case I. Figure 6(b) is the same plot, but with the
vertical axis being the electron density ne, and the black
dots represent spectral gaps, with the size indicating gap
width. Here the integers m1, . . . , m4 are identified from the
commensurate approximants as follows. In a commensurate
case, A1, A2, A3, and A4 have the greatest common divisor
ASM = (GSM

1 × GSM
2 )z (the area of the first Brillouin zone for

the supermoiré period), so they can be written as Ai = siASM

with integers si (i = 1, 2, 3, 4). ne is also quantized in units
of ASM/(2π )2, and each band gap is characterized by an
integer t = ne/[ASM/(2π )2], which is the number of occupied
subbands measured from the Dirac point. Then Eq. (21) be-
comes the Diophantine equation t = m1s1 + m2s2 + m3s3 +
m4s4. For each gap in Fig. 6(c), we have as many Diophantine
equations as the number of the data points (i.e., the differ-
ent systems), and (m1, m2, m3, m4) is obtained as a unique
solution of the set of equations. Here note that the area
m1A1 + m2A2 + m3A3 + m4A4 is a continuous function of the
twist angle, while ASM (and thus t, si) can be defined only for
commensurate systems and it discontinuously changes with
changing the twist angle. This result indicates that the same
(m1, m2, m3, m4) are shared by infinitely many commensurate
approximants (with ASM ranging from zero to infinity) which
exist in close vicinity to a specific (θα, θβ ), and hence, it is
valid in the limit of ASM → ∞, i.e., incommensurate systems.

Figures 7(b) and 7(c) are similar plots for case II. Here
the condition |θα| = |θβ | forces A1 = A2, and then m1 and
m2 become indeterminate. We can resolve the two inte-
gers by considering an infinitesimal rotation of either the
top or bottom hBN layer, and it turns out that m1 = m2

for any gaps in case II. This is explicitly proved as fol-

lows. By starting from a case-II system (θα, θβ ) = (θ,−θ ),
we can consider two distinct systems, X : (θα, θβ ) = (θ +
δθ,−θ ) and X ′ : (θα, θβ ) = (θ,−θ − δθ ). Systems X and
X ′ are actually identical if we turn the whole system 180◦
with respect to an in-plane axis, and hence, they have ex-
actly the same energy spectrum. The same energy gap is
labeled by a different set of integers as mi and m′

i for X
and X ′, respectively, which satisfy

∑
i miAi = ∑

i m′
iA

′
i. Con-

sidering that the layers λ = α, β are interchanged in the
180◦-rotation process, the unit areas of X and X ′ are re-
lated by (A1, A2, A3, A4) = (A′

2, A′
1, A′

3, A′
4), which leads to

the condition (m1, m2, m3, m4) = (m′
2, m′

1, m′
3, m′

4). When the
gap survives in the limit of δθ → 0, we have mi = m′

i,
and hence, we conclude m1 = m2. The constraint m1 = m2

explains why the first-order gap of the individual moiré poten-
tial, (±1, 0, 0, 0) and (0,±1, 0, 0), cannot open in Fig. 7(b).

Figures 6 and 7 also include (θα, θβ ) = (0◦, 0◦), where
the two hBNs have the exact same periodicity. At (0◦, 0◦),
the spectrum has a series of the Bloch gaps of a single
moiré pattern, where the electronic density ne is quantized
into integer multiples of A1/(2π ) = A2/(2π ). In Figs. 6 and
7, however, most of these gaps are smeared in averaging
over 
r0, leaving only the (0,0,0,0) gap at the Dirac point.
This result also agrees with the above statement that gaps of
(m, 0, 0, 0) and (0, m, 0, 0) with nonzero m are not allowed
(cannot be a continuous region on changing the twist angle)
for (θα, θβ ) = (θ,−θ ).

The constraint among the six unit areas A1, . . . , A6 can be
broken by uniformly distorting either the top or bottom hBN
layer such that 120◦ symmetry is broken. If we extend the
parameter space to such distorted systems, we should need
six integers (m1, · · · , m6) to characterize minigaps, where the
electron density is given by

∑6
i=1 miAi. This is similar to the

situation in series II, where m1 and m2 can be resolved by
breaking the condition A1 = A2.

C. Quasi-Brillouin zones

Actually, the area m1A1 + m2A2 + m3A3 + m4A4 can be
associated with a specific region in momentum space, which
is referred to as the quasi-Brillouin zone. In a conventional
periodic 2D system defined by G1 and G2, the Brillouin zones
(n = 1, 2, 3, . . . ) are defined by a series of certain regions
bounded by the Bragg planes, i.e., the perpendicular bisectors
of the reciprocal vectors n1G1 + n2G2 [56]. There all the Bril-
louin zones have an equal area of |G1 × G2|, and therefore,
the carrier density below any gap is quantized to an integer
multiple of the area. In a doubly periodic 2D system, similarly,
we can define a quasi-Brillouin zone as an area bound by the
Bragg planes for composite reciprocal vectors pGα

1 + qGα
2 +

rGβ

1 + sGβ

2 . In conventional three-dimensional quasicrystals
such as Al-Mn alloys, the idea of the quasi-Brillouin zones
was used to explain the pseudogaps and the stability of the
system [57]. In an incommensurate case, generally, momen-
tum space is filled by infinitely many Bragg planes, and
there is no systematic way to define quasi-Brillouin zones
as in the periodic case. But here we claim that each single
gap in the spectrum can be associated with a specific figure,
and the area is equal to m1A1 + m2A2 + m3A3 + m4A4. Such
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FIG. 8. (a) Quasi-Brillouin zones of (θα, θβ ) = (0◦, 1.1908◦), where thick lines in different colors correspond to the four gaps indicated
in (c). Thin lines are the Bragg planes corresponding to different reciprocal lattice vectors. For instance, the red lines are the perpendicular
bisector of Gα

1 and its 60n◦ rotation. (b) Quasi-Brillouin zone of the gap (2, 1, 2,−2), where x and x′ represent a pair of boundary segments
connected by the moiré potential. (c) Band structure on a path from X to Y shown in (a) calculated for (0◦, 1.1908◦) with the moiré potentials
reduced by the factor η (0 � η � 1). The black solid lines represent the band dispersion plotted in the extended zone scheme, and the blue dots
represent the spectral weight A(q, ε). The bottom panels show the same plot without the band lines.

figures include a simple hexagon defined by a single recip-
rocal vector as considered in previous works [25,27,28], but
more generally, they can be a nonconvex polygon composed
of multiple segments of different Bragg planes, as shown in
Fig. 8(a).

The shape of the quasi-Brillouin zone for a given gap
can be specified by the plain wave projection with the zero-
potential limit as follows. Let us explain the scheme using a
simple 1D Hamiltonian with a single periodic potential, H =
−∂2/∂x2 + 2V0 cos Gx, where G = 2π . The eigenenergy and
the eigenfunctions are labeled as εnk and |ψnk〉, respectively,
where n is the band index and k is the Bloch wave number
in the first Brillouin zone (−π � k � π ). Figure 9 shows

the band structures calculated for different potential ampli-
tudes, V0 = 0, 5, 10. The black solid lines represent the band
dispersion εnk plotted in the extended zone scheme, and the
size of overlapping blue points represents the spectral weight
projected to the plain wave, or

A(q, ε) =
∑
n,k

|〈q|ψnk〉|2δ(ε − εnk ), (22)

where |q〉 = eiqx is the plain wave, with −∞ < q < ∞, and
the summation in k is taken over the first Brillouin zone. The
pink regions indicate the first and second energy gaps. With
decreasing potential amplitude V0, the gaps narrow, and the
spectral weight approaches a simple parabola, ε = q2. In the
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FIG. 9. Band structure of a 1D Hamiltonian H = −∂2/∂x2 +
2V0 cos Gx, with V0 = 0, 5, 10. The black solid lines represent the
band dispersion εnk in the extended zone scheme, and the size of the
blue points represents the spectral weight projected to the plain wave
A(q, ε).

limit of V0 → 0, we can specify the points on the parabola
at which the energy gap opens in an infinitesimal V0 (marked
by red circles). These points actually determine the Brillouin
zone boundary.

The same strategy works for the double period system
as well. In our hBN/graphene/hBN system, we define the
spectral weight as

A(q, ε) =
∑

α

∑
X

|〈q, X |ψα〉|2δ(ε − εα ), (23)

where εα and |ψα〉 are the eigenenergy and the eigenstates of
the system and |q, X 〉 is the plain wave basis of the sublattice
X = A, B of the monolayer graphene. For example, we take
the commensurate approximant for (θα, θβ ) = (0◦, 1.1908◦)
considered in Figs. 4 and 5 and calculate the eigenstates of
the Hamiltonian (11) with the moiré potentials (V α

hBN,V β

hBN)
reduced by the factor η (0 � η � 1). Figure 8(c) shows the
band structures from η = 0 to 1, calculated on a path from
X (graphene’s Dirac point) to a certain point Y , shown in
Fig. 8(a). The black solid lines represent the band dispersion
plotted in the extended zone scheme, and the blue dots rep-
resent the spectral weight A(q, ε). At η = 0, we just have
graphene’s Dirac cone. By tracing the gaps in the spectral
weight while decreasing η from 1 to 0, we can specify the
gap opening points just as in the 1D case.

In Fig. 8(c), we consider four gaps with different in-
dexes of (m1, ..., m4). Here (−1, 0, 0, 0) is the first-order gap
of the moiré potential λ = α, and others are double moiré
gaps caused by the coexistence of the two moiré patterns.
In the limit η → 0, we find the gap-opening wave numbers
P1, . . . , P4 for these gaps. By following the same procedure
for paths in different directions, we finally obtain the quasi-
Brillouin zone on the (kx, ky) plane as the traces of P1, . . . , P4,
which are illustrated as thick colored lines in Fig. 8(a).
The quasi Brillouin zone is composed of segments of the
Bragg planes, which are shown as thin lines. The first-order
gap (−1, 0, 0, 0) gives a regular hexagon, which is the first
Brillouin zone of the moiré potential of λ = α. The double
moiré gap (−1,−1,−1, 1) also gives a hexagon, but with
a smaller size, which corresponds to the first Brillouin zone
of small reciprocal lattice vectors Gα

2 + Gβ

1 . In contrast, the

gaps (2, 1, 2,−2) and (−4,−2,−2,−2) are associated with
flowerlike complex polygons composed of multiple Bragg
line segments. In each case, the area of the polygon is shown
to be exactly equal to m1A1 + m2A2 + m3A3 + m4A4. Just
like the conventional Brillouin zone in a periodic system,
the quasi-Brillouin zone is also a closed object in that any
sides of the boundary are precisely stuck to the other side,
and one can never go out of the region by crossing the
boundary.

The quasi-Brillouin zone continuously changes when
changing the twist angle, regardless of the unit cell size
of the commensurate approximants. Figure 10 shows the
same plot calculated for a slightly different angle, (θα, θβ ) =
(0, 1.2967◦) [labeled (iii) in Fig. 6]. The supermoiré unit area
of the system is about 10 times greater than that of Fig. 8(c),
and accordingly, we see many more band lines due to the band
folding into the smaller Brillouin zone. If we see the spectral
weight (blue dots), however, we find that it exhibits a structure
similar to Fig. 8(c) [except that the gap (−1,−1,−1, 1) is
not fully open], and the gaps close at the Bragg planes with
the same indexes in the limit of η → 0. As a result, we end
up with nearly the same shape for the quasi-Brillouin zone as
shown in Fig. 11, plot (iii). In Fig. 10, we see a number of extra
band lines just overlap but hardly contribute to the spectral
weight, and therefore. they are neglected in the identification
of the zone boundary. Because of this, the quasi-Brillouin
zone obtained here is generally different from one obtained
by sorting all the eigenvalues in energy and tracking the same
level index in the limit of the zero potential [58], which is fully
affected by all the overlapping band lines.

In Fig. 11, we show the continuous evolution of the quasi-
Brillouin zones as a function of the twist angle from plot (i)
to plot (v) (corresponding to the labels in Fig. 6), where the
shape continuously changes regardless of the discontinuous
change of the rigorous period of the approximants. The area
of the quasi Brillouin zone is always equal to m1A1 + m2A2 +
m3A3 + m4A4.

Last, we comment on connections of the integers mi to the
topological properties. We have several analogous situations
in which the electron density is quantized by topological
numbers. In a singly periodic system (the usual Bloch sys-
tem), the electron density is quantized as ne = mA/(2π )d ,
where A is the unit volume of the d-dimensional Brillouin
zone and the integer m (the number of bands) is a zero-
dimensional topological number, just as mentioned in Sec. I.
For double period systems, we have an analogous situation
in a 1D system H = p2/(2m) + Vα (x) + Vβ (x), where Vα and
Vβ are periodic potentials with wave numbers Gα and Gβ ,
respectively. The electron density below each gap is given
by ne = (mαGα + mβGβ )/(2π ) with integers mα and mβ . At
the same time, mα and mβ are also related to the adiabatic
charge pumping [41–44], where mλ (λ = α, β ) represents the
number of pumped electrons under an adiabatic translation of
Vλ by a single period. When the ratio Gα/Gβ is rational (i.e.,
the two periods are commensurate), in particular, mα and mβ

are expressed as Chern numbers. For irrational systems, the
Chern number cannot be defined, while a very recent work
proposed a mathematical scheme to topologically character-
ize the charge pumping in 1D quasiperiodic systems [59].
The present system, where the electron density is given by
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FIG. 10. Plot similar to Fig. 8(c) calculated for (θα, θβ ) = (0◦, 1.2967◦).

ne = ∑
i miAi/(2π )2, is a natural extension of the problem

to two dimensions, and it strongly implies that integers
m1, . . . , m4 are also related to the charge pumping in two
dimensions. Actually, the 2D adiabatic pumping in the com-
mensurate case is shown to be characterized by sliding Chern
numbers [44,60,61], and we expect that m1, . . . , m4 should
be related to these numbers, while we leave verifying these
relationships for future works. Further studies on this problem

would shed light on a hidden relationship between quasicrys-
tal and topological physics.

IV. CONCLUSION

We theoretically studied the electronic structure of the
hBN/graphene/hBN double moiré system as a function of
the top and bottom twist angles and demonstrated that the

FIG. 11. Quasi-Brillouin zones similar to Fig. 8(a) calculated for five different angles. The indexes (i) to (v) correspond to the labels in
Fig. 6.
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spectrum consists of a number of fractal minigaps. Specifi-
cally, each energy gap is characterized by a set of integers
(m1, . . . , m4), where the electron density below the gap is
given by ne = ∑

i miAi/(2π )2 with characteristic momentum
space areas A1, . . . , A4. The area

∑
i miAi corresponds to

a quasi-Brillouin zone bounded by multiple Bragg planes,
which can be uniquely identified by the spectral distribution
in the zero-potential limit. In changing the twist angles, the
quasi-Brillouin zone also changes continuously regardless of
the commensurability of the double moiré pattern.

We neglected the lattice relaxation effect throughout this
work for simplicity, while the general theoretical scheme to
characterize the band gap is valid as long as the system has
a well-defined double period. The band-gap characterization
proposed in this work should also be useful in other quasiperi-
odic 2D systems, such as twisted trilayer graphene [34–37],

twisted bilayer graphene on hBN [31–33], and 30◦ twisted
bilayer graphene [46–49].
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APPENDIX: LIST OF COMMENSURATE APPROXIMANTS

We present the list of approximate commensurate systems
in series I in Table I, and those in series II in Table II. Tables I
and II show the twist angle, a set of integers (nα

1 , nα
2 , nβ

1 , nβ

2 ),
the supermoiré period LSM, and the correction 
L from the
original incommensurate structure.

TABLE I. List of approximate commensurate systems of series I, (θα, θβ ) = (0, θ ). LSM (nm) is the supermoiré period, and 
L (nm) is
the correction from the original incommensurate structure (see the text).

θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L

0.0000 1 0 1 0 13.92 0 0.6946 6 6 −1 13 144.64 0.4885 1.2855 10 9 −10 30 229.12 0.1110
0.0992 6 6 5 7 144.64 0.0120 0.6985 11 1 6 10 160.51 0.4494 1.2967 5 1 0 9 77.49 0.0913
0.1083 11 11 9 13 265.18 0.0262 0.7009 11 6 2 17 207.84 0.3282 1.3109 8 7 −8 24 180.94 0.3575
0.1191 5 5 4 6 120.54 0.0144 0.7145 5 0 3 4 69.59 0.2464 1.3152 9 1 1 15 132.77 0.2972
0.1323 9 9 7 11 216.97 0.0319 0.7320 4 9 −5 16 160.51 0.1011 1.3238 3 10 −14 22 164.09 0.0440
0.1489 4 4 3 5 96.43 0.0179 0.7372 12 5 3 17 210.62 0.3335 1.3296 7 10 −13 28 205.97 0.1582
0.1624 11 0 10 2 153.10 0.0337 0.7443 4 4 −1 9 96.43 0.3654 1.3477 6 9 −12 25 182.01 0.2393
0.1701 7 7 5 9 168.75 0.0408 0.7513 7 12 −6 23 231.65 0.1193 1.3480 10 9 −11 31 229.12 0.3407
0.1786 10 0 9 2 139.18 0.0370 0.7550 11 4 3 15 187.25 0.3104 1.3526 10 5 −5 24 184.12 0.1326
0.1985 3 3 2 4 72.32 0.0237 0.7655 7 0 4 6 97.43 0.3867 1.3599 10 1 1 17 146.64 0.1881
0.2137 11 3 9 6 177.70 0.4663 0.7775 3 10 −7 17 164.09 0.1983 1.3666 9 8 −10 28 205.03 0.2428
0.2165 11 11 7 15 265.18 0.1029 0.7822 9 7 −1 18 193.36 0.3986 1.3831 2 10 −15 21 154.99 0.0052
0.2233 8 0 7 2 111.35 0.0459 0.7852 12 10 −2 25 265.54 0.0584 1.3900 8 7 −9 25 180.94 0.1668
0.2382 5 5 3 7 120.54 0.0563 0.7939 3 3 −1 7 72.32 0.3046 1.4086 2 6 −9 14 100.37 0.1440
0.2457 12 5 9 9 210.62 0.3425 0.8042 11 9 −2 23 241.47 0.0927 1.4207 7 6 −8 22 156.85 0.1219
0.2481 12 12 7 17 289.29 0.1464 0.8087 8 6 −1 16 169.32 0.1624 1.4356 4 8 −12 21 147.30 0.0359
0.2552 7 0 6 2 97.43 0.0521 0.8203 5 3 0 9 97.43 0.3427 1.4492 6 10 −15 28 194.86 0.2768
0.2646 9 9 5 13 216.97 0.1245 0.8273 10 8 −2 21 217.41 0.2860 1.4571 10 8 −11 31 217.41 0.3157
0.2707 11 11 6 16 265.18 0.1589 0.8344 12 8 −1 23 242.67 0.1292 1.4625 6 5 −7 19 132.77 0.1229
0.2977 2 2 1 3 48.21 0.0347 0.8440 7 5 −1 14 145.31 0.1614 1.4716 10 3 −3 22 164.09 0.0317
0.3248 11 0 9 4 153.10 0.1302 0.8518 9 5 0 16 171.03 0.0635 1.4904 9 7 −10 28 193.36 0.2114
0.3308 9 9 4 14 216.97 0.1911 0.8577 11 5 1 18 197.33 0.1873 1.5103 3 8 −13 20 137.08 0.1014
0.3402 7 7 3 11 168.75 0.1568 0.8606 11 7 −1 21 218.74 0.3712 1.5228 5 4 −6 16 108.71 0.1957
0.3450 12 7 7 13 231.65 0.1751 0.8931 2 0 1 2 27.84 0.1415 1.5330 8 6 −9 25 169.32 0.0362
0.3573 5 0 4 2 69.59 0.0709 0.9287 5 11 −9 22 197.33 0.0240 1.5516 3 2 −3 9 60.67 0.1985
0.3721 8 8 3 13 192.86 0.2124 0.9346 5 9 −7 19 171.03 0.0970 1.5689 4 10 −17 26 173.84 0.1515
0.3789 11 11 4 18 265.18 0.3021 0.9423 5 7 −5 16 145.31 0.3127 1.5785 1 8 −14 17 118.92 0.0345
0.3970 3 3 1 5 72.32 0.0899 0.9498 3 7 −6 14 123.71 0.4554 1.5898 7 5 −8 22 145.31 0.2386
0.4168 10 10 3 17 241.07 0.3281 0.9519 8 12 −9 27 242.67 0.1934 1.5999 1 9 −16 19 132.77 0.3700
0.4253 7 7 2 12 168.75 0.2385 0.9662 3 5 −4 11 97.43 0.1633 1.6065 8 5 −8 24 158.08 0.1204
0.4303 11 7 5 14 218.74 0.0922 0.9777 6 8 −6 19 169.32 0.1629 1.6173 4 3 −5 13 84.66 0.3899
0.4466 4 0 3 2 55.67 0.0861 0.9829 12 5 0 21 210.62 0.0849 1.6210 9 5 −8 26 171.03 0.3885
0.4631 9 9 2 16 216.97 0.3587 0.9923 3 3 −2 8 72.32 0.4324 1.6281 2 10 −18 23 154.99 0.1456
0.4673 5 9 −1 14 171.03 0.2277 1.0043 7 9 −7 22 193.36 0.1051 1.6406 5 3 −5 15 97.43 0.1220
0.4763 5 5 1 9 120.54 0.2098 1.0108 4 6 −5 14 121.34 0.3894 1.6590 6 3 −5 17 110.47 0.0304
0.4872 11 0 8 6 153.10 0.2776 1.0250 8 10 −8 25 217.41 0.1063 1.6735 7 3 −5 19 123.71 0.1045
0.4962 6 6 1 11 144.64 0.2711 1.0314 8 3 0 14 137.08 0.1263 1.6853 8 3 −5 21 137.08 0.1239
0.5104 7 0 5 4 97.43 0.1921 1.0524 1 8 −9 14 118.92 0.3587 1.6950 9 3 −5 23 150.55 0.1037
0.5210 8 8 1 15 192.86 0.3947 1.0909 8 10 −9 26 217.41 0.3308 1.7030 10 3 −5 25 164.09 0.0541
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TABLE I. (Continued.)

θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L

0.5262 1 8 −4 11 118.92 0.4765 1.1010 1 6 −7 11 91.27 0.0852 1.7861 1 0 0 2 13.92 0.1866
0.5293 9 9 1 17 216.97 0.4567 1.1126 9 6 −4 21 182.01 0.2095 1.8700 3 10 −21 27 164.09 0.3471
0.5359 10 0 7 6 139.18 0.2995 1.1199 2 7 −8 14 113.93 0.3313 1.8732 2 10 −21 25 154.99 0.1910
0.5391 12 9 3 19 253.99 0.4594 1.1381 2 10 −12 19 154.99 0.2998 1.8781 3 9 −19 25 150.55 0.3026
0.5440 1 11 −6 15 160.51 0.1779 1.1485 5 10 −11 23 184.12 0.3826 1.8822 2 9 −19 23 141.26 0.2703
0.5954 1 1 0 2 24.11 0.0625 1.1908 1 1 −1 3 24.11 0.1884 1.8878 3 8 −17 23 137.08 0.2860
0.6429 12 1 7 10 174.40 0.0461 1.2305 10 6 −5 24 194.86 0.3106 1.8932 2 8 −17 21 127.56 0.3269
0.6495 11 0 7 8 153.10 0.4613 1.2364 9 5 −4 21 171.03 0.3948 1.8995 3 7 −15 21 123.71 0.3057
0.6518 9 12 −3 23 253.99 0.1949 1.2402 10 3 −1 19 164.09 0.2320 1.9069 2 7 −15 19 113.93 0.3527
0.6576 9 1 5 8 132.77 0.2049 1.2487 9 2 0 16 141.26 0.3119 1.9140 3 6 −13 19 110.47 0.3742
0.6698 8 0 5 6 111.35 0.3536 1.2713 6 2 −1 12 100.37 0.3496 1.9243 2 6 −13 17 100.37 0.3359
0.6900 12 7 2 19 231.65 0.0804 1.2809 5 8 −10 21 158.08 0.2224 1.9345 10 3 −7 28 164.09 0.0546

TABLE II. List of approximate commensurate systems of series II, (θα, θβ ) = (θ,−θ ). LSM (nm) is the supermoiré period, and 
L (nm)
is the correction from the original incommensurate structure.

θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L

0.0000 1 0 1 0 13.92 0 0.3082 12 5 17 −5 201.65 0 0.5656 13 12 25 −12 263.73 0
0.0496 11 13 13 11 289.28 0 0.3155 7 3 10 −3 118.21 0 0.5668 13 13 26 −12 274.07 0.2702
0.0541 5 6 6 5 132.59 0 0.3209 3 10 10 3 156.56 0 0.5679 14 13 27 −13 284.55 0
0.0576 15 1 16 −1 215.73 0 0.3230 12 14 23 −1 299.13 0.2946 0.5690 15 13 28 −14 295.14 0.2507
0.0595 9 11 11 9 241.07 0 0.3251 9 4 13 −4 152.96 0 0.5699 15 14 29 −14 305.36 0
0.0616 14 1 15 −1 201.81 0 0.3311 2 7 7 2 108.38 0 0.5972 1 0 1 −1 12.02 0
0.0662 4 5 5 4 108.48 0 0.3339 15 13 26 −4 321.09 0.2727 0.6252 14 15 29 −15 298.26 0
0.0715 12 1 13 −1 173.97 0 0.3353 13 6 19 −6 222.48 0 0.6262 14 14 28 −15 287.79 0.2446
0.0744 7 9 9 7 192.85 0 0.3383 15 7 22 −7 257.24 0 0.6273 13 14 27 −14 277.44 0
0.0777 11 1 12 −1 160.05 0 0.3406 3 11 11 3 168.59 0 0.6285 12 14 26 −13 267.23 0.2632
0.0851 3 4 4 3 84.37 0 0.3451 4 15 15 4 228.79 0 0.6297 12 13 25 −13 256.63 0
0.0916 11 15 15 11 313.37 0 0.3577 2 1 3 −1 34.76 0 0.6311 12 12 24 −13 246.15 0.2847
0.0940 9 1 10 −1 132.21 0 0.3726 3 13 13 3 192.63 0 0.6326 11 12 23 −12 235.81 0
0.0992 5 7 7 5 144.63 0 0.3765 15 8 23 −8 264.13 0 0.6360 10 11 21 −11 215.00 0
0.1051 8 1 9 −1 118.29 0 0.3794 2 9 9 2 132.43 0 0.6402 9 10 19 −10 194.18 0
0.1083 9 13 13 9 265.15 0 0.3817 13 15 26 −4 316.44 0.2687 0.6453 8 9 17 −9 173.37 0
0.1117 15 2 17 −2 222.67 0 0.3833 11 6 17 −6 194.61 0 0.6519 7 8 15 −8 152.55 0
0.1191 2 3 3 2 60.26 0 0.3858 3 14 14 3 204.65 0 0.6559 13 15 28 −15 284.29 0
0.1276 13 2 15 −2 194.83 0 0.3888 9 5 14 −5 159.86 0 0.6606 6 7 13 −7 131.74 0
0.1295 9 14 14 9 277.19 0 0.3975 1 5 5 1 72.23 0 0.6660 11 13 24 −13 242.66 0
0.1323 7 11 11 7 216.93 0 0.4024 13 12 24 −6 280.47 0.2992 0.6724 5 6 11 −6 110.92 0
0.1374 6 1 7 −1 90.45 0 0.4039 12 7 19 −7 215.44 0 0.6775 15 1 15 −16 180.10 0
0.1407 14 14 20 7 334.35 0.2842 0.4128 5 3 8 −3 90.34 0 0.6802 9 11 20 −11 201.03 0
0.1418 8 13 13 8 253.08 0 0.4209 13 8 21 −8 236.26 0 0.6832 14 1 14 −15 168.09 0
0.1489 3 5 5 3 96.41 0 0.4222 14 14 27 −7 311.94 0.2651 0.6898 4 5 9 −5 90.11 0
0.1567 7 12 12 7 228.97 0 0.4260 1 6 6 1 84.25 0 0.6976 12 1 12 −13 144.05 0
0.1624 5 1 6 −1 76.53 0 0.4302 12 13 24 −6 277.82 0.2963 0.7019 7 9 16 −9 159.40 0
0.1702 5 9 9 5 168.71 0 0.4319 11 7 18 −7 201.50 0 0.7067 11 1 11 −12 132.03 0
0.1729 14 3 17 −3 215.68 0 0.4352 14 9 23 −9 257.08 0 0.7177 3 4 7 −4 69.29 0
0.1752 6 11 11 6 204.86 0 0.4374 2 13 13 2 180.51 0 0.7274 11 15 26 −15 256.34 0
0.1766 15 13 22 4 332.86 0.2827 0.4473 3 2 5 −2 55.58 0 0.7311 9 1 9 −10 107.99 0
0.1787 9 2 11 −2 139.15 0 0.4561 2 15 15 2 204.55 0 0.7390 5 7 12 −7 117.76 0
0.1813 8 15 15 8 277.16 0 0.4602 13 9 22 −9 243.14 0 0.7478 8 1 8 −9 95.97 0
0.1848 13 3 16 −3 201.76 0 0.4640 1 8 8 1 108.29 0 0.7527 9 13 22 −13 214.70 0
0.1985 1 2 2 1 36.15 0 0.4710 7 5 12 −5 131.98 0 0.7579 15 2 15 −17 179.93 0
0.2102 15 4 19 −4 236.52 0 0.4773 1 9 9 1 120.30 0 0.7694 2 3 5 −3 48.47 0
0.2144 11 3 14 −3 173.91 0 0.4802 15 11 26 −11 284.77 0 0.7827 13 2 13 −15 155.89 0
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TABLE II. (Continued.).

θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L

0.2166 7 15 15 7 265.07 0 0.4882 4 3 7 −3 76.40 0 0.7856 9 14 23 −14 221.54 0
0.2195 6 13 13 6 228.93 0 0.4972 1 11 11 1 144.34 0 0.7902 7 11 18 −11 173.06 0
0.2207 13 15 22 4 330.18 0.2804 0.5012 9 7 16 −7 173.61 0 0.7924 13 12 24 −18 238.22 0.2541
0.2234 7 2 9 −2 111.30 0 0.5049 1 12 12 1 156.36 0 0.7982 6 1 6 −7 71.93 0
0.2291 4 9 9 4 156.63 0 0.5115 5 4 9 −4 97.21 0 0.8034 14 14 27 −20 265.35 0.2255
0.2331 10 3 13 −3 159.99 0 0.5172 1 14 14 1 180.40 0 0.8052 8 13 21 −13 200.71 0
0.2383 3 7 7 3 120.48 0 0.5198 11 9 20 −9 215.24 0 0.8166 3 5 8 −5 76.12 0
0.2453 5 12 12 5 204.81 0 0.5222 1 15 15 1 192.41 0 0.8293 7 12 19 −12 179.89 0
0.2553 3 1 4 −1 48.69 0 0.5266 6 5 11 −5 118.03 0 0.8315 12 13 24 −18 233.83 0.2494
0.2648 5 13 13 5 216.84 0 0.5323 13 11 24 −11 256.87 0 0.8386 5 1 5 −6 59.91 0
0.2708 3 8 8 3 132.51 0 0.5372 7 6 13 −6 138.84 0 0.8514 5 9 14 −9 131.42 0
0.2733 14 12 23 −1 303.06 0.2984 0.5414 15 13 28 −13 298.50 0 0.8559 14 3 14 −17 167.71 0
0.2750 11 4 15 −4 180.82 0 0.5450 8 7 15 −7 159.66 0 0.8597 6 11 17 −11 159.07 0
0.2765 0 26 15 15 349.32 0.2585 0.5511 9 8 17 −8 180.47 0 0.8620 15 13 26 −22 258.22 0.2193
0.2781 4 11 11 4 180.69 0 0.5558 10 9 19 −9 201.29 0 0.8656 9 2 9 −11 107.80 0
0.2822 8 3 11 −3 132.13 0 0.5597 11 10 21 −10 222.10 0 0.8699 8 15 23 −15 214.36 0
0.2883 13 5 18 −5 215.58 0 0.5629 12 11 23 −11 242.92 0 0.8759 13 3 13 −16 155.69 0
0.2979 1 3 3 1 48.18 0 0.5644 12 12 24 −11 253.25 0.2929 0.8993 1 2 3 −2 27.65 0
0.9196 15 4 15 −19 179.52 0 1.2803 10 10 15 −19 150.41 0.2505 1.6862 9 7 8 −16 100.24 0.2600
0.9269 11 3 11 −14 131.63 0 1.2803 15 4 10 −20 150.66 0.2505 1.6904 17 16 18 −33 205.86 0.2518
0.9308 7 15 22 −15 200.35 0 1.2830 16 9 16 −25 190.21 0 1.6944 9 8 9 −17 105.91 0
0.9358 6 13 19 −13 172.70 0 1.2851 17 14 22 −30 232.97 0.1611 1.7020 10 8 9 −18 111.94 0.2296
0.9380 13 15 26 −22 248.88 0.2114 1.2941 1 5 6 −5 48.03 0 1.7087 10 9 10 −19 117.63 0
0.9428 7 2 7 −9 83.75 0 1.3054 13 12 18 −24 185.83 0.1982 1.7149 11 9 10 −20 123.64 0.2056
0.9488 11 11 20 −18 194.36 0.2675 1.3089 12 7 12 −19 142.58 0 1.7203 11 10 11 −21 129.35 0
0.9530 4 9 13 −9 117.40 0 1.3150 17 10 17 −27 201.96 0 1.7255 12 10 11 −22 135.35 0.1860
0.9566 14 12 23 −22 229.04 0.2255 1.3184 3 16 19 −16 150.88 0 1.7301 12 11 12 −23 141.07 0
0.9602 10 3 10 −13 119.60 0 1.3297 5 3 5 −8 59.38 0 1.7344 13 11 12 −24 147.05 0.1699
0.9641 13 10 20 −20 202.25 0.2533 1.3405 3 17 20 −17 157.66 0 1.7344 12 12 13 −24 146.88 0.1699
0.9696 3 7 10 −7 89.76 0 1.3489 13 8 13 −21 154.32 0 1.7383 13 12 13 −25 152.79 0
0.9824 5 12 17 −12 151.86 0 1.3518 14 14 20 −27 203.56 0.1730 1.7420 14 12 13 −26 158.76 0.1563
1.0009 3 1 3 −4 35.86 0 1.3608 1 6 7 −6 54.81 0 1.7454 14 13 14 −27 164.51 0
1.0155 4 17 22 −14 190.69 0.2558 1.3710 12 13 18 −24 180.17 0.1922 1.7486 14 14 15 −28 170.33 0.1448
1.0186 5 13 18 −13 158.67 0 1.3750 11 7 11 −18 130.50 0 1.7515 15 14 15 −29 176.23 0
1.0248 17 6 17 −23 203.11 0 1.3832 14 9 14 −23 166.06 0 1.7516 16 13 14 −29 176.50 0.2791
1.0300 3 8 11 −8 96.56 0 1.3884 2 13 15 −13 116.41 0 1.7543 15 15 16 −30 182.05 0.1348
1.0346 14 12 22 −23 220.48 0.2171 1.3938 5 15 18 −18 148.39 0.2285 1.7569 16 15 16 −31 187.95 0
1.0379 11 4 11 −15 131.39 0 1.4130 3 2 3 −5 35.56 0 1.7570 15 16 17 −31 187.94 0.2605
1.0438 4 11 15 −11 131.02 0 1.4305 5 17 20 −20 161.63 0.2024 1.7593 17 15 16 −32 193.90 0.1261
1.0471 12 14 23 −22 219.13 0.2158 1.4350 2 15 17 −15 129.96 0 1.7616 17 16 17 −33 199.67 0
1.0518 8 3 8 −11 95.53 0 1.4391 16 11 16 −27 189.54 0 1.7617 16 17 18 −33 199.66 0.2442
1.0571 6 17 23 −17 199.93 0 1.4451 13 9 13 −22 153.98 0 1.8377 0 1 1 −1 6.77 0
1.0636 13 5 13 −18 155.21 0 1.4480 14 17 22 −30 215.83 0.1492 1.9190 17 16 15 −33 187.04 0.2288
1.0668 17 4 14 −22 185.97 0.2495 1.4548 1 8 9 −8 68.37 0 1.9191 16 17 16 −33 187.03 0
1.0825 1 3 4 −3 34.45 0 1.4622 17 12 17 −29 201.27 0 1.9217 16 16 15 −32 181.14 0.1179
1.0969 17 7 17 −24 202.85 0 1.4647 16 4 8 −21 146.01 0.2171 1.9244 16 15 14 −31 175.32 0.2430
1.0992 16 4 13 −21 173.73 0.2583 1.4728 7 5 7 −12 82.85 0 1.9245 15 16 15 −31 175.31 0
1.1029 12 5 12 −17 143.17 0 1.4805 17 4 8 −22 152.73 0.2049 1.9275 15 15 14 −30 169.42 0.1255
1.1108 5 16 21 −16 179.07 0 1.4891 1 9 10 −9 75.14 0 1.9306 15 14 13 −29 163.60 0.2591
1.1176 7 3 7 −10 83.49 0 1.4968 15 11 15 −26 177.44 0 1.9308 14 15 14 −29 163.59 0
1.1239 10 13 20 −20 187.06 0.2343 1.5000 14 2 5 −17 118.35 0.2593 1.9342 14 14 13 −28 157.70 0.1340
1.1285 3 10 13 −10 110.16 0 1.5000 5 12 14 −16 118.61 0.2593 1.9378 12 15 14 −27 152.16 0.2774
1.1328 12 14 22 −23 210.16 0.2070 1.5178 4 3 4 −7 47.29 0 1.9380 13 14 13 −27 151.87 0
1.1371 9 4 9 −13 107.31 0 1.5339 16 2 5 −19 131.89 0.2260 1.9419 13 13 12 −26 145.98 0.1439
1.1422 11 11 18 −20 176.84 0.2434 1.5364 17 13 17 −30 200.90 0 1.9461 11 14 13 −25 140.46 0.2985
1.1495 2 7 9 −7 75.70 0 1.5421 1 11 12 −11 88.68 0 1.9464 12 13 12 −25 140.15 0
1.1554 15 13 22 −26 223.82 0.1901 1.5529 9 7 9 −16 106.31 0 1.9510 12 12 11 −24 134.26 0.1553
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TABLE II. (Continued.).

θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L θ (deg) nα
1 nα

2 nβ

1 nβ

2 LSM 
L

1.1581 13 6 13 −19 154.94 0 1.5630 1 12 13 −12 95.46 0 1.9563 11 12 11 −23 128.43 0
1.1645 15 7 15 −22 178.75 0 1.5697 6 16 18 −21 149.61 0.1929 1.9619 10 12 11 −22 122.70 0.1687
1.1693 3 11 14 −11 116.95 0 1.5811 5 4 5 −9 59.02 0 1.9682 10 11 10 −21 116.71 0
1.1788 4 15 19 −15 158.20 0 1.5970 1 14 15 −14 108.99 0 1.9750 10 10 9 −20 110.81 0.1845
1.1820 6 16 21 −18 179.34 0.2313 1.6042 11 9 11 −20 129.76 0 1.9828 9 10 9 −19 104.99 0
1.2056 2 1 2 −3 23.81 0 1.6110 1 15 16 −15 115.76 0 1.9913 9 9 8 −18 99.08 0.2037
1.2303 4 17 21 −17 171.78 0 1.6235 6 5 6 −11 70.74 0 2.0011 8 9 8 −17 93.27 0
1.2335 2 16 19 −14 151.75 0.2601 1.6346 1 17 18 −17 129.30 0 2.0064 16 17 15 −33 180.60 0.2209
1.2382 3 13 16 −13 130.53 0 1.6398 13 11 13 −24 153.21 0 2.0119 8 8 7 −16 87.36 0.2272
1.2420 17 9 17 −26 202.27 0 1.6538 7 6 7 −13 82.47 0
1.2469 15 8 15 −23 178.46 0 1.6660 15 13 15 −28 176.66 0
1.2532 2 9 11 −9 89.28 0 1.6663 8 6 7 −14 88.54 0.2996
1.2584 13 15 22 −26 212.97 0.1809 1.6715 16 13 15 −29 182.69 0.2888
1.2619 11 6 11 −17 130.83 0 1.6766 8 7 8 −15 94.19 0
1.2675 3 14 17 −14 137.32 0 1.6815 16 15 17 −31 194.13 0.2691
1.2744 9 5 9 −14 107.01 0 1.6860 17 15 17 −32 200.10 0
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