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Fractal defect states in the Hofstadter butterfly
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We investigate the electronic properties in the Bloch electron on a two-dimensional lattice with vacancies
in the uniform magnetic field. We show that a single vacancy site introduced to the system creates a defect
energy level in every single innumerable fractal energy gap in the Hofstadter butterfly. The wave functions of
different defect levels have all different localization lengths depending on their fractal generations, and they can
be described by a single universal function after an appropriate fractal scaling. We also show that each defect
state has its own characteristic orbital magnetic moment, which is exactly correlated to the gradient of the energy
level in the Hofstadter diagram. Probing the spatial nature of the defect-localized states provides a powerful way
to elucidate the fractal nature of the Hofstadter butterfly.
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I. INTRODUCTION

The Hofstadter butterfly is the energy spectrum of Bloch
electrons moving in a two-dimensional (2D) lattice un-
der a uniform magnetic field, which is characterized by a
nested fractal band structure [1–7]. It has been actively stud-
ied in condensed matter physics [8–15] and nonequilibrium
dynamics [16–22], and also from a wide variety of perspec-
tives including mathematics [23–29] and quantum geometry
[30,31]. Experimentally, the evidence of the fractal nature of
the Hofstadter spectrum was found in various systems, such
as GaAs/AlGaAs heterostructures with superlattices [32–34],
ultracold atoms in optical lattices [35–37], graphene-based
moiré superlattices [38–40], photons with the superconduct-
ing qubits [41], and a one-dimensional (1D) acoustic array
[42–44].

Currently, however, the experimental observations of the
butterfly are mostly limited to the measurement of the spectral
structure and the transport properties. Actually, richer fractal
information is encoded in the wave functions of the Hofs-
tadter butterfly, but it is generally considered to be difficult to
access in experiments. The characteristic spatial property of
each wave function is generally averaged out in the physical
observables due to the summation over the Bloch momentum.

In this paper we theoretically propose that the spatial struc-
ture in the Hofstadter system can be elucidated by introducing
a point defect to the system. In an electron system under a
magnetic field, generally, a point disorder potential gives rise
to defect localized states in the energy gaps between Landau
levels [45–51]. The effects of lattice defects on the Hofstadter
spectrum were investigated in some past works [52–59], and
the in-gap defect levels were found at a certain magnetic flux
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[59]. However, it has not been clear how the self-similar nature
is manifested in the defect localized states.

In this article we study the Hofstadter problem with va-
cancy defects in a square lattice to investigate the fractal
properties of defect states. We show that a single vacancy site
introduced to the system creates a defect energy level in every
single innumerable fractal energy gap in the Hofstadter butter-
fly. We find that the wave functions of different defect levels
have all different localization lengths depending on their frac-
tal generations, and importantly, the localization length of any
levels can be approximately described by a single universal
curve after an appropriate fractal scaling. We also find that the
defect states are accompanied by an orbital magnetic moment
due to rotating electric current, and its magnitude exactly
coincides with the gradient of the energy gap in the Hofstadter
diagram. These results give a new quantitative perspective
on the spatial fractal nature of the Hofstadter butterfly, and
provide a powerful way to elucidate the fractal nature of the
Hofstadter butterfly by probing the defect states.

II. FORMULATION

We consider a square lattice with a single-site defect as
illustrated in Fig. 1. We assume that the system is periodic
with N × N supercell and each supercell includes a single
vacancy site. The system is under a uniform magnetic field B
perpendicular to the system. Let φ = Ba2/(h/e) be the num-
ber of magnetic flux quanta per a 1 × 1 plaquette, where a = 1
is the spacing between the lattice points. In what follows, we
consider a single orbital tight-binding Hamiltonian,

H = −t
∑
〈m, n〉

m, n �= d

eiθmn c†
mcn, (1)

where t (> 0) is the hopping parameter, 〈m, n〉 is a pair of the
nearest neighbor sites, c†

n(cn) is the creation (annihilation) op-
erator at site n, d is the site of defects, θmn = −(e/h̄)

∫ m
n A · d�
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FIG. 1. (a) Square lattice with a single point vacancy and (b) its
periodic superlattice with 30 × 30 supercell.

is the Peierls phase [60], and A = (0, Bx, 0) is the vector
potential. We take t = 1 throughout this article. In a perfect
lattice without a defect under a rational magnetic flux φ = p/q
(p, q: coprime integers), the energy band splits into q sub-
bands [5].

The number of total magnetic fluxes penetrating an entire
supercell is � = N2φ. For � = P/Q with coprime integers P
and Q, the eigenstates of the system can be taken as magnetic
Bloch states, which satisfy the following conditions [3,61,62]:

ψ (r + L1) = eikxL1 e−i2πeBL1yψ (r), (2)

ψ (r + L2) = eikyL2ψ (r), (3)

where L1 = (QNa, 0) and L2 = (0, Na) are the primitive lat-
tice vectors of the magnetic unit cell. Then the eigenenergies
and eigenwave functions can be obtained by diagonalizing
a QN2 × QN2 Hamiltonian matrix. We also perform similar
calculations and analyses for a honeycomb lattice with peri-
odic vacancies, which are presented in Appendix A.

III. FRACTAL DEFECT STATES

A. Energy spectrum and wave functions

Figure 2(a) shows the energy spectrum of 30 × 30 super-
lattice with a single-site defect, plotted against the magnetic
flux φ. The red and black dots represent the bulk states and the
defect-localized states, respectively. Here the defect-localized
states are identified by the condition that the wave amplitude
within seven-site distance from the defect point is more than

60% of the total amplitude. By this condition we can detect
most of the localized states except for ones with very large
localization lengths appearing in a close vicinity of x = 0
and 1. The complete classification of the localized/extended
states requires the calculation with infinite superlattice period.
In Fig. 2(a) we observe that a defect level exists in every
single gap, indicating that the spectrum of the defect states
inherits the nested fractal structure of the Hofstadter butterfly.
It was pointed out that similar impurity states appear in all
the energy gaps in 1D Harper’s model with a single point
impurity [63–65], which corresponds to a 1D line defect in
the 2D lattice under magnetic field. Here we consider a zero-
dimensional point defect in the 2D lattice.

The left panels in Fig. 3 represent the squared wave func-
tions of defect levels (i), (ii), and (iii) in Fig. 2, which are
taken from different minigaps of the Hofstadter butterfly. Note
that the structure of the defect-state wave functions converges
when the superperiod is much greater than the localization
length. Here the eigenstates are calculated in a 40 × 40 super-
lattice, which is sufficiently large for the defect states argued
in this paper. We clearly observe that the defect-state wave
functions all localize around the vacancy, while their char-
acteristic length scales are completely different. Actually, as
shown in the following, the localization length of the defect
states is a good quantitative indicator of the fractal generation
of the minigap.

B. Fractal scaling rule

To demonstrate this, we first introduce an addressing rule
for the fractal structure [5,66–69]. As shown in Fig. 2(b), the
whole energy spectrum in 0 � φ � 1 (referred to as the main
spectrum in the following) can be divided into left, right, and
center subcells, which are labeled by Ln, Rn, and Cn (n ∈ Z),
respectively. Due to the fractal nature of the Hofstadter butter-
fly, each subcell has the same gap structure as that of the whole
spectrum. We can define the local variable x for each subcell
which works as an effective magnetic flux [5,66]. Specifically,
the gap structure of a subcell plotted against the local variable
x (0 � x � 1) is identical to that of the main spectrum plotted
against the magnetic flux φ (0 � φ � 1). As we will see,

FIG. 2. (a) Energy spectrum of 30 × 30 superlattice with a single-site defect, which is plotted against the magnetic flux φ. The red and
black dots represent the bulks states and the defect-localized states, respectively. The labels (i), (ii), and (iii) correspond to the wave functions
shown in Fig. 3. (b) Subcell decomposition of the Hofstadter butterfly (see the text). The states (i), (ii), and (iii) belong to the positive gradient
principal gaps of the main spectrum, R0, and C0R0, respectively.
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FIG. 3. Distribution of the wave amplitude (left) and the local
electric current (right) of the defect states (i), (ii), and (iii), which
are indicated in Fig. 2. The dots size in the left figures represents the
magnitude of wave function, and thickness and color depth of the
arrows in the right figures represent the local current amplitude.

the local variable x is an essential parameter to compare the
localization lengths of different subcells. The global variable
φ and the local variable x for the subcell Xn (X = L, R,C) are
related by φ = φXn (x), where

φLn (x) = φRn (x) = (n + x + 2)−1, (4)

φCn (x) = [2 + 1/(n + x)]−1. (5)

In Fig. 2(b) we present an axis of the local variable
x for R0 subcell, where x = 0, 1/2, 1 correspond to φ =
1/2, 2/5, 1/3, respectively. The main spectrum can also be
regarded as a single subcell, where the local variable is the
magnetic flux itself, i.e., φ = x.

By repeating this addressing scheme, we can define the
subcells in higher generations. For instance, XmYn refers to
subcell Yn in subcell Xm in the main spectrum. The relation
between the local variable x for subcell XmYn and the global
variable φ is given by φ = φXm [φYn (x)] [≡ φXmYn (x)].

For each subcell we define the positive (negative) principal
gap as the diagonal gap running from the lower (upper) left
corner to the upper (lower) right corner of the subcell plotted
against φ. Any gap in the Hofstadter diagram can be uniquely

identified as the positive or negative principal gap of a specific
subcell or of the main spectrum.

In the following we compare the localization lengths of the
corresponding defect states in the principal gaps of different
subcells, which share the same local variable x. The defect
levels (i), (ii), and (iii) in Figs. 2 and 3 are actually taken from
the positive principal gaps of the main spectrum R0 and C0R0,
respectively, with the same local variable x = 1/5. The global
variables φ for (i), (ii), and (iii) are 1/5, φR0 (1/5) = 5/11, and
φC0 [φR0 (1/5)] = 5/21, respectively. For each state we define
the localization length ξ by ξ 2 = ∑

i |ri − r0|2|ψ (ri )|2, where
ψ (ri ) is the wave amplitude at site ri, and r0 is the vacancy
position. Here we show that the ratio of ξ ’s of different
subcells is approximately equal to the ratio of the denomi-
nators of φ of those states. For the states (i), (ii), and (iii)
in Fig. 3, for instance, this claims that the ratio of the ξ ’s of
the three states is 5 : 11 : 21. Indeed, it approximates the ratio
of the numerically calculated values ξ = 1.716, 3.547, 6.774,
respectively (indicated by radii of circles in Fig. 3). The reason
for this scaling rule can be understood by considering an
ideal system without defects. Specifically, the Schrödinger
equation for the ideal square lattice with φ = p/q is reduced
to a one-dimensional Harper’s equation with the spatial period
of q [2,5]. The period q works as the reference length scale
to compare the wave functions in different fractal levels; for
example, an eigenstate of Harper’s equation at φ = 1/5 and
the corresponding state of R0 cell at φ = φR0 (1/5) = 5/11
have similar structures with length scales of 5 : 11. Naturally
the defect states take over the same scaling feature.

Let ξ (φ) be the localization length of the defect state in
the principal gap of the main spectrum at the flux φ, and
ξXn (x) be that of subcell Xn at local variable x. According
to the argument above, we have the relation ξ (p/q)/q =
ξXn (p/q)/D[φXn (p/q)], where D[φ] is the denominator of φ.
Using Eqs. (4) and (5), this immediately leads to the relation
between ξ and ξXn ,

ξ (x) = φRn (x)ξRn (x) = φLn (x)ξLn (x), (6)

ξ (x) = φCn (x)

n + x
ξCn (x), (7)

which is a key finding of this work. Note that, although the
denominator D[x] is not a continuous function of x, the scaling
ratio ξXn (x)/ξ (x) is a continuous function of x. Similarly, the
relation for higher fractal generations can be obtained from
ξ (p/q)/q = ξXmYn···(p/q)/D[φXmYn···(p/q)]. For C0R0 subcell,
for instance, it gives ξ (x) = φC0R0 (x)ξC0R0 (x).

In Fig. 4 we plot (a) the localization lengths
(ξ, ξR0 , ξR1 , ξC0R0 ) and (b) the renormalized values
(ξ, φR0ξR0 , φR1ξR1 , φC0R0ξC0R0 ) as functions of the local
variable x. Here the solid and dashed curves represent
the positive and negative principal gaps, respectively. The
two curves are identical for the main spectrum due to
the electron-hole symmetry. We see that the renormalized
localization lengths [Fig. 4(b)] quantitatively match in a wide
range of x. The ξ (x) diverges at x = 0 in proportion to 1/

√
x,

corresponding to the fact that the length scale in a weak
magnetic field is given by the magnetic length

√
h̄/(eB). We

have the same feature in x = 1 symmetrically. At x = 1/2
we notice that the ξ (x) diverges only in the negative gaps
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FIG. 4. (a) Localization lengths of different subcells
ξ, ξR0 , ξR1 , ξC0R0 , and (b) their renormalized values
ξ, φR0ξR0 , φR1ξR1 , φC0R0ξC0R0 as functions of the local
variable x.

of the subcells, while it remains finite in the positive gaps.
This links to the fact that the negative gaps close while the
positive gaps are open at x = 1/2. For the main spectrum
and any subcells centered at E = 0, the positive and negative
gaps both close at x = 1/2 at the same time because of the
electron-hole symmetry, and the localization lengths both
diverge accordingly.

In Fig. 4 we also notice side peaks to the left and right from
x = 1/2. The localization length of defect states generically
tends to be larger when the corresponding energy gap width
is smaller, and the side peaks actually correspond to x = 1/3
and 2/3 where the size of the energy gap locally shrinks. This
is the most prominently seen in the negative principal gap of
R0 subcell.

C. Exceptional scaling rules

In the previous subsection we demonstrated that the local-
ization length of defect state in each minigap of the Hofstadter
butterfly is approximately described by a single universal
function when it is appropriately scaled. However, there are
some exceptional gaps in the spectrum, where the localization
lengths follow different scaling curves. An exceptional scaling

FIG. 5. (a) Renormalized localization lengths of the positive
principal gaps of the main cell, C0, C0C0, and C0C0C0 subcells
[ξ , (φC0/x)ξC0 , (φC0C0/x)ξC0C0 , (φC0C0C0/x)ξC0C0C0 , respectively] as
functions of the local variable x. (b) The same plot as (a),
with dashed lines indicating the renormalized localization lengths
for R0, R0C0, and R0C0C0 subcells [φR0ξR0 , (φR0C0φC0/x)ξR0C0 ,
(φR0C0C0φC0C0/x)ξR0C0C0 , respectively]. (c) The positive principal
gaps of the main cell, C0, C0C0, and C0C0C0 subcells, which cor-
respond to the first, second, third, and forth Landau-level gaps in
φ → 0, respectively. Similarly, the positive principal gaps of R0C0

and R0C0C0 subcells correspond to the second and third Landau-level
gaps, respectively, of the magnetic Bloch band in φ → 1/2.

035305-4



FRACTAL DEFECT STATES IN THE HOFSTADTER … PHYSICAL REVIEW B 104, 035305 (2021)

behavior occurs in the principal gaps of any subcells ending
with C0, i.e., XY · · ·C0. Figure 5(a) shows the renormalized
localization lengths [Eqs. (6) and (7)] of the positive princi-
pal gaps of the main cell C0, C0C0, and C0C0C0 subcells [ξ ,
(φC0/x)ξC0 , (φC0C0/x)ξC0C0 , (φC0C0C0/x)ξC0C0C0 ] as functions
of the local variable x. Here (C0)n subcell is a region sand-
wiched by (n − 1)th electron/hole Landau gaps in the weak
field limit, and spreads in the magnetic flux range 0 � φ �
1/(2n + 1) [Eq. (5)]. We observe that the curves slightly shift
in relative to each other in the limit of x → 0, whereas they
precisely match in x � 1/2.

The reason for the deviation can be understood as follows.
In the weak magnetic field limit, the principal gaps of C0,
C0C0, and C0C0C0 subcells correspond to the second, third,
and fourth lowest gaps of the Landau-level spectrum, respec-
tively [Fig. 5(c)]. This is in contrast to any subcells NOT
ending with C0, where the principal gap definitely connects
to the lowest gap (the gap just above the lowest Landau level)
in the magnetic Bloch subband at x = 0. The characteristic
length scale of the nth Landau level wave function ϕn is given
by

√
n + 1/2 lB, where lB = √

h̄/(eB) is the magnetic length.
Accordingly, the defect-localized state which exists between
the Landau levels n − 1 and n should have the length scale
of the order of ∼√

n lB, and the dependence on n results in the
different scaling curves. Indeed, the localization lengths of the
main cell C0, C0C0 and C0C0C0 subcells at a small magnetic
field (x = 11/9800) are very well fitted by

ξ ≈ 2
√

n − 0.37 lB, (8)

with n = 1, 2, 3, and 4, respectively, where lB = a/
√

2πx.
In Appendix B we show that the numerical result (8) quali-
tatively agrees the analytical expression for a continuum 2D
electron with a delta-function impurity.

Similarly, the same scaling rule is applicable to
XY · · · Z (C0)n subcells. In Fig. 5(b) we plot the renormalized
localization lengths of the principal gaps of R0, R0C0, and
R0C0C0 subcells by dashed curves. In the limit x → 0, the
three curves perfectly match with those of the main cell C0

and C0C0, respectively (solid curves).
Another exceptional case occurs in the gaps connected to

the Dirac point of the magnetic Bloch band. In Fig. 4(b)
we observe that the negative gaps of R0 and C0R0 follow a
curve slightly different from the rest in the limit of x → 0.
For R0, the gap in the limit of x → 0 leads to the point of
φ = 1/2 and E = 0 of the main diagram, where a pair of
magnetic Bloch bands is touching just like in graphene due to
the electron-hole symmetry of the Hofstadter model. Now the
wave function of the Landau level n in graphene is composed
of the ϕn−1 and ϕn at different sublattices [70,71], so that its
length scale is just in the middle of those of (n − 1)th and nth
Landau levels in the conventional massive electron. Accord-
ingly, the defect-localized states should have the intermediate
localization length compared to the massive system. Indeed,
the localization length of defect states in R0 subcell for small
x is given by ξ ≈ 1.98 lB, which is between the values of
n = 1 and 2 in Eq. (8). In Fig. 4(b) we see that C0R0 subcell
also follows the same curves as R0 subcell. This is because
its negative principal gap leads to the point of φ = 1/4 and
E = 0, which is also the Dirac point.

D. The gradient of defect states and the magnetic moment

Generally, the in-gap defect states in a time-reversal sym-
metry broken system are accompanied by an orbital current
circulation [59,72]. Here we find that the magnetic moment
created by the orbital current of the defect states in our system
is precisely related to the gradient of fractal defect states on
the Hofstadter diagram. The local electric current Jnm from
site m to site n is calculated by

Jnm = i
(−e)t

h̄
(eiθmnψ∗

n ψm − c.c.). (9)

The right column in Fig. 3 shows that the local current
calculated for the defect states (i), (ii), and (iii).

The thickness of and the size of arrows are proportional to
the absolute value of current.

Here the current rotates in the clockwise direction, i.e., it
has a negative magnetic moment.

Actually, the direction of the current synchronizes with
the gradient of the defect energy level in the Hofstadter di-
agram, because the orbital magnetic moment is given by m =
−dE/dB (see Appendix C for the proof). In other words, a
defect state in the Hofstadter butterfly precisely tunes its own
current circulation, in such a way that the energy level stays
inside the fractal gap in changing a magnetic field.

IV. MULTIPOINT VACANCIES

We also consider various multipoint vacancies in Fig. 6;
(a) consecutive two-point defect, (b) two split defects, and
(c) three-point defect. The corresponding spectra of 30 × 30
superlattice are shown in Fig. 6, where we observe that the
number of defect states in every single fractal gap matches
that of the missing sites in the defect.

If we carefully look at the weak magnetic field regime
in each case of Fig. 6, we observe that some defect states
are absorbed into the bulk states in decreasing the magnetic
field, and eventually only a single defect state is left in each
gap in the limit of B → 0. This is naturally expected in the
continuum limit such that the magnetic length is much larger
than the lattice constant. There the defect can be replaced
by a single delta function regardless of its detailed internal
structure, and it supports only a single impurity level [48].

By comparing Figs. 6(a) and 6(b) we notice that the two
defect energy levels get closer as the distance between the
two defect sites gets further away. This is a consequence of
the hybridization of the defect states of two single vacancy
sites, where the coupling strength exponentially decreases as
the distance increases. A similar effect is also found in defect
states in graphene [52]. We see the same tendency consistently
in all the fractal gaps.

When we increase the number of missing atoms, the defect
eventually becomes a big hole like the inner edge of the
Corbino disk [73]. In the process we expect that more and
more defect levels fill in the energy gaps, and the orbital
current of the defect states eventually becomes the chiral
current of the quantum Hall edge channels. In that sense, the
orbital current of our defect localized state can be viewed as
a quantized version of the quantum Hall edge current in the
atomic limit. Therefore, the emergence of the defect levels
in the fractal gaps may be viewed as a sort of the bulk-edge
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FIG. 6. Energy spectra of 30 × 30 superlattice with (a) consec-
utive two-point defect, (b) two split defects, and (c) consecutive
three-point defect.

correspondence [74,75] requiring the existence of the edge
states in a bulk gap with a nonzero Chern number. However,
it should also be noted that the number of the defect states in
each gap is not at all related to the Chern number, but it just
coincides with the number of missing sites for any gaps.

V. CONCLUSION

We have reported that the defect-localized states fractally
appear in every single band gap of the Hofstadter butterfly.
Those states in different energy gaps have all different length
scale in the spatial decay, while they follow a universal curve
after the appropriate fractal scaling. Each defect state has its
own characteristic magnetic moment, which is exactly linked
to the gradient of the corresponding bulk energy gap in the
Hofstadter diagram.

While the previous observations of Hofstadter butterfly
have been mainly conducted by spectroscopic/transport mea-
surements of the energy gap structure, our work provides a
powerful method to observe the fractal nature in the wave
function by measuring the spatial decay of the defect states
using scanning tunneling spectroscopy.

FIG. 7. Honeycomb lattice with a single point vacancy and (b) its
periodic superlattice with 20 × 20 supercell.
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APPENDIX A: FRACTAL STRUCTURE AND WAVE
FUNCTION ON A HONEYCOMB LATTICE WITH A

DEFECT

We consider defect-localized states on a honeycomb super-
lattice with a single-site defect (Fig. 7). We assume that the
system is periodic with N × N supercell and every single su-
percell includes a single vacancy site. Now we take the super
period N = 20, which is taken to be sufficiently large to avoid
interference between defect-localized states in neighboring
cells. The Bloch electron wave functions obey the magnetic
Bloch condition:

ψ (r + L1) = eikxL1 e−i2πeBL1yψ (r), (A1)

ψ (r + L2) = eikyL2ψ (r), (A2)

where L1 = (
√

3Na/2, 0) and L2 = (0, Na) are the primitive
lattice vectors of the magnetic unit cell.

Figure 8(a) shows the energy spectrum of 20 × 20 superlat-
tice in a honeycomb lattice with a single defect, plotted against
the magnetic flux φ. The red and black dots represent the bulk
states and the defect-localized states, respectively. Here the
defect-localized states are identified by the condition that the
wave amplitude within 2

√
3a from the defect point is more

than 50% of the total amplitude. We observe that a defect
level exists in every single gap, indicating that the spectrum
of the defect states inherits the nested fractal structure of the
Hofstadter butterfly, same as the square lattice case.

To compare uniformly the localization lengths in different
fractal generation gaps, we again define the subcell decom-
position and the local variable y in a honeycomb lattice. As
shown in Fig. 8(b), the main energy spectrum in 0 � φ � 1 in-
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FIG. 8. (a) Energy spectrum of 20 × 20 honeycomb superlattice
with a single-site defect, which is plotted against the magnetic flux
φ. The red and black dots represent the bulks states and the defect-
localized states, respectively. The labels (i), (ii), and (iii) correspond
to the wave functions shown in Fig. 9. (b) Subcell decomposition of
the Hofstadter butterfly in a honeycomb lattice. The states (i), (ii),
and (iii) belong to the positive gradient principal gaps of the main
spectrum, H0 and H1 subcells, respectively.

cludes the self-similar structure subcell Hn (n = 0,±1, . . . ).
In fact, the gap structure of each subcell plotted against the
local variable y (0 � y � 1) is identical to that of the main
spectrum plotted against the magnetic flux φ (0 � φ � 1).
The relationship between the global variable φ and local vari-
able y is

φHn (y) = (n + y + 2)−1. (A3)

In the main spectrum, the global variable φ corresponds to
the local variable y since the main spectrum can be viewed
as a single subcell. In the following we show the amplitude
and the electric current of the corresponding defects states of
different subcells at the same local variable y.

The left panels in Fig. 9 show the distribution of the wave
amplitude of three defect levels (i), (ii), and (iii) indicated

FIG. 9. Distribution of the wave amplitude (left) and the local
electric current (right) of the defect states (i), (ii), and (iii), which
are indicated in Fig. 8. The dots size in the left figures represents the
magnitude of wave function, and thickness and color depth of the
arrows in the right figures represent the local current amplitude.

in Fig. 8, which are taken from the positive principal gaps
of the main spectrum, H0 and H1 subcells, respectively, with
the same local variable y = 1/5. From Eq. (A3), the global
variables φ for (i), (ii), and (iii) are 1/5, φH0 (1/5) = 5/11,
and φH1 (1/5) = 5/16, respectively. We can observe that the
defect wave functions localize around the defect with different
length scales.

Moreover, the right panels in Fig. 9 represent that the local
current calculated for the defect states (i), (ii), and (iii). As
discussed above, the magnetic moment created by the local
current coincides with the gradient on the Hofstadter dia-
gram (Fig. 8). Actually, the currents rotate in the clockwise
direction, and their direction synchronizes with the gradient
of the defect energy levels in the Hofstadter diagram. The
same properties as the square lattice case (the localization
around the defect, the fractality of localization length, and
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the correspondence between magnetic moment and gradient
of defect states) are observed in a honeycomb lattice case.

APPENDIX B: ANALYTICAL EXPRESSION OF THE
LOCALIZATION LENGTH IN THE CONTINUUM MODEL

Here we analytically derive the localization length of the
defect localized state using the continuum model [76], and
compare it to our numerical results for the lattice model. We
consider a two-dimensional continuum Hamiltonian with a
delta-impurity potential which corresponds to a point defect
in the lattice model,

H = − 1
2 (∇ − ieA)2 + λδ2(x) (m = h̄ = c = 1), (B1)

where λ represents the amplitude of the impurity potential.
Using Green function method following [76], the wave func-
tion of impurity-localized state between the Landau level
n − 1 and n is given by

ϕimp,n(x) =
√

eB

2πψ ′(−kn)
M(x, 0)e−eBx2/4

×
∞∑

m=0

Lm(eBx2/2)

kn − m
, (B2)

where ψ ′ represents a trigamma function, M(x, x′) =
exp[ie

∫ x
x′ A · d�], and Lm is the Laguerre polynomial. The kn

(n − 1 < kn < n) is determined by

ψ (−kn) − 2π

λR
= 0, (B3)

where ψ is a digamma function, and λR is a renormalized
parameter determined by

1

λR
= 1

λ
− 1

2π
(γ + ln α). (B4)

Here γ ≈ 0.5772 is Euler’s constant, and α is an exponent
of the convergence factor e−αn in the sum over Landau level
index n.

Finally, the localization length of the impurity-localized
state can be estimated as

ξn ≡
[∫

d2xϕ∗
imp,n |x|2ϕimp,n

]1/2

= 2
√

kn + 1/2 + [ψ ′(−kn)]−1 �B. (B5)

In the derivation we used the identity∫ ∞

0
dt te−t

∑
m,m′

Lm(t )Lm′ (t )

(kn − m)(kn − m′)

= (2kn + 1)ψ ′(−kn) + 2, (B6)

which is derived by the generating function of Laguerre poly-
nomial

U (t, s) = exp(−t s
1−s )

1 − s
=

∞∑
m=0

Lm(t )sm. (B7)

In what follows, we roughly evaluate the parameters λ and
α for the square lattice tight-binding model. The potential
amplitude λ is estimated as λ ∼ tm∗a2/h̄2 by the dimensional

analysis (here we restored the dimension), where m∗ is the
electron effective mass. Since we have m∗ = h̄2/(2ta2) for
the bottom of the cosine band, λ is the order of 1. As the
convergence factor α should be the inverse of the maximum
Landau level index nc. The nc is roughly estimated as (nc +
1/2)h̄eB/m∗ ∼ Ec where Ec ∼ 4t is the bandwidth as the
cut-off energy. Then we have α ∼ 1/nc ∼ h̄eB/(4m∗t ) = πφ,
where φ = Ba2/(h/e) is the magnetic flux per a unit cell.
From the above estimation and Eq. (B3), we find kn ≈ n − 1
and [ψ ′(−kn)]−1 � 1 for the low magnetic field regime φ �
1, and then (B5) becomes

ξn ≈ 2
√

n − 1/2 �B. (B8)

Although the estimation of the parameters is rather crude, it
nicely agrees with the numerical result (8).

APPENDIX C: THE GRADIENT OF DEFECT STATES AND
THE MAGNETIC MOMENT

We prove that the gradient of a defect energy level in
the Hofstadter diagram coincides with the magnetic moment
created by the local electric current. For this purpose we show
that the magnetic moment m obeys Eq. (C9) in the presence of
a generic potential V (r) in quantum mechanics. We consider
the system described by the Hamiltonian,

H0 = 1

2m
(−i∇ + eA)2 + V (r) (h̄ = 1). (C1)

Considering a small change in the magnetic field, we obtain
the perturbed Hamiltonian

H = 1

2m
[−i∇ + e(A + δA)]2 + V (r) (C2)

= H0 − 1

2
(J · δA + δA · J) ≡ H0 + δH, (C3)

where J is the current operator

J = (−e)i[r, H0] = (−e)
−i∇ + eA

m
. (C4)

The variation of the energy δE within the first order perturba-
tion is

δE = 〈ψ0| δH |ψ0〉 = − 1
2 〈ψ0| (J · δA + δA · J) |ψ0〉 , (C5)

where ψ0 is the eigenfunction of H0. The first term in the most
right-hand side in (C5) is evaluated as follows:

〈ψ0| (J · δA) |ψ0〉

=
∫

drdr′ψ∗
0 (r)J(r)δ(r − r′)ψ0(r) · δA(r′).

(C6)

We can evaluate the second term in a similar way, and
finally obtain

δE =
∫

dr′ j(r′) · δA(r′). (C7)

Here we used the local current operator j,

j(r′) ≡ −1

2

∫
drψ∗

0 (r)[J(r)δ(r − r′) + δ(r − r′)J(r)]ψ0(r).

(C8)
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By using the expression of the magnetizing current j = ∇ × m, one can find that the magnetic moment m obeys

m = −dE

dB
. (C9)
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