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We investigate polariton quantum correlations in a coherently driven box cavity in the low driving regime,
with a particular focus on accounting for the polarization degree of freedom. The possibility of having
different interaction strengths between co- and cross-circularly polarized polaritons as well as a realistic
linear-polarization splitting allows one to model the system as two coupled nonlinear resonators with both
self- and cross-Kerr-like nonlinearities, thus making our results potentially relevant for other experimental
platforms. Within an effective wave-function approach, we obtain analytical expressions for the steady-state
polarization-resolved polariton populations and second-order correlation functions, which agree very well with
our numerical results obtained from a Lindblad master equation. Notably, we highlight that depending on the
excitation polarization (circular or linear), both the unconventional (interference-mediated) and conventional
(mediated by nonlinearities) antibunchings can be investigated in a single cavity. Moreover, using our results,
we argue that recent experiments on confined fiber-cavity polaritons are likely to have probed a regime where
the dominant interaction is between cross-polarized polaritons, which is characteristic of the polariton Feshbach
resonance. We furthermore investigate the regime close to resonance using a two-channel model and we show
that systems with large biexciton binding energies, such as atomically thin semiconductors, are promising
platforms for realizing strong polariton antibunching.
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I. INTRODUCTION

The pursuit of nonlinear optics at the few-photon level has
been a major goal of quantum optics in the past decades [1]
and it is important for the prospect of quantum simula-
tion [2,3] and quantum information processing [4] with light.
A key step in this direction is the achievement of the photon
blockade (PB) regime, where the presence of a single quantum
of radiation in an optical resonator forbids the entrance of
another. The PB was originally proposed for a coherently
driven single-mode cavity embedding a medium with strong
Kerr nonlinearities [5,6], a regime that is sometimes called the
Kerr blockade. A similar PB can occur in two-level systems
described by the Jaynes-Cummings model in the strong-
coupling regime [7] and this has been realized in a range
of systems such as single-atom [8], semiconductor quantum
dot [9], and microwave [10] cavities. Photon blockade has also
been demonstrated in a cavity filled with an atomic Rydberg
ensemble, which effectively corresponds to a system of three-
level atoms [11].

In practice, the hallmark of the PB is strong antibunching
in the zero-delay intensity correlation function of the emitted
light, which is a characteristic of nonclassicality [12]. While
strictly speaking this requires large effective photon-photon
interactions to overcome cavity losses, the use of coupled cav-
ities can give rise to a blockade of a two-photon state even in
weakly nonlinear systems due to finely tuned quantum inter-
ferences [13–16]. Experimental observations of this so-called
unconventional blockade effect have been reported in the

optical [17] and microwave domains [18]. Further extensions
have also been proposed, such as nonreciprocal or dynamical
blockade effects for single-mode Kerr resonators [19,20], or
the use of phase-space filling saturation in semiconductors to
provide an effective nonlinearity [21]. Photon antibunching
in a given optical mode has also been interpreted in terms
of squeezed Gaussian states for several weakly driven sys-
tems [15,22,23].

A promising route to achieving the conventional photon
blockade is the use of strongly coupled exciton polaritons in
a semiconductor pillar or box cavity [24]. In the context of
inorganic semiconductor cavities, the relevant nonlinearity is
given by the polariton-polariton interaction strength. Recently,
signatures towards the realization of the PB have been re-
ported in intensity correlation measurements in high-finesse
fiber cavities [25–27]. These studies, as well as the original
proposal [24], modeled the cavity as a single-mode optical
resonator that neglected the polarization degree of freedom.

However, polarization is known to play an important role
in semiconductor microcavities [28]. In particular, polaritons
carry a pseudospin associated with the photon circular po-
larization and the quantum-well exciton spin, which gives
rise to two different interaction strengths for co- and cross-
circularly polarized polaritons [29]. At the mean-field level,
this characteristic has led to the prediction and observa-
tion of polarization multistability for resonantly pumped
condensates [30–35] and it is also relevant for conden-
sates formed under nonresonant pumping [28,36–38]. While
the interspin interaction strength is typically assumed to
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FIG. 1. Schematic representations of (a) a perfectly symmetric
cavity and (b) an anisotropic/birefringent cavity, which are reso-
nantly driven with a circularly or linearly polarized laser. Polariton
nonlinearities do not conserve linear (H or V ) polarization, while
birefringence does not conserve circular polarization. (c) Sketch of
the lowest-energy levels for a perfectly symmetric cavity, where
|n, m〉 corresponds to circularly polarized Fock states, with lower-
polariton energy EL and interaction energies U1 and U2. The presence
of birefringence leads to additional coupling (δHV �= 0) between the
levels, allowing the unconventional blockade to take place when the
drive is circularly polarized.

be attractive and smaller than the triplet one, in princi-
ple, it can be dramatically enhanced in the vicinity of a
biexciton Feshbach resonance [29,39,40]. The use of the
biexciton resonance to achieve strongly correlated polari-
tons was suggested in Ref. [41], but consideration of the
polarization-resolved quantum correlations is lacking in this
regime. In fact, polarization-resolved second-order correla-
tions have only been investigated numerically in the regime
where the cross-circularly polarized polariton-polariton inter-
actions are negligible [42,43].

Here, in light of the recent measurements of quantum
correlations in exciton-polariton systems [25,26] and new the-
oretical results for the interaction strengths [29], we revisit
the problem of a polariton pillar cavity coherently driven by a
low-intensity polarized laser as shown schematically in Fig. 1.
In particular, we focus on the role of the different nonlinear-
ities for co- and cross-circularly polarized polaritons, U1 and
U2, and the presence of a birefringence which gives rise to an
energy splitting between linearly polarized modes. Our main
original results are summarized below.

Unconventional blockade. We show that a substantial bire-
fringence splitting combined with a circularly polarized drive
allows one to realize the unconventional blockade in a sin-
gle cavity. We derive the optimal conditions which give rise
to vanishing second-order correlations between co-circularly

polarized polaritons in the presence of cross-Kerr nonlinearity,
i.e., when U2 �= 0.

Conventional blockade. The interplay between birefrin-
gence and nonlinearities also governs the correlations when
the drive is linearly polarized. In particular, we demonstrate
that when the birefringence splitting is large compared to
the other energy scales, the second-order correlations tend
to be identical to that of a single-mode Kerr resonator with
nonlinearity U = (U1 + U2)/2. We also compare our results
with recent correlation measurements [25,26] and we argue
that these are likely to have probed the behavior close to the
polariton Feshbach resonance where |U2| � U1. In particular,
we find that the maximal antibunching observed in Ref. [25]
is consistent with the analytical expressions for the polariton
interactions derived in Ref. [29].

Feshbach blockade. We investigate the regime of reso-
nantly enhanced U2 using a two-channel model. Here we
introduce an expression for the effective polariton-biexciton
coupling gBL, which scales with the biexciton binding energy

as
√

εXX
B . Thus, one would expect an enhanced effect in mono-

layer semiconductors which support tighter bound biexcitons
than quantum wells. At resonance, we find that the relevant
parameter quantifying the antibunching is g2

BL/γ γB, with γ

and γB encoding polariton and nonradiative biexciton decays,
respectively.

The paper is organized as follows. We first introduce the
polariton system Hamiltonian in Sec. II. In Sec. III we present
the formalism used to describe the driven-dissipative system.
Then we apply it to different driving scenarios. In Sec. IV
we consider a circularly polarized drive, while the linearly
polarized drive configuration is investigated in Sec. V. In
Sec. VI we focus on the regime in the vicinity of the biex-
citon resonance using a two-channel model. We summarize in
Sec. VII. Additional details are provided in the Appendixes.

II. SYSTEM HAMILTONIAN

In this section we introduce the model used to describe
interacting lower polaritons confined in a box. The motivation
for working in the lower-polariton (LP) subspace is twofold:
(i) The LP spectral line is the easiest to precisely access
experimentally and (ii) from the theory side, the composite
electron-hole-photon nature of a single polariton has been
shown to be less relevant for the LP for a broader range of
Rabi couplings than is the case for the upper polariton [44].
These reasons are ultimately related to the fact that the
upper-polariton energy branch is closer to the electron-hole
continuum than the lower-polariton branch.

We first present the model for a perfectly symmetric cavity
with degenerate polarization modes. Here the use of Stokes
operators allows us to highlight the fact that linear polarization
is not a conserved quantity in the presence of interactions.
Then we introduce the birefringence splitting which can exist
in realistic systems and we discuss polariton-polariton inter-
action strengths.

A. Perfect cavity

To describe pairwise interacting lower polaritons in a pillar
cavity, accounting for the polarization pseudospin, we use the
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following model Hamiltonian:

Ĥ0 =
∑

σ

ELL̂†
σ L̂σ +

∑
σ,σ ′

Uσσ ′

2
L̂†

σ L̂†
σ ′ L̂σ ′ L̂σ . (1)

Here σ = {↑,↓} encodes the circular polarization degree of
freedom, L̂σ are the bosonic polariton annihilation operators,
and EL is the lower-polariton energy

EL = EX + 1
2

(
δ −

√
δ2 + �2

R

)
, (2)

where EX is the exciton energy, δ is the photon-exciton de-
tuning, and �R is the Rabi splitting. In addition, Uσσ ′ are the
intraspecies and interspecies interaction energies with U↑↑ =
U↓↓ ≡ U1 and U↑↓ = U↓↑ ≡ U2. While we will focus on the
polariton system here, we note that the Hamiltonian in Eq. (1)
is pretty generic. In the language of circuit QED, it represents
two oscillators with degenerate mode frequencies, and both
self- and cross-Kerr nonlinearities [45,46].

The eigenstates of the nonlinear Hamiltonian in Eq. (1)
correspond to Fock states with well-defined numbers of ↑ and
↓ polaritons,

Ĥ0 |n, m〉 = Enm |n, m〉 ,

Enm = EL(n + m) + U1

2
(n2 − n + m2 − m) + U2nm,

(3)

where we have used L̂↑ |n, m〉 = √
n |n − 1, m〉 and

L̂↓ |n, m〉 = √
m |n, m − 1〉. A sketch of the lowest

energy levels is presented in Fig. 1(c). Importantly, the
linearly polarized Fock states are not eigenstates of the
Hamiltonian (1), except when U1 = U2. Hence, the Fock
basis consisting of the circularly polarized eigenstates is
the physically natural choice when accounting for polariton
interactions.

A useful way to visualize this important property is to in-
troduce the Stokes operators for the polariton field in analogy
with quantum optics [47]:

Ŝ0 = L̂†
↑L̂↑ + L̂†

↓L̂↓, Ŝ1 = L̂†
↑L̂↓ + L̂†

↓L̂↑,

Ŝ2 = −i(L̂†
↑L̂↓ − L̂†

↓L̂↑), Ŝ3 = L̂†
↑L̂↑ − L̂†

↓L̂↓. (4)

Their expectation values 〈Ŝi〉 correspond to the classical
Stokes parameters that characterize the polarization of the
polariton field; Ŝ0 encodes the total intensity, while Ŝ j

( j = 1, 2, 3) are related to the degree of horizontal-vertical,
diagonal-antidiagonal, and right-left circular polarization,
respectively. Formally, the introduction of these operators
is analogous to the mapping of two independent har-
monic oscillators to an angular momentum as introduced by
Schwinger [48]. Thus, the Stokes operators satisfy the com-
mutation rules

[Ŝ1, Ŝ2] = 2iŜ3, [Ŝ2, Ŝ3] = 2iŜ1, [Ŝ3, Ŝ1] = 2iŜ2, (5a)

[Ŝ j, Ŝ0] = 0 (5b)

and moreover we have Ŝ2
1 + Ŝ2

2 + Ŝ2
3 = Ŝ0(Ŝ0 + 2).

Rewritten in terms of the operators in Eq. (4), the Hamilto-
nian (1) reads

Ĥ0 = (EL − U1)Ŝ0 + (U1 + U2)Ŝ2
0 + (U1 − U2)Ŝ2

3 . (6)

We see that while both Ŝ0 and Ŝ3 commute with Ĥ0 (the
total number of polaritons and the circular polarization are
conserved), Ŝ1 and Ŝ2 do not, and thus the corresponding
observables are not conserved quantities, as illustrated in
Fig. 1(a).

B. Birefringence

In experiment, there can be a fine energy splitting be-
tween linearly polarized cavity modes, which we refer to as
horizontal (H) and vertical (V ). This can, for instance, arise
due to a residual birefringence of the sample or an imperfect
cylindrical symmetry of the pillar cavity. Such a splitting can
also be deliberately introduced and controlled by tuning the
cavity shape [49,50].

The fine polarization splitting is typically small with re-
spect to the polariton Rabi splitting, |δHV | � �R. Thus, in
the following, we neglect its effect on U1, U2, and EL. In
the present circular polarization basis, such a birefringence
can then be modeled by introducing an additional term in the
polariton Hamiltonian of the form

ĤHV = δHV (L̂†
↑L̂↓ + L̂†

↓L̂↑). (7)

Within this approximation, the horizontal and vertical po-
laritons have the corresponding energies EH

L = EL + δHV and
EV

L = EL − δHV , respectively.
The total system Hamiltonian Ĥsyst = Ĥ0 + ĤHV is equiv-

alent to two coupled resonators with Kerr and cross-Kerr
nonlinearities [45,46]. In terms of Stokes operators, it reads

Ĥsyst = (EL − U1)Ŝ0 + δHV Ŝ1

+ (U1 + U2)Ŝ2
0 + (U1 − U2)Ŝ2

3 . (8)

We can easily see that δHV �= 0 implies [Ŝ3, Ĥsyst] �= 0; hence,
in the presence of birefringence, neither the linear nor the
circular polarization degrees are conserved, as illustrated in
Fig. 1(b). We note though that the nonconservation of Ŝ3 and
of Ŝ1, Ŝ2 are not equivalent since the former is a one-body
effect while the latter, being related to polariton-polariton
interactions, is of two-body origin.

C. Polariton interactions

For the exciton-polariton box we consider, the param-
eters Ui are related to the polariton-polariton interaction
strengths as Ui = αi/A, with A the polariton mode spatial
area. The experimental estimation of the polariton interaction
strengths was undertaken in several works (for example, in
Refs. [51–53]) and has proven to be a subtle task with dis-
crepancies among the reported values [53].

For cavities with embedded two-dimensional (2D) semi-
conductor layers, we recently introduced new analytical
expressions to estimate the interaction strengths between
lower polaritons [29]:

α1 = 4π h̄2X 4

NmX ln
( εX

B
2|EL−EX |

) , (9a)

α2 = 4π h̄2X 4

NmX ln
( εXX

B
2|EL−EX |

) . (9b)
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Here N is the number of layers (which also appears in the
Rabi splitting �R = √

NgR, with gR the Rabi coupling of

a monolayer), X = (1 + δ/

√
δ2 + �2

R)1/2/
√

2 is the exciton

Hopfield coefficient, mX is the exciton mass, and εX
B and εXX

B
are the exciton and biexciton binding energies, respectively.

Equations (9) have been derived within a scattering T
matrix approach [54] assuming tightly bound structureless
excitons and are expected to be accurate when 2|EL − EX | �
εX

B . The logarithm in the denominator is a remnant of the 2D
nature of the polariton-polariton scattering.1 Crucially, this
logarithm is finite, in contrast to the standard low-energy limit
of 2D scattering of excitons. This is due to the Rabi splitting
of the polariton modes and the extremely small photon mass
and therefore can be seen as a remarkable consequence of
the strong light-matter coupling [29]. We note that a sim-
ilar enhancement of polariton-electron interaction has been
found recently within a microscopic theory involving elec-
trons, holes, and photons [55,56]. We also stress that such
an enhancement is absent in approaches based on the Born
approximation [57,58].

The expressions in Eq. (9) exhibit resonances when the
argument of the logarithm tends to unity. Only the reso-
nance for α2 is physical because of the well-defined bound
biexciton state. This resonance corresponds to the polariton
Feshbach resonance proposed and experimentally probed in
single-quantum-well planar cavities [39,40,59]. An indirect
signature of this resonance might also have been seen recently
in a microcavity embedding a MoSe2 monolayer [60]. The
existence of this resonance implies that the magnitude and
the sign of α2/α1 can be controlled experimentally in a given
sample, via the photon-exciton detuning δ. Using Eq. (2), one
can determine the critical detuning at which the resonance
occurs: δc � (�2

R − εXX
B

2)/2εXX
B . Finally, it is worth noticing

that Eq. (9) implies that the condition α1 = α2 is unrealistic
for polaritons because it would require εX

B = εXX
B .

In the following, we keep U1 and U2 as arbitrary model
parameters since our results are applicable to any system
effectively described by the Hamiltonian (8). However, we
use Eq. (9) for a quantitative comparison with the experiments
involving polaritons [25,26] in Sec. V C.

III. DRIVEN SYSTEM

Having discussed the system Hamiltonian, we now include
the resonant drive and dissipation. Within the rotating frame
picture, we introduce the Lindblad equation used in the nu-
merical calculations and the effective wave-function approach
that we use for the analytical calculations.

A. Drive and dissipation

A coherent drive can be introduced with the term

Ĥdrive =
∑

σ

(Fσ L̂σ eiωpt + F ∗
σ L̂†

σ e−iωpt ), (10)

1Note that the polariton-polariton scattering can be treated as two
dimensional, even in a box cavity, provided the area A is large
compared to the exciton size.

with ωp the frequency of the pump and Fσ the amplitude of the
drive in the σ polarization. We are interested in the case where
the drive frequency is close to the polariton mode resonance.
Thus, in the following we work in the rotating frame, where
the total Hamiltonian becomes

Ĥ = R̂(Ĥsyst + Ĥdrive)R̂† + ih̄ ˙̂RR̂†, (11)

with R̂ = eiωpt (L̂†
↑L̂↑+L̂†

↓L̂↓ ). This yields

Ĥ =
∑

σ

(
L̂†
σ L̂σ + Fσ L̂σ + F ∗

σ L̂†
σ )

+
∑
σ,σ ′

Uσσ ′

2
L̂†

σ L̂†
σ ′ L̂σ ′ L̂σ + δHV (L̂†

↑L̂↓ + L̂†
↓L̂↑), (12)

with the detuning 
 = EL − h̄ωp. We consider the case
|
| � �R, which is a necessary condition to neglect the
upper-polariton modes.

We assume that the open-dissipative system density matrix
obeys the Lindblad (Markovian) equation

h̄
∂ρ̂

∂t
= −i[Ĥ, ρ̂] + γ

∑
σ

(
L̂σ ρ̂L̂†

σ − 1

2
{L̂†

σ L̂σ , ρ̂}
)

, (13)

where γ encodes the decay rate of polaritons from the cavity.
It is related to the bare cavity photon decay γc as γ � (1 −
X 2)γc. Since we are mainly interested in phenomena related
to the system itself, as described by the Hamiltonian Ĥ , we
assume this decay to be independent of the polarization. We
note that accounting for different decay rates for H- and V -
polarized modes would give rise to cross decoherence terms
of the form L̂σ ρ̂L̂†

σ ′ or ρ̂L̂†
σ L̂σ ′ in Eq. (13).

In the following we study the steady-state scenario
∂ρ̂ss/∂t = 0 in the low-drive limit. The corresponding density
matrix can be calculated by expanding it in terms of circularly
polarized Fock states

ρ̂ss =
∑

n,m,n′,m′
ρn,m,n′,m′ |n, m〉〈n′, m′| . (14)

In the simulations, we truncate the Fock space such that
n + m � 6, which is sufficient for the convergence of the
results presented. The expectation value of an operator Ô
in the steady state is then defined as 〈Ô〉 = Tr[ρ̂ssÔ], with
Tr[ρ̂ss] = 1.

B. Effective wave-function approach

Here we present the wave-function approach which we use
to derive analytical results. Such an approach is typically well
suited to investigate weakly driven systems [14,16,19,61,62]
and it can provide an easier physical interpretation. In this
approach, the polarization-independent decay is introduced
via an effective non-Hermitian Hamiltonian

Ĥeff = Ĥ − i
γ

2

∑
σ

L̂†
σ L̂σ . (15)

The wave function can be expanded in the Fock basis as

|ψ〉 =
∑
n,m

Cnm |n, m〉 , (16)

where Cnm are complex time-dependent coefficients and the
operator expectation values are 〈Ô〉 = 〈ψ | Ô |ψ〉. We note that
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this wave-function approach does not account for the terms
L̂σ ρ̂L̂†

σ present in the Lindblad equation. In principle, the
results of the Lindblad equation can be reproduced within
a Monte Carlo wave-function approach including quantum
jumps [63,64]. These are neglected here and instead the valid-
ity of the analytical results can be checked by comparing with
the numerical results obtained from the Lindblad equation.

Since we are primarily interested in the first- and second-
order correlation functions in the low drive limit, it is
instructive to introduce a truncated ansatz where the Fock
states in Eq. (16) are limited to those basis states satisfying
n + m � 2. By projecting the Schrödinger equation onto this
subspace, we obtain the evolution equations for the Cnm coef-
ficients

ih̄Ċ00 = C10F↑ + C01F↓, (17a)

ih̄Ċ10 = C00F ∗
↑ + 
̃C10 + F↓C11 +

√
2F↑C20 + δHV C01,

(17b)

ih̄Ċ01 = C00F ∗
↓ + 
̃C01 + F↑C11 +

√
2F↓C02 + δHV C10,

(17c)

ih̄Ċ11 = C10F ∗
↓ + C01F ∗

↑ + (2
̃ + U2)C11

+
√

2δHV (C20 + C02), (17d)

ih̄Ċ20 =
√

2C10F ∗
↑ + (2
̃ + U1)C20 +

√
2δHV C11, (17e)

ih̄Ċ02 =
√

2C01F ∗
↓ + (2
̃ + U1)C02 +

√
2δHV C11, (17f)

where 
̃ ≡ 
 − iγ /2. In the following, we focus on the
steady-state solutions of the above system, i.e., we take
Ċnm = 0. Since we consider the low-drive limit where |Fσ | �
γ , in general, the coefficients obey the hierarchy |C00| �
|C01|, |C10| � |C11|, |C20|, |C02| and the normalization condi-
tion can be approximated as 1 = ∑

nm |Cnm|2 � |C00|2. We
therefore impose C00 = 1 and solve Eqs. (17b)–(17f) with the
left-hand sides set to zero.

In the truncated basis, the average occupations n̄σ =
〈L̂†

σ L̂σ 〉 and the first-order coherences n̄σ,−σ = 〈L̂†
σ L̂−σ 〉 re-

duce to

n̄↑ = |C10|2 + |C11|2 + 2|C20|2, (18a)

n̄↓ = |C01|2 + |C11|2 + 2|C02|2, (18b)

n̄↑↓ = C01C
∗
10 +

√
2C02C

∗
11 +

√
2C11C

∗
20, (18c)

n̄↓↑ = C10C
∗
01 +

√
2C20C

∗
11 +

√
2C11C

∗
02. (18d)

To quantify the correlations between polaritons, we con-
sider the normalized zero-time-delay second-order correlation
functions g(2)

σσ ′ = 〈L̂†
σ L̂†

σ ′ L̂σ ′ L̂σ 〉/n̄σ n̄σ ′ (see Appendix A for a
general discussion of the correlation functions). These take
the form

g(2)
↑↑ = 2|C20|2

n̄2
↑

, (19a)

g(2)
↓↓ = 2|C02|2

n̄2
↓

, (19b)

g(2)
↑↓ = g(2)

↓↑ = |C11|2
n̄↑n̄↓

, (19c)

g(2)
tot = 2|C11|2 + 2|C20|2 + 2|C02|2

(n̄↑ + n̄↓)2
. (19d)

Here g(2)
tot is related to the probability of finding two po-

laritons at the same time within the cavity, regardless of
their polarization. On the other hand, g(2)

σσ ′ is related to the
probability of finding two co- or cross-circularly polarized
polaritons at the same time within the cavity, and the ex-
perimental measurement of this correlation function therefore
requires polarization filtering at the output of the cavity. Equa-
tions (17)–(19) form the basis for all analytic expressions in
Secs. IV and V.

IV. CIRCULARLY POLARIZED DRIVE

Now that we have introduced our model and formalism, we
proceed to present our results. In this section we consider the
configuration where the coherent drive is circularly polarized,
i.e., we take F↑ to be real and nonzero while F↓ = 0. We first
consider a cavity without birefringence, which we show is
equivalent to the case of a single Kerr resonator. Including
birefringence, we then demonstrate that the unconventional
polariton blockade can be achieved in a single pillar cavity due
to interference between different pathways to two-polariton
states.

A. No birefringence: Single Kerr resonator

First, we consider a cavity in the absence of birefringence,
i.e., we take δHV = 0. In this case, the {↑,↓} circular po-
larization subspaces decouple and therefore the states |n, m〉
with m �= 0 remain unoccupied since F↓ = 0. The problem
thus reduces to that of a single-mode Kerr resonator (in the
↑ polarization), investigated previously in Ref. [65]. Solving
the stationary condition in Eq. (17) in the limit of a low
drive, we find the leading-order expressions C10 � −F↑/
̃

and C20 � F 2
↑ /

√
2
̃(
̃ + U1/2), while C01 = C02 = 0. In this

scenario, the only well-defined second-order correlation func-
tion is g(2)

↑↑ = g(2)
tot and its analytical expression in the low-drive

limit is

g(2)
↑↑ = 
2 + γ 2/4

(
 + U1/2)2 + γ 2/4
. (20)

This result precisely matches that obtained in Ref. [65]. Its
minimal value with respect to 
 is

min[g(2)
↑↑] = 1 −

√
U 4

1 + 4U 2
1 γ 2 − U 2

1

2γ 2
, (21a)


min =
√

U 4
1 + 4U 2

1 γ 2 − U 2
1

4U1
. (21b)

Thus, in the absence of birefringence, a strong antibunching
requires a strong Kerr nonlinearity |U1| � γ , in which case
min[g(2)

↑↑] � γ 2/U 2
1 . The opposite regime |U1| � γ gives a

small antibunching with min[g(2)
↑↑] � 1 − |U1|/γ .

B. Unconventional polariton blockade

In the presence of birefringence, the steady-state solution
of Eq. (17) results in the following leading-order behavior of
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the Cnm coefficients:

C10 � −
̃F↑

̃2 − δ2

HV

, (22a)

C01 � δHV F↑

̃2 − δ2

HV

, (22b)

C11 � −δHV F 2
↑


̃2 − δ2
HV


̃ + U1/4

(
̃ + U1/2)(
̃ + U2/2) − δ2
HV

, (22c)

C20 � F 2
↑ /

√
2


̃2 − δ2
HV


̃


̃ + U1/2

× (
̃ + U1/2)(
̃ + U2/2) + δ2
HV U1/4
̃

(
̃ + U1/2)(
̃ + U2/2) − δ2
HV

, (22d)

C02 � δ2
HV F 2

↑ /
√

2


̃2 − δ2
HV


̃ + U1/4


̃ + U1/2

1

(
̃ + U1/2)(
̃ + U2/2) − δ2
HV

.

(22e)

As expected, the two circular polarization subspaces are now
coupled and one gets Cnm �= 0 for m �= 0. The populations and
first-order coherences to leading order in F↑ then read

n̄↑ � F 2
↑

∣∣∣∣ 
̃


̃2 − δ2
HV

∣∣∣∣
2

, (23a)

n̄↓ � F 2
↑

δ2
HV∣∣
̃2 − δ2

HV

∣∣2 , (23b)

n̄↑↓ � −F 2
↑

δHV 
̃∗∣∣
̃2 − δ2
HV

∣∣2 , (23c)

n̄↓↑ � n̄∗
↑↓. (23d)

Thus, we find that the birefringence gives rise to a cross-
circularly polarized polariton population n̄↓ and to a complex
coherence n̄↑↓. This effect is purely linear and exists also in
the absence of interactions.

1. Optimal conditions

The introduction of a birefringence coupling allows for
different paths to populate the state |2, 0〉, as illustrated in
Fig. 1(c). These can in turn interfere destructively and lead
to a blockade of this state even when U1 � γ . This uncon-
ventional blockade mechanism was originally proposed for
two coupled cavities in the absence of a cross-Kerr nonlinear-
ity [13,14,16]. Here we demonstrate that the effect survives in
the presence of cross-Kerr nonlinearities. We derive the cor-
responding optimal conditions and the polarization resolved
second-order correlations.

From Eq. (19a) we see that the antibunching should be
maximal when C20 � 0. We find that optimal conditions satis-
fying C20 = 0, which requires both the real and the imaginary
part of the numerator in Eq. (22d) to vanish, exist as long as

FIG. 2. (a) Two-dimensional colormap of the optimal birefrin-
gence coupling δHV,O versus the self- and cross-Kerr nonlinearity
strengths. The white dashed lines highlight contours where δHV,O/γ

takes integer values. (b) Cross sections of (a) for different values of
U1/γ .

U1 �= 0 and correspond to


O =
±

√
3γ 2 + U 2

1 + U 2
2 − U1U2 − (U1 + U2)

6
, (24a)

δ2
HV,O = γ 2(6
O + U1 + U2)

2U1

− 2
O(2
O + U1)(2
O + U2)

2U1
, (24b)

where the symbol ± in (24a) corresponds to the sign of U1. For
polaritons, we have U1 > 0, while U2 can be either positive or
negative. These expressions highlight the importance of an ac-
curate estimation of the nonlinearities to predict the required
optimal birefringence δHV,O and detuning 
O. In the limit of
small nonlinearities γ � |Ui|, these become independent of
U2 and reduce to


O � ± γ

2
√

3
, δHV,O � ±

(
4γ 3

3
√

3U1

)1/2

. (25)

Figure 2 illustrates the optimal birefringence splitting versus
the interaction strengths. We see that it increases when U1

decreases and eventually diverges as U1 → 0. One can also
see an increase as a function of |U2| with a slight asymmetry
between the U2 > 0 and U2 < 0 sides, as shown in Fig. 2(b).
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FIG. 3. Unconventional antibunching in the absence of cross-
Kerr nonlinearity. (a) Second-order correlation functions for co-
circular polaritons and (b) average occupations n̄σ . The colored solid
lines are calculated numerically from the steady-state density matrix,
while the black dashed lines represent the corresponding analytical
results obtained within the wave-function approach. The thin vertical
dotted lines highlight −
O/γ and ±δHV,O/γ given by Eq. (24).
The parameters are U1 = 0.1γ , U2 = 0γ , δHV = δHV,O � 2.78γ , and
F↑ = 0.01γ .

2. Correlations

Analytical expressions for the second-order coherences
g(2)

σσ ′ can be found in the limit F↑ → 0:

g(2)
↑↑ =

∣∣∣∣ 
̃2 − δ2
HV


̃(
̃ + U1/2)

× (
̃ + U1/2)(
̃ + U2/2) + δ2
HV U1/4
̃

(
̃ + U1/2)(
̃ + U2/2) − δ2
HV

∣∣∣∣
2

, (26a)

g(2)
↓↓ =

∣∣∣∣ 
̃ + U1/4


̃ + U1/2


̃2 − δ2
HV

(
̃ + U1/2)(
̃ + U2/2) − δ2
HV

∣∣∣∣
2

, (26b)

g(2)
↑↓ =

∣∣∣∣
̃ + U1/4


̃


̃2 − δ2
HV

(
̃ + U1/2)(
̃ + U2/2) − δ2
HV

∣∣∣∣
2

. (26c)

We see that g(2)
↑↑ vanishes for the optimal conditions given

in Eqs. (24a) and (24b) and thus clearly exhibits unconven-
tional antibunching. In the special case U2 = 0, Eq. (26a)
corresponds to the correlation function calculated numerically
in Ref. [14]. In the limit of δHV → 0, Eq. (27a) reduces to
Eq. (20), as it should.

FIG. 4. Same as in Fig. 3 in the presence of cross-Kerr nonlin-
earity U2 = 0.8γ , which gives δHV,O � 2.94γ .

From the above expressions, we can see that g(2)
↓↓ and

g(2)
↑↓ become identical in the absence of self-Kerr nonlinear-

ity (U1 → 0). While optimal conditions do not exist for this
latter case, nontrivial bunching or antibunching g(2)

σσ ′ �= 1 can
still occur because of the cross-Kerr nonlinearity as soon as
δHV �= 0.

In Figs. 3 and 4 we have plotted the second-order cor-
relations g(2)

σσ and populations for the optimal δHV,O in the
absence or presence of cross-Kerr nonlinearity. In both cases,
g(2)

↑↑ vanishes at the optimal detuning 
O. It is worth noticing
that 
O lies in between ±δHV,O, at a detuning where the
populations shown in Figs. 3(b) and 4(b) are dominated by
n̄↓. By comparing Figs. 3(a) and 4(a), we can observe that
cross-Kerr nonlinearities affect the form of the correlations
as well as the exact values of 
O and δHV,O. The fact that
unconventional blockade survives in the regime where |U2| >

U1 is particularly interesting for polariton systems since it
corresponds to the interaction regime predicted in monolayer
cavities [29].

We conclude this section by emphasizing that the above
optimal conditions (24) imply a blockade of the two-particle
state |2, 0〉 only. In contrast to the conventional Kerr blockade
where the strong anharmonicity prohibits the occupation of
any n-photon states with n > 1, here there is nothing that
forbids the occupation of the states |n > 2, 0〉 when U1 � γ .
To illustrate this point, we have plotted the third-order cor-
relations g(3)

↑↑ calculated from the Lindblad equation for the

optimal parameters (i.e., when g(2)
↑↑ � 0) for two values of

U1/γ in Fig. 5. While its exact value depends on U2/γ , we
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FIG. 5. Third-order correlation functions g(3)
↑↑ at optimal condi-

tions (
O and δHV,O) for U1 = 0.1γ and U1 = 5γ (F↑ = 0.01γ ).

can see that g(3)
↑↑ is always bunched when U1/γ = 0.1. Thus, in

this configuration, the probability to occupy the state |3, 0〉 is
enhanced with respect to the case of a single driven resonator
in the absence of nonlinearity. We note that such a bunching in
higher-order coherences is a limitation of the unconventional
mechanism for the generation of single photons, as noticed in
Ref. [66].

V. LINEARLY POLARIZED DRIVE

We now consider a horizontally (H) polarized drive with
F↑ = F↓ ≡ F (i.e., symmetric driving), which corresponds
to the experimental configuration of Refs. [25,26] in which
quantum correlations of interacting polaritons were reported.
Note that we can take F to be real without loss of gener-
ality. While no unconventional blockade is expected here,
the interplay between birefringence and nonlinearities still
determines the correlations. We first emphasize that U1 �= U2

necessarily leads to a small but nonzero cross-linear polar-
ization population, as depicted in Fig. 1. We then present
analytical expressions for the second-order correlation func-
tions and discuss three limiting cases: no birefringence, large
birefringence, and weak nonlinearities. We conclude with a
brief discussion of the correlations observed in the recent
experiments [25,26].

A. Interaction-induced cross polarization

The averaged populations and first-order coherences up to
fourth order in the symmetric drive F read

n̄↑ = n̄↓ � F 2

(
 + δHV )2 + γ 2/4
+ F 4 f1, (27a)

n̄↑↓ = n̄↓↑ � F 2

(
 + δHV )2 + γ 2/4
+ F 4 f2, (27b)

where f1 and f2 are real functions of the parameters
{γ ,
, δHV ,U1,U2}. In addition, the populations in the hor-
izontally and vertically polarized modes are, respectively,
n̄H = n̄↑ + n̄↑↓ and n̄V = n̄↑ − n̄↑↓ (see Appendix A). Thus,
at second order in F , we obtain n̄V � 0 such that there is
only a population in the H-polarized driven mode. However,
at higher orders this is no longer true, and Eq. (27) highlights

FIG. 6. Interaction-induced depolarization. The 2D colormap of
n̄V × 108 versus U2 is shown with detuning −
 = h̄ωp − EL . The
parameters are F = 0.01γ , U1 = 0.1γ , and δHV = 1.5γ .

how the leading-order corrections appear as F 4. Within the
wave-function approach, the cross-polarization (V ) popula-
tion in the limit of weak driving is fully determined by the
occupation of the 2-V polariton state, since it is generated
by a two-polariton interaction term in the Hamiltonian (see
Appendix B). In this case, the difference f1 − f2 yields the
population

n̄V,wf � 16F 4

4(
 + δHV )2 + γ 2

× (U1 − U2)2(
D1D2 − 4δ2

HV

)2 + γ 2
(
D2

1 + D2
2 + 8δ2

HV

) + γ 4
,

(28)

where we have introduced Di = 2
 + Ui. Hence, we see that
the nonzero population in the cross-linear polarization with re-
spect to the drive is related to the nonequal nonlinearities U1 �=
U2, as anticipated. In terms of the classical Stokes parame-
ters Si ≡ 〈Ŝi〉, the emergence of a nonzero cross-polarization
population can be interpreted as a slight depolarization of
the polariton field with respect to the coherent laser drive.
Specifically, one has S2

1 + S2
2 + S2

3 < S2
0 as soon as U1 �= U2.2

Figure 6 displays the cross-polarization population n̄V ob-
tained numerically from the Lindblad equation for the weakly
driven system, where we have used experimentally realistic
parameters. We find that the analytic expression in Eq. (28)
accurately describes the results for the whole plotted parame-
ter range provided we multiply n̄V,wf by a factor of 2. Indeed,
a perturbative expansion of the density matrix up to order
F 4 yields n̄V = 2n̄V,wf (see Appendix B). This discrepancy
between the density-matrix and the wave-function approaches
is due to the fact that the 2-V polariton state can decay into
the 1-V polariton state via the terms L̂σ ρ̂L̂†

σ in the Lindblad
equation, which are not present in the effective non-Hermitian
Hamiltonian (15). In the case of a circularly polarized drive,
such quantum-jump terms are only relevant at higher order in

2Note that, classically, a perfect polarization requires S2
1 + S2

2 +
S2

3 = S2
0 , but this notion is more subtle in quantum optics because

of the commutation rules of the Stokes operators (5) [47,67].
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the driving strength, since the full set of number states can be
populated by the Hamiltonian.

B. Second-order correlations

As we did in the preceding section for the circularly polar-
ized drive, we now calculate the second-order correlations at
zero time delay. Note that there is no unconventional blockade
in the case of a linearly polarized drive (in the sense that there
are no optimal conditions for it), but the polariton-polariton
interactions can still give rise to nontrivial correlations.

Since the H-polarized drive is symmetric with respect to
the {↑,↓} subspaces, we have the relations

g(2)
↑↑ = g(2)

↓↓ = g(2)
σσ , (29a)

g(2)
tot = 1

2

(
g(2)

σσ + g(2)
↑↓

)
. (29b)

In the low drive limit F/γ � 1, the polarization-resolved cor-
relation functions have the following analytical expressions:

g(2)
σσ = [4(
 + δHV )2 + γ 2][(D2 − 2δHV )2 + γ 2](

D1D2 − 4δ2
HV

)2 + γ 2
(
D2

1 + D2
2 + 8δ2

HV

) + γ 4
,

(30a)

g(2)
↑↓ = [4(
 + δHV )2 + γ 2][(D1 − 2δHV )2 + γ 2](

D1D2 − 4δ2
HV

)2 + γ 2
(
D2

1 + D2
2 + 8δ2

HV

) + γ 4
.

(30b)

We note that Eq. (30a) matches the result of Ref. [68] in the
special case where 
 = U2 = 0. While Eqs. (30a) and (30b)
are quite cumbersome, their ratio takes the simple form

g(2)
↑↓

g(2)
↑↑

= (2
 − 2δHV + U1)2 + γ 2

(2
 − 2δHV + U2)2 + γ 2
, (31)

which we see approaches unity when U2 � U1 or when
|
 − δHV | � |Ui|. In addition, the ratio (31) and the form
of Eq. (30b) imply that one cannot determine which of the
nonlinearities (U1 or U2) is dominant from a measurement
of the total intensity correlation alone. However, it is possi-
ble to extract the relative strength of the nonlinearities from
polarization-resolved measurements, as we discuss further be-
low.

One can similarly obtain the correlation functions in
the linearly rather than the circularly polarized basis, but
the derivation is more involved since we must account for
quantum-jump processes when calculating the V -polariton
states. We therefore relegate these to Appendix B.

In the following, we discuss several limiting regimes.

1. No birefringence

In the absence of birefringence (δHV = 0), the problem is
equivalent to two equally driven and uncoupled oscillators
with self- and cross-Kerr nonlinearities. Equation (30) then

reduces to

g(2)
σσ = 
2 + γ 2/4

(
 + U1/2)2 + γ 2/4
, (32a)

g(2)
↑↓ = 
2 + γ 2/4

(
 + U2/2)2 + γ 2/4
. (32b)

We can see that g(2)
σσ ′ has the same form as that obtained for

a single-mode Kerr resonator in Eq. (20). Hence, a strong
antibunching for co- or cross-circularly polarized polaritons
requires strong nonlinearities |Uσσ ′ | � γ .

The physical meaning of these expressions is particularly
transparent for 
 = 0, in which case the relative strength of
the nonlinearities completely determines whether it is more
favorable to find two co-polarized (g(2)

σσ > g(2)
↑↓) or two cross-

polarized (g(2)
σσ < g(2)

↑↓) polaritons.

2. Large birefringence splitting

In the opposite limit, where the birefringence splitting is
much larger than the other energy scales, it is insightful to
express the correlations in terms of the laser detuning from the
driven H-polarized mode: 
H = 
 + δHV . In this case, the
second-order correlations are independent of δHV if |δHV | �
|
H |, and Eq. (30) simplifies to

g(2)
σσ � g(2)

↑↓ � 
2
H + γ 2/4

(
H + U/2)2 + γ 2/4
, (33)

with U = (U1 + U2)/2. This expression is identical to
Eq. (20), with the average nonlinearity U replacing U1 and

H replacing 
. Moreover, the total correlation function
is also approximately g(2)

tot � g(2)
σσ � g(2)

↑↓. Thus, the case of
large birefringence resembles a single (H-polarized) Kerr
resonator with U nonlinearity, where we can neglect the cross-
polarization (V ) population. We note that the regime |δHV | �
γ seems achievable in high-finesse fiber cavities [69] and can
be controlled artificially by tuning the cavity shape [49,50].
There is also the prospect of enhancing the nonlinearity U via
the use of a Feshbach resonance in the interspecies interaction
U2, as we discuss in Sec. VI.

3. Weak nonlinearities

The birefringence splitting can also be similar in size to
the linewidth such that |δHV | ∼ γ , which is the case in the
experiments of Refs. [25,26]. Therefore, none of the above
limiting cases is strictly applicable. Nevertheless, in this case
it is instructive to consider the regime of small nonlinearities
U1, |U2| � γ , |δHV |, for which Eq. (30b) can be Taylor ex-
panded to give

g(2)
tot � 1 − 2
H

γ 2 + 4
2
H

(U1 + U2). (34)

Assuming constant U1 and U2, Eq. (34) is minimized for the
conditions 
H = ±γ /2 (with + if U1 + U2 > 0 and − if
U1 + U2 < 0). The corresponding minimal value then reads

min
[
g(2)

tot

] = 1 − |U1 + U2|
2γ

. (35)
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FIG. 7. Correlation functions versus detuning 
 under weak H
drive for the parameters U1 = 0.01γ , U2 = 0.1γ , δHV = −γ , and
F = 0.01γ . (a) Second-order autocorrelation and cross-correlation
functions g(2)

σσ ′ . (b) Second- and third-order total intensity corre-
lations. (c) Average population n̄H . The colored solid lines and
red dash-dotted lines correspond to the numerical results from the
Lindblad equation, while the black dashed lines correspond to the
analytical results [Eqs. (30) and (30b)].

As an example, in Fig. 7, we have plotted the correlations
for the regime where γ ∼ |δHV | � U2 � U1. Figure 7(a) il-
lustrates how g(2)

↑↑ and g(2)
↑↓ can significantly differ from each

other when U1 �= U2. In addition, their shapes are qualitatively
different from g(2)

tot plotted in Fig. 7(b). We also observe that
the largest antibunching in g(2)

tot [corresponding to Eq. (35)]
is located at a detuning where the population n̄H shown in
Fig. 7(c) is substantial. This feature is similar to the con-
ventional antibunching in a single Kerr resonator and differs
from the unconventional case displayed in Figs. 3 and 4.
Finally, we see that the third-order correlation function g(3)

tot
in Fig. 7(b) also exhibits antibunching, which confirms that

the total-intensity antibunching is related to the substantial
strength of U1 + U2 and is therefore of “conventional” origin.

C. Comparison with experiment

In recent experiments [25,26], the total intensity correla-
tions were measured in a fiber cavity with |δHV | ∼ γ and the
reported nonlinearity was small compared to the linewidth
U � γ . Thus one can use the results presented in the pre-
ceding section to reinterpret the measurements.

For example, in Ref. [25], the maximal antibunching re-
ported was min[g(2)

expt] � 0.95 for a linewidth γexpt = h̄/τp �
60 μeV (i.e., a polariton lifetime τp � 11 ps). Furthermore,
in the experiment, the maximal antibunching was observed
for 
H > 0, which according to Eq. (34) requires U1 +
U2 > 0. Comparing with Eq. (35), one then obtains (U1 +
U2)expt � 6 μeV. This value is too large to be explained by
an estimation of polariton interactions within the Born ap-
proximation, where U Born

1 � 6εX
B a2

BX 4/A and U Born
2 � 0 [58],

with aB the Bohr radius. Indeed, the use of the experimental
parameters �R = 3.5 meV, δ = 0.72 meV (X 2 � 0.6), A =
π μm2 [25], aB,GaAs � 10 nm, and εX

B,GaAs � 10 meV gives
U Born

1 � 0.69 μeV.
Going beyond the Born approximation, we instead com-

pare with the experimental results using the analytic polariton-
polariton interactions in Eq. (9) which take higher-order
interaction processes into account [29]. Using mX,GaAs =
0.63m0 [70] (with m0 the free-electron mass) and the ex-
perimental parameters, we obtain U expt

1 � 0.14 μeV from
Eq. (9a). This is clearly much too small to explain the
experimental result of (U1 + U2)expt � 6 μeV. Instead, the
experiment suggests that the singlet interaction is much larger
than the triplet one, U expt

2 � 42 × U expt
1 . While this is not

predicted within the Born approximation [58], it is consis-
tent with our Eq. (9b). Indeed, within logarithmic accuracy,
one can use the ratio U2/U1 to estimate the associated biex-

citon binding energy as εXX
B = 2|EL − EX |( εX

B
2|EL−EX | )

1/42 �
2.94 meV, which is a reasonable value for biexcitons in
InGaAs quantum wells [40,71].

The potentially crucial role played by polarization-
dependent interactions in the measured antibunching [25]
calls for additional polarization-resolved experiments. A nat-
ural extension of the recent measurements would be to add a
circular polarizer between the cavity output and the Hanbury
Brown–Twiss setup, thus allowing access to g(2)

σσ . When the
drive is linearly polarized, the relations given in Eq. (29)
imply that such a measurement, combined with one of g(2)

tot , is
sufficient to deduce g(2)

↑↓. We also note that a measurement of
the cross-linear polarization population [Eq. (28)] can be used
to unveil the difference between U1 and U2. Thus, a direct test
of our predictions seems within reach.

Our findings suggest that the two recent experiments have
probed a regime close to the polariton Feshbach resonance
where U2 is expected to diverge. In the vicinity of the res-
onance, the effective nonlinearity between cross-circularly
polarized polaritons can vary extremely quickly as a function
of the polariton energy [29,39] and the assumption of a con-
stant U2 is not accurate. In the following section, we therefore
focus on this interesting regime.
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VI. FESHBACH REGIME

In the coupled Kerr resonator model, the interaction param-
eters U1 and U2 are assumed to be constant. In the polariton
system, this assumption is accurate as long as the driven
polariton mode is far from the Feshbach resonance condition,
in which case the variation of the nonlinearities for the range
of 
 probed is negligible. However, in the vicinity of the
resonance, U2 varies rapidly and this assumption is no longer
appropriate. Here we introduce a two-channel model that ex-
plicitly includes the biexciton state, allowing us to investigate
this regime more accurately. Focusing on the horizontally
polarized drive case, we derive the correlation functions in the
low driving limit.

A. Model

The Feshbach resonance occurs when the energy of two
lower polaritons of opposite polarization is close to the energy
EXX of a bound biexciton state [39]. In the vicinity of the
resonance, one can model the system with an effective two-
channel Hamiltonian encoding a coupling with a biexciton
state

Ĥ0 =
∑

σ

ELL̂†
σ L̂σ +

∑
σ

Uσσ

2
L̂†

σ L̂†
σ L̂σ L̂σ

+ EXX B̂†B̂ + gBL(B̂†L̂↑L̂↓ + L̂†
↓L̂†

↑B̂), (36)

where EXX = 2EX − εXX
B is the biexciton energy, B̂ is a biex-

citon operator, and gBL is the effective biexciton-polariton
coupling strength. We determine the strength of this coupling
by requiring that it yields the correct energy-dependent inter-
spin nonlinearity (9b) close to the resonance. This gives

gBL � X 2

(
4π h̄2εXX

B

NmXA

)1/2

, (37)

which differs from that used in Ref. [41] in several important
ways. In particular, we note that the coupling increases with

the biexciton binding energy as
√

εXX
B and it only depends on

the Rabi splitting �R through the Hopfield coefficient.
It is worth noticing that the Hamiltonian (36) does not

fulfill the same conservation laws as the coupled Kerr oscil-
lators model. In contrast to Eq. (8), Eq. (36) cannot be written
solely in terms of the Stokes operators because of the terms
B̂†L̂↑L̂↓. Also, the polariton number is not conserved here
and the relevant conserved number satisfying [Ĥsyst, N̂] = 0
is N̂ = L̂†

↑L̂↑ + L̂†
↓L̂↓ + 2B̂†B̂, where the factor of 2 originates

from the fact that two polaritons are required to create one
biexciton.

The birefringence and the external drive can be introduced
in the same manner as in Secs. II and III, where we note
that the coherent drive Fσ injects polaritons, not biexcitons,
as illustrated in Fig. 8. Using the unitary transformation R̂ =
eiωptN̂ in Eq. (11), we then obtain the complete Hamiltonian in
the rotating frame

Ĥ =
∑

σ

(

L̂†

σ L̂σ + Uσσ

2
L̂†

σ L̂†
σ L̂σ L̂σ + Fσ L̂σ + F ∗

σ L̂†
σ

)

+
BB̂†B̂ + gBL(B̂†L̂↑L̂↓ + L̂†
↑L̂†

↓B̂) + ĤHV . (38)

FIG. 8. Sketch of the first energy levels |n, m, o〉 in the two-
channel model. The polariton-biexciton coupling gBL results in an
effective nonlinearity between cross-circularly polarized polaritons.
Note that the biexciton state is not directly excited by the laser drive.

Here there are two relevant detunings: In addition to the
detuning from the polariton mode, 
 = EL − h̄ωp, we now
also have the detuning from the Feshbach resonance, 
B =
EXX − 2h̄ωp.

As in the previous sections, we use a master equation to
calculate the steady-state density matrix numerically and an
effective wave function approach to obtain analytical results
which are accurate in the low-drive limit. The nonradiative
decay of the biexciton excitations is introduced using a phe-
nomenological parameter γB. Additional details are provided
in Appendix C.

In the following, we focus on the symmetric (H-polarized)
drive with F↑ = F↓ = F for which the relations (29) are sat-
isfied. The complete analytical expressions for the correlation
functions are provided in Appendix C 3. Importantly, in the
limit of vanishing biexciton decay γB/γ → 0, one finds a one-
to-one correspondence between the analytical expressions for
the correlation functions obtained in Secs. IV and V and the
present two-channel model upon the replacement U2 ↔ − g2

BL

B

.

B. Behavior at resonance

We first consider what happens when the driven polari-
ton mode is tuned exactly on resonance: 2EH

L = EXX (i.e.,

B = 2
H ). Then, taking the limit 
H → 0 corresponding
to a resonant pump, the correlations can be expressed as

g(2)
σσ,res = γ 2

[
16δ2

HV + γ 2(1 + 2x)2
]

γ 2h + (2δHV U1 − γ 2)2
, (39a)

g(2)
↑↓,res = γ 2

[
γ 2 + (U1 − 4δHV )2

]
γ 2h + (2δHV U1 − γ 2)2

, (39b)

where we have introduced x = g2
BL/γ γB and

h = 4(1 + x)
{
4δ2

HV + x[γ 2 + (2δHV − U1)2]
} + U 2

1 .

We see that when γB → 0, x → ∞ and thus g(2)
↑↓,res → 0, as it

should.
In the limit of vanishing birefringence δHV → 0, Eqs. (39)

simplify to

g(2)
σσ,res � 1

1 + U 2
1 /γ 2

, (40a)

g(2)
↑↓,res � 1(

2g2
BL

/
γ γB + 1

)2 . (40b)
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FIG. 9. Second-order correlations versus birefringence at res-
onance. The solid lines show g2

BL/γ γB = 0, the dashed lines
g2

BL/γ γB = 0.25, and the dotted lines g2
BL/γ γB = 2. (Here U1 =

0.1γ ). While for clarity we did not superimpose the curves here,
we note that the numerical results from the Lindblad equation with
F = 0.01γ perfectly match the analytical ones [Eq. (39)].

Hence, in this situation g(2)
σσ is unaffected by the biexciton

resonance, in contrast to g(2)
↑↓, which is completely determined

by it. This mirrors the corresponding result in the absence of
a resonance [Eq. (32)].

In the opposite limit, when |δHV | � γ ,U1, the correlations
tend to be equal and one has

g(2)
σσ,res � g(2)

↑↓,res � 1(
g2

BL

/
γ γB + 1

)2 + U 2
1 /4γ 2

. (41)

Here both dimensionless ratios g2
BL/γ γB and U 2

1 /γ 2 can con-
tribute to the common antibunching. Figure 9 illustrates the
interplay between the limiting cases of Eqs. (40) and (41)
for several values of the ratio g2

BL/γ γB. We can observe that
g2

BL/γ γB = 2 (dotted lines) already leads to a remarkable an-
tibunching.

Achieving g(2)
↑↓ � 1 and g(2)

σσ � 1 simultaneously implies
that any two-polariton state is blocked. Thus, Fig. 9 shows
that the regime of large birefringence is particularly well
suited for the investigation of the Feshbach polariton block-
ade, as proposed in Ref. [41]. To further illustrate this point,
Figs. 10(a) and 10(b) display the second- and third-order total-
intensity correlations for such a configuration for γB/γ = 1
and 10, respectively. We see that Eq. (41) (black dashed line)
perfectly matches the results of the numerical calculation
of g(2)

tot (red solid lines). The red dot-dashed lines represent
the numerically calculated g(3)

tot . Both correlation functions
exhibit an antibunching as gBL/γ is increased, which con-
firms the onset of the polariton blockade effect mediated
by the strong nonlinearity associated with the Feshbach
resonance.

Our analytical expression combined with the coupling gBL

introduced in Eq. (37) can be used to estimate the expected
antibunching for given experimental parameters. In particular,
the form of gBL suggests that transition-metal dichalcogenide
monolayers, in which the biexciton binding energies are
large [72–74], are promising candidates for achieving a sig-
nificant polariton antibunching. For example, taking U1 � 0
and using the parameters γB = γ = 60 μeV, A = π μm2,

FIG. 10. Total intensity correlations at Feshbach resonance ver-
sus gBL in the presence of large birefringence splitting. Red solid and
dash-dotted lines correspond to the second- and third-order correla-
tions calculated using the Lindblad equation, respectively. The black
dashed lines correspond to the analytical result of Eq. (41). The pa-
rameters are 
B = 2
H = 0, δHV = −10γ , U1 = 0.1γ , F = 0.01γ ,
and (a) γB = γ and (b) γB = 10γ .

X 2 = 0.5, εXX
B,GaAs = 2.94 meV, εXX

B,MoSe2
= 20 meV [75],

mX,MoSe2 � m0, and mX,GaAs � 0.63m0, then the total intensity
correlations are g(2)

res,GaAs � 0.70 and g(2)
res,MoSe2

� 0.29, accord-
ing to our result for a large birefringence [Eq. (41)].

C. Away from resonance

In practice, tuning the polariton perfectly on the resonance
condition can be challenging and one might rather have EXX −
2EH

L �= 0. In order to visualize what are the new signatures
expected in an experimental measurement, it is insightful to
plot the correlations versus the laser detuning from the driven
mode 
H .

The results corresponding to the case EXX − 2EH
L = γ

are plotted in Fig. 11. The purple (red) curves represent
g(2)

↑↓ (g(2)
σσ ) calculated numerically from the Lindblad equation

and the black dashed lines correspond to the analytical re-
sults presented in Eq. (C4). The different rows correspond
to different birefringence splittings. The different columns
correspond to different biexciton decay γB = 0, γB = γ , and
γB = 10γ , respectively. We can see that when γB = 0, g(2)

↑↓ al-
ways vanishes at 
H = −γ /2 corresponding to the condition
satisfying 
B = 0. Figures 11(a)–11(c) display the correla-
tions in the absence of birefringence. In this case, g(2)

↑↑ is
unaffected by the Feshbach resonance, which determines only
g(2)

↑↓. We can see that g(2)
↑↓ exhibits bunching on both side

of the resonance. This is an original feature of the present
model which does not appear in a model with constant cross-
Kerr nonlinearity. We note that the right and left bunching
peaks would be symmetric if EXX = 2EH

L . When γB increases
[Figs. 11(b) and 11(c)] the antibunching is reduced and the
position of the minimum moves to the right. Figures 11(d)–
11(f) show the results for a small birefringence splitting. We
can see that g(2)

↑↑ starts to be affected by the biexciton and
exhibits additional bunching/antibunching features with re-
spect to Fig. 11(a). Finally, Figs. 11(g)–11(i) correspond to
the configuration of a large birefringence splitting. In this
case, we see that the g(2)

↑↑ and g(2)
↑↓ curves start to overlap, as

expected.
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FIG. 11. Second-order correlations versus 
H for (a)–(c) no birefringence δHV = 0 and (a) γB = 0, (b) γB = γ , and (c) γB = 10γ ; (d)–(f)
small birefringence δHV = −0.25γ and (d) γB = 0, (e) γB = γ , and (f) γB = 10γ ; and (g)–(i) large birefringence δHV = −10γ and (g) γB = 0,
(h) γB = γ , and (i) γB = 10γ . The colored solid lines correspond to the numerical results from the Lindblad equation, while the black dashed
lines correspond to the analytical results [Eq. (C4)]. The other parameters are EX X − 2EH

L = γ , gBL = γ , U1 = 0.1γ , and F = 0.01γ .

VII. CONCLUSION

By combining analytics and numerics we have investigated
the problem of a weakly driven polariton box. In the presence
of birefringence splitting, the system can be modeled as two
coupled Kerr resonators with both Kerr and cross-Kerr-like
nonlinearities. This allowed us to highlight the possibility
of realizing the unconventional blockade with a circularly
polarized drive. In this context, we have obtained the opti-
mal conditions generalizing previous results to the case with
nonzero cross-Kerr nonlinearity.

We have also obtained analytical expressions for the
second-order correlation functions in the linearly polarized
drive configuration and discussed the limiting cases where the
birefringence is large or absent, as well as the regime of weak
nonlinearities. In particular, the simplified expression of the
total-intensity correlation in the latter regime combined with
the estimation of U1 from Eq. (9) allowed us to argue that
the recent experiments appear to have probed the regime with
U2 � U1.

This motivated us to investigate the regime of the polariton
Feshbach resonance within an effective two-channel model. In

doing so, we have introduced a polariton-biexciton coupling
gBL consistent with the cross-Kerr interaction strength in the
vicinity of the resonance. At resonance, we demonstrated that
the relevant dimensionless parameter characterizing the anti-
bunching is g2

BL/γ γB. Combining this resonance with a large
birefringence splitting appears promising to achieve strong
antibunching in the total intensity correlation functions and
reach the blockade regime. An experimental challenge in this
direction might be to finely tune the polariton mode to the
resonance, which would require precise knowledge of the
biexciton energy, a quantity which can be affected by sample-
dependent factors such as the thickness of the quantum well
or the surroundings of the semiconductor monolayer.

The interplay between polarization and nonlinearity also
opens up intriguing perspectives in the high-intensity driv-
ing regime such as further exploration of dissipative phase
transitions beyond the mean field approximation [76,77]. In a
similar context, it would be interesting to see if the cross-Kerr
nonlinearities can affect the dissipative time crystals recently
predicted for Kerr resonators dimers [78,79]. Finally, for inco-
herent pumping, the regime of large cross-Kerr nonlinearity
U2 � U1 combined with arrays of nonbirefringent cavities
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might be of interest for the investigation of bosonic phase
separation on a lattice and its potential interplay with photonic
spin-orbit coupling [80,81].
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APPENDIX A: CORRELATION FUNCTIONS

In this Appendix we introduce the different zero-delay
correlation functions that we have calculated in the main text.
First, the unnormalized second-order correlation functions for
co- and cross-circular polarizations are defined as

G(2)
σσ ′ = 〈L̂†

σ L̂†
σ ′ L̂σ ′ L̂σ 〉 (A1)

and the corresponding normalized second-order correlations
read

g(2)
σσ ′ = G(2)

σσ ′

〈n̂σ 〉〈n̂σ ′ 〉 , (A2)

where n̂σ = L̂†
σ L̂σ . We also consider the second-order total

intensity (polarization unresolved) correlation function

g(2)
tot =

∑
σ,σ ′ Gσσ ′

〈n̂↑ + n̂↓〉2
= 〈(n̂↑ + n̂↓)(n̂↑ + n̂↓ − 1)〉

〈n̂↑ + n̂↓〉2
. (A3)

These definitions generalize naturally to the N th-order corre-
lation functions. The unnormalized correlation function is

G(N )
σ1···σN

= 〈
L̂†

σ1
· · · L̂†

σN
L̂σN · · · L̂σ1

〉
, (A4)

from which we obtain the normalized correlation function for
co-circularly polarized polaritons

g(N )
σσ =

〈
L̂†N

σ L̂N
σ

〉
〈n̂σ 〉N

(A5)

and the total intensity coherence function

g(N )
tot =

∑
σ1,...,σN

G(N )
σ1···σN

〈n̂↑ + n̂↓〉N
=

〈 ∏N−1
k=0 (n̂↑ + n̂↓ − k)

〉
〈n̂↑ + n̂↓〉N

. (A6)

In the wave-function approach the average is calculated as
〈Ô〉 = 〈ψ | Ô |ψ〉. The populations and first-order coherences
read

n̄↑ =
∑
n,m

n|Cnm|2, (A7a)

n̄↓ =
∑
n,m

m|Cnm|2, (A7b)

n̄↑↓ =
∑
n,m

√
(n + 1)mC∗

n+1,m−1Cnm, (A7c)

n̄↓↑ =
∑
n,m

√
(m + 1)nC∗

n−1,m+1Cnm. (A7d)

The second-order coherence functions are of the form

g(2)
↑↑ = 1

n̄2
↑

∑
n,m

n(n − 1)|Cnm|2, (A8a)

g(2)
↓↓ = 1

n̄2
↓

∑
n,m

m(m − 1)|Cnm|2, (A8b)

g(2)
↑↓ = g(2)

↓↑ = 1

n̄↑n̄↓

∑
n,m

nm|Cnm|2, (A8c)

g(2)
tot =

∑
n,m(n + m)(n + m − 1)|Cnm|2

(n̄↑ + n̄↓)2
. (A8d)

Upon truncation, these expressions reduce to Eqs. (18)
and (19).

It is also useful to introduce similar correlations in the
linear polarization basis, which can be of practical interest.
The circular and horizontal-vertical polarization annihilation
operators are related as follows:(

L̂H

L̂V

)
= 1√

2

(
1 1
−i i

)(
L̂↑
L̂↓

)
. (A9)

For an arbitrary orientation of linear polarization basis, the
polariton operators read (θ is the angle from the H axis and
θ̄ = θ + π

2 ) (
L̂θ

L̂θ̄

)
= 1√

2

(
e−iθ eiθ

e−iθ̄ eiθ̄

)(
L̂↑
L̂↓

)
. (A10)

The average numbers of linearly polarized polaritons read

n̄θ = 〈L̂†
θ L̂θ 〉, n̄θ=0 = n̄H , n̄θ=π/2 = n̄V (A11)

and one has

n̄θ = 1
2 (n̄↑ + n̄↓ + e2iθ n̄↑↓ + n̄↓↑e−2iθ ). (A12)

The N-th-order normalized coherence functions for lin-
early polarized polaritons are

g(N )
HH = G(N )

HH

〈L̂†
H L̂H 〉N

, g(N )
VV = G(N )

VV

〈L̂†
V L̂V 〉N

, (A13)

with

G(N )
HH = 〈

L̂†N
H L̂N

H

〉
, G(N )

VV = 〈
L̂†N

V L̂N
V

〉
, (A14)

where operator products L̂†N
θ L̂N

θ can be expressed in terms of
the operators L̂†

↑,↓ and L̂↑,↓ as

L̂†N
θ L̂N

θ =
N∑

k,l=0

(
N

k

)(
N

l

)
e2iθ (l−k)

2N
L̂†N−k

↑ L̂†k
↓ L̂N−l

↑ L̂l
↓.

Finally, the normalized second-order correlation for cross-
linear polarization g(2)

HV is defined as

g(2)
HV = 〈L̂†

H L̂†
V L̂V L̂H 〉

〈L̂†
H L̂H 〉〈L̂†

V L̂V 〉 . (A15)

APPENDIX B: LINEARLY POLARIZED DRIVE:
EFFECTIVE WAVE FUNCTION VERSUS

LINDBLAD EQUATION

In this Appendix we discuss a subtle difference between
the effective wave function and Lindblad formalism for the
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H-polarized drive configuration. We highlight that while the
symmetry of the Hamiltonian prohibits the occupation of odd
V Fock states in the effective wave-function approach, this
strict prohibition disappears in the Lindblad formalism. We
then use a perturbative expansion of the density matrix to
obtain accurate analytical results for the observable quantities
n̄V and g(2)

HV .
When the drive is H polarized, F↑ = F↓ = F , the use

of (A9) allows us to rewrite the Hamiltonian (12) in the H-V
basis as

Ĥ = (
 + δHV )L̂†
H L̂H + (
 − δHV )L̂†

V L̂V + FH (L̂H + L̂†
H )

+U1(L̂†
H L̂†

V L̂V L̂H )

+ U1 + U2

4
(L̂†

H L̂†
H L̂H L̂H + L̂†

V L̂†
V L̂V L̂V )

− U1 − U2

4
(L̂†

H L̂†
H L̂V L̂V + L̂†

V L̂†
V L̂H L̂H ), (B1)

with FH = √
2F . Here we see that when U1 = U2, the H-V

subspaces decouple and the Fock states |n, m〉HV with m �= 0
remain unoccupied since FV = 0. When U1 �= U2 the two
subspaces are coupled by the last term of (B1). Importantly,
this coupling is two body as it remove two excitations in
one subspace to create two excitations in the other. As a
consequence, in our effective wave-function approach (which
neglects quantum jumps), the states |n, m〉HV with odd m
cannot be occupied, and thus when truncated to n + m � 2,
n̄V is fully determined by the occupation of |0, 2〉HV .

However, this is no longer true in the Lindblad formalism
where the dissipation induces additional couplings. This can
be understood by looking at the evolution equations of the
diagonal elements of the density matrix in the HV Fock basis
ρHV

n,m,n,m = 〈nm| ρ̂ |nm〉HV . First, we note that since we as-
sumed a polarization-independent decay, the dissipation term
in the Lindblad equation is diagonal in either basis and one
has

∑
σ=↑,↓

(
L̂σ ρ̂L̂†

σ − 1

2
{L̂†

σ L̂σ , ρ̂}
)

=
∑

λ=H,V

(
L̂λρ̂L̂†

λ− 1

2
{L̂†

λL̂λ, ρ̂}
)
.

(B2)

Then, using Eq. (13), the evolution of the diagonal elements
in the HV basis read

h̄ρ̇HV
n,m,n,m = −i 〈n, m| [Ĥ , ρ̂] |n, m〉HV + γ (n + 1)ρHV

n+1,m,n+1,m

+ γ (m + 1)ρHV
n,m+1,n,m+1 − γ (n + m)ρHV

n,m,n,m.

(B3)

The first term encodes the Hamiltonian evolution and thus
cannot induce transitions to ρHV

n,m,n,m with odd m as explained
above. The other terms are related to the coupling with the en-
vironment as described in the Lindblad equation. The last term
is related to the decay to the outside, a phenomenon encoded
in the effective wave-function approach. The second and third
terms encode transitions between levels and originate from the
L̂σ ρ̂L̂†

σ Lindblad terms. The third term can induce population
of the levels with odd m index. This can be interpreted as an
explicit symmetry breaking due to the environment.

Perturbative expansion of the density matrix

Here we perform a perturbative expansion of the steady-
state density matrix to calculate correlations in HV basis in
the low-drive limit. First, we recall that in terms of the density
matrix elements in the HV basis, one has the relations

n̄H =
∑
n,m

nρHV
n,m,n,m, (B4a)

n̄V =
∑
n,m

mρHV
n,m,n,m, (B4b)

g(2)
VV = 1

n̄2
V

∑
n,m

m(m − 1)ρHV
n,m,n,m, (B4c)

g(2)
HH = 1

n̄2
H

∑
n,m

n(n − 1)ρHV
n,m,n,m, (B4d)

g(2)
HV = 1

n̄H n̄V

∑
n,m

nmρHV
n,m,n,m. (B4e)

To estimate Eqs. (B4b)–(B4d) one has to evaluate density ma-
trix elements up to the fourth order in F . Assuming ρHV

0,0,0,0 �
1, one has, to first order in F ,

ρHV
0,0,1,0 = ρHV ∗

1,0,0,0 � i
FH

γ /2 − i(
 + δHV )
ρHV

0,0,0,0; (B5)

to second order

ρHV
0,0,2,0 = ρHV ∗

0,0,2,0 �
(

i
U2 − U1

2
ρHV

0,0,0,2 + iFH

√
2ρHV

0,0,1,0

)(
γ − i

U1 + U2

2
− i2(
 + δHV )

)−1

, (B6a)

ρHV
0,0,0,2 = ρHV ∗

0,2,0,0 � i
U2 − U1

2
ρHV

0,0,2,0

(
γ − i

U1 + U2

2
− i2(
 − δHV )

)−1

, (B6b)

ρHV
1,0,1,0 = ρHV ∗

1,0,1,0 � i
FH

γ

(
ρHV

0,0,1,0 − ρHV
1,0,0,0

)
; (B6c)

to third order

ρHV
1,0,2,0 = ρHV ∗

2,0,1,0 �
(

iFH
(
ρHV

1,0,1,0

√
2 − ρHV

0,0,2,0

) + i
U2 − U1

2
ρHV

1,0,0,2

)(
3

2
γ − i

U1 + U2

2
− i(
 + δHV )

)−1

, (B7a)

ρHV
1,0,0,2 = ρHV ∗

0,2,1,0 �
(

− iFHρHV
0,0,0,2 + i

U2 − U1

2
ρHV

1,0,2,0

)(
3

2
γ − i

U1 + U2

2
− i(3δHV − 
)

)−1

; (B7b)
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and to fourth order

ρHV
0,1,0,1 � 2ρ0,2,0,2, (B8a)

ρHV
0,2,0,2 � i

U2 − U1

4γ

(
ρHV

0,2,2,0 − ρHV
2,0,0,2

)
, (B8b)

ρHV
2,0,2,0 �

(
iFH

√
2
(
ρHV

2,0,1,0 − ρHV
1,0,2,0

) + i
U2 − U1

2

(
ρHV

2,0,0,2 − ρHV
0,2,2,0

))
(2γ )−1, (B8c)

ρHV
2,0,0,2 = ρHV ∗

0,2,2,0 �
(

− iFH

√
2ρHV

1,0,0,2 + i
U2 − U1

2

(
ρHV

2,0,2,0 − ρHV
0,2,0,2

))
(2γ + 4iδHV )−1. (B8d)

Equation (B8a), which is related to the third term in (B3), implies that the probability to occupy the 1-V polariton state is twice
the one to occupy the 2-V state. Solving Eqs. (B6)–(B8), one obtains

ρHV
0,1,0,1 = 2ρHV

0,2,0,2 � 16F 4

4(
 + δHV )2 + γ 2

(U1 − U2)2(
D1D2 − 4δ2

HV

)2 + γ 2
(
D2

1 + D2
2 + 8δ2

HV

) + γ 4
= n̄V,w f , (B9)

and thus, using Eq. (B4b) and the fact that ρHV
1,1,1,1 = 0 at this order, we find that the V population is exactly twice the result

obtained in the wave-function approach (28) n̄V � 2n̄V,wf. One can then deduce the second-order correlation g(2)
VV ,

g(2)
VV � 2ρHV

0,2,0,2(
ρHV

0,1,0,1 + 2ρHV
0,2,0,2

)2 = 1

2n̄V
. (B10)

This result does not match the one of the effective wave-function approach g(2)
VV,wf = 1/n̄V,wf. Nonetheless, we can see that both

results diverge as 1/F 4 in the low-drive limit.
One can also calculate the second-order correlation in the same polarization as the drive g(2)

HH , which is finite in the low-drive
limit and reads

g(2)
HH � 2ρHV

2,0,2,0(
ρHV

1,0,1,0

)2 = [(
 + δHV )2 + γ 2/4]{[4(
 − δHV ) + U1 + U2]2 + 4γ 2}(
D1D2 − 4δ2

HV

)2 + γ 2
(
D2

1 + D2
2 + 8δ2

HV

) + γ 4
. (B11)

The right-hand side of Eq. (B11) can be equivalently calculated in both approaches since quantum jumps do not participate in
the calculation of the relevant density matrix elements to the leading order. We also note that the ratio g(2)

HH/g(2)
tot can be expressed

as

g(2)
HH

g(2)
tot

� 1 − (U1 − U2)2/2

(2
V + U1)2 + (2
V + U2)2 + 2γ 2
, (B12)

where we have introduced 
V = 
 − δHV . Equation (B12) highlights that g(2)
HH � g(2)

tot and that g(2)
HH/g(2)

tot < 1 is a signature of
unequal interactions U1 �= U2.

The analytical estimation of g(2)
HV is slightly more involved as it requires going to higher order in the expansion. To the leading

order it reads

g(2)
HV � ρHV

1,1,1,1 + 2ρHV
1,2,1,2

ρHV
1,0,1,0

(
ρHV

0,1,0,1 + 2ρHV
0,2,0,2

) .

To estimate it, one must go beyond the truncation to n + m = 2, and one has to solve an additional set of equations: elements of
third order F 3,

ρHV
0,0,3,0 = ρHV ∗

3,0,0,0 �
(

i

√
3

2
(U2 − U1)ρHV

0,0,1,2 + i
√

3FHρHV
0,0,2,0

)(
3

2
γ − i

3

2
(U1 + U2) − i3
H

)−1

, (B13a)

ρHV
0,0,1,2 = ρHV ∗

1,2,0,0 �
(

iFHρHV
0,0,0,2 + i

√
3

2
(U2 − U1)ρHV

0,0,3,0

)(
3

2
γ − 2iU1 − i

1

2
(U1 + U2) − i
H − 2i
V

)−1

; (B13b)

elements of order F 4,

ρHV
1,0,3,0 = ρHV ∗

3,0,1,0 �
(

−iFHρHV
0,0,3,0 + i

√
3FHρHV

1,0,2,0 + i

√
3

2
(U2 − U1)ρHV

1,0,1,2

)(
2γ − i

3

2
(U1 + U2) − i2
H

)−1

, (B14a)

ρHV
1,0,1,2 = ρHV ∗

1,2,1,0 �
(

−iFH
(
ρHV

0,0,1,2 − ρHV
1,0,0,2

) + i

√
3

2
(U2 − U1)ρHV

1,0,3,0

)(
2γ − i2U1 − i

3

2
(U1 + U2) − i2
V

)−1

; (B14b)
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elements of fifth order F 5,

ρHV
2,0,3,0 = ρHV ∗

3,0,2,0 �
(

iFH
(√

3ρHV
2,0,2,0−

√
2ρHV

1,0,3,0

)+ i
U2 − U1

2

(√
3ρHV

2,0,1,2− ρHV
0,2,3,0

))(
5

2
γ − i(U1 + U2) − i
H

)−1

, (B15a)

ρHV
2,0,1,2 = ρHV ∗

1,2,2,0 �
(

iFH
(√

2ρHV
1,0,1,2 − ρHV

2,0,0,2

) + i
U2 − U1

2

(√
3ρHV

2,0,3,0 − ρHV
0,2,1,2

))(
5

2
γ − i2U1 + i
H − i2
V

)−1

, (B15b)

ρHV
0,2,3,0 = ρHV ∗

3,0,0,2 �
(

iFH

√
3ρHV

0,2,2,0 + i
U2 − U1

2

(√
3ρHV

0,2,1,2 − ρHV
2,0,3,0

))(
5

2
γ − i(U1 + U2) − i3
H + i2
V

)−1

, (B15c)

ρHV
0,2,1,2 = ρHV ∗

1,2,0,2 �
(

iFHρHV
0,2,0,2 + i

U2 − U1

2

(√
3ρHV

0,2,3,0 − ρHV
2,0,1,2

))(
5

2
γ − i2U1 − i
H

)−1

, (B15d)

ρHV
1,1,0,1 = ρHV ∗

0,1,1,1 � ( − iFHρHV
0,1,0,1 + 2γ ρHV

0,2,1,2

)(3

2
γ + iU1 + i(
 + δHV )

)−1

; (B15e)

and elements of sixth order F 6,

ρHV
1,2,3,0 = ρHV ∗

3,0,1,2 �
(

iFH
(√

3ρHV
1,2,2,0 − ρHV

0,2,3,0

) + i
U2 − U1

2

√
3
(
ρHV

1,2,1,2 − ρHV
3,0,3,0

))
[3γ + i(U1 − U2) − i4δHV ]−1, (B16a)

ρHV
3,0,3,0 �

(
iFH

√
3
(
ρHV

3,0,2,0 − ρHV
2,0,3,0

) + i
U2 − U1

2

√
3
(
ρHV

3,0,1,2 − ρHV
1,2,3,0

))
(3γ )−1, (B16b)

ρHV
1,2,1,2 �

(
iFH

(
ρHV

1,2,0,2 − ρHV
0,2,1,2

) + i
U2 − U1

2

√
3
(
ρHV

1,2,3,0 − ρHV
3,0,1,2

))
(3γ )−1, (B16c)

ρHV
1,1,1,1 � i

FH

2γ

(
ρHV

1,1,0,1 − ρHV
0,1,1,1

) + ρHV
1,2,1,2. (B16d)

Solving (B13)–(B16), one obtains

g(2)
HV = γ 2 + 4
2

H

| − 3iγ + 2
H + 2U1|2

× A∣∣4
2
H + 4
H (−2iγ + 2
V + 3U1 + U2) + 4
V (−iγ + U1 + U2) + (2U1 − iγ )(−3iγ + 2U1 + 4U2)

∣∣2 , (B17)

with

A = 81γ 4 + 16
4
H + 64
3

H
V + 80
3
HU1 + 32
3

HU2

+ 72γ 2
2
H + 64
2

H
2
V + 208
2

H
V U1 + 80
2
H
V U2

+ 140
2
HU 2

1 + 128
2
HU1U2 + 16
2

HU 2
2 + 96
H
2

V U1

+ 32
H
2
V U2 + 144γ 2
H
V + 168
H
V U 2

1

+ 200
H
V U1U2 + 16
H
V U 2
2 + 80
HU 3

1

+ 168
HU 2
1 U2 + 108γ 2
HU1 + 48
HU1U

2
2

+ 96γ 2
HU2 + 144γ 2
2
V + 44
2

V U 2
1 + 8
2

V U1U2

+ 12
2
V U 2

2 + 48
V U 3
1 + 72
V U 2

1 U2 + 180γ 2
V U1

+ 40
V U1U
2
2 + 132γ 2
V U2 + 16U 4

1 + 48U 3
1 U2

+ 72γ 2U 2
1 + 44U 2

1 U 2
2 + 60γ 2U1U2 + 51γ 2U 2

2 . (B18)

To illustrate the validity of the analytical results, in Fig. 12
we have plotted g(2)

HH and g(2)
HV using the same parameters as in

Fig. 7.

FIG. 12. Correlation functions in the linear polarization versus
detuning 
 under weak H drive for the same parameters as in Fig. 7
(U1 = 0.01γ , U2 = 0.1γ , δHV = −γ , and F = 0.01γ ). The colored
solid lines and red dash-dotted lines correspond to the numerical
results, while the black dashed lines correspond to the analytical
results in Eqs. (B11) and (B17).
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We conclude this Appendix by emphasizing that the failure
of the wave-function approach here is related to the asymmet-
ric drive with respect to {H,V } subspaces and the two-body
nature of the HV coupling. In the case of a circularly polarized
drive investigated in Sec. IV, the drive is asymmetric with
respect to the {↑,↓} subspaces but the coupling is one body.

APPENDIX C: TWO-CHANNEL MODEL OF THE
FESHBACH RESONANCE

1. Lindblad equation in the two-channel model

In the two-channel model, the open-dissipative system is
described by the Lindblad equation

h̄
∂ρ̂

∂t
= −i[Ĥ , ρ̂] + γ

∑
σ

(
L̂σ ρ̂L̂†

σ − 1

2
{L̂†

σ L̂σ , ρ̂}
)

+ γB

(
B̂ρ̂B̂† − 1

2
{B̂†B̂, ρ̂}

)
,

where the Hamiltonian Ĥ is given in Eq. (38), γ is the
polariton decay out of the cavity, and γB is the biexciton
nonradiative decay. The corresponding steady-state density
matrix can be expanded in the Fock basis as

ρ̂ss =
∑

n, m, o,
n′, m′, o′

ρn, m, o, n′, m′, o′ |n, m, o〉〈n′, m′, o′| , (C1)

where the indices n, m, o are associated with the σ = {↑,↓}
polariton and biexciton subspaces.

2. Wave-function approach in the two-channel model

Similarly to what we did in Sec. III B, we introduce the
effective non-Hermitian Hamiltonian

Ĥeff = Ĥ − i
γ

2

∑
σ

L̂†
σ L̂σ − i

γB

2
B̂†B̂. (C2)

Here the wave function can be expanded as |ψ〉 =∑
n,m,o Cnmo |n, m, o〉. As previously, analytic expressions can

be obtained in the low-driving regime by using a truncated
ansatz with n + m + 2o � 2. The resulting Cnmo evolution
equations read

iĊ100 = C000F ∗
↑ + C010δHV + C100
̃ + C110F↓ +

√
2C200F↑,

(C3a)

iĊ010 = C000F ∗
↓ + C010
̃+

√
2C002F↓+ C100δHV + C110F↑

(C3b)

iĊ200 =
√

2C100F ∗
↑ +

√
2C110δHV + C200(2
̃ + U1), (C3c)

iĊ020 =
√

2C010F ∗
↓ + C020(2
̃ + U1) +

√
2C110δHV , (C3d)

iĊ110 = C001gBL + C010F ∗
↑ +

√
2δHV (C002

+C200) + C100F ∗
↓ + 2C110
̃, (C3e)

iĊ001 = C001
̃B + C110gBL, (C3f)

with 
̃B = 
B − iγB/2. As in Sec. III B, we impose C000 = 1
and calculate the steady-state solution of Eq. (C3). The polari-
ton populations and correlations are then obtained by making
use of Eqs. (18) and (19) with the replacement Cnm → Cnm0.

3. Second-order correlation functions

Here we provide the analytical formula for the second-order correlation in the two-channel model for a linearly polarized
drive. In the low-drive limit, one obtains

g(2)
σσ = γ 2 + 4(
 + δHV )2

D

{
γ 2

B [γ 2 + 4(
 − δHV )2] + 4
2
B

[
γ 2 +

(
2
 − 2δHV − g2

BL


B

)2
]

+ 4γ γBg2
BL

}
, (C4a)

g(2)
↑↓ = γ 2 + 4(
 + δHV )2

D

(
γ 2

B + 4
2
B

)
[γ 2 + (2
 − 2δHV + U1)2],

D = 4
2
B

{
8δ2

HV [γ 2 − 2
(2
 + U1)] + 16δ4
HV + (γ 2 + 4
2)[γ 2 + (2
 + U1)2]

}
+16
Bg2

BL

{
2δ2

HV (2
 + U1) − 
[γ 2 + (2
 + U1)2]
} + 4g4

BL[γ 2 + (2
 + U1)2]

+ 4γ γBg2
BL[γ 2 + 4δ2

HV + (2
 + U1)2] + γ 2
B

{
8δ2

HV [γ 2 − 2
(2
 + U1)] + 16δ4
HV + (γ 2 + 4
2)[γ 2 + (2
 + U1)2]

}
.

(C4b)

In the limit of zero nonradiative biexciton decay, the expressions (C4) reduce to

g(2)
σσ,γB=0 = [4(
 + δHV )2 + γ 2]

{[
2(
 − δHV ) − g2

BL

B

]2 + γ 2
}

[
(2
 + U1)

(
2
 − g2

BL

B

) − 4δ2
HV

]2 + γ 2
[
(2
 + U1)2 + (

2
 − g2
BL


B

)2 + 8δ2
HV

] + γ 4
, (C5a)

g(2)
↑↓,γB=0 = [4(
 + δHV )2 + γ 2]{[2(
 − δHV ) + U1]2 + γ 2}[

(2
 + U1)
(
2
 − g2

BL

B

) − 4δ2
HV

]2 + γ 2
[
(2
 + U1)2 + (

2
 − g2
BL


B

)2 + 8δ2
HV

] + γ 4
. (C5b)

One can observe a one-to-one correspondence between Eqs. (C5) and (30) upon the replacement U2 ↔ − g2
BL


B
. This is consistent

with the behavior of α2 given in Eq. (9b) in the vicinity of its pole. In addition, g(2)
↑↓,γB=0 vanishes when 
B → 0, as it should.
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For nonzero biexciton decay, it is insightful to consider the limiting cases of no and large birefringence splitting as we did in
Sec. V for the Kerr model. In the absence of birefringence reduces to Eq. (32a) and becomes

g(2)
↑↓ =

(
γ 2

B + 4
2
B

)
(γ 2 + 4
2)

γ 2
B (γ 2 + 4
2) + 4

[(
g2

BL − 2

B
)2 + γ 2
2

B + γ γBg2
BL

] , (C6)

while in the large birefringence limit |δHV | � U1, |
H |, γ , γB one has

g(2)
σσ = g(2)

↑↓ =
(
γ 2

B + 4
2
B

)(
γ 2 + 4
2

H

)
γ 2

B [γ 2 + (2
H + U1/2)2] + [
g2

BL − 
B(4
H + U1)
]2 + 4γ 2
2

B + 2γ γBg2
BL

. (C7)

Equations (C6) and (C7) reduce to Eqs. (40) and (41) when the detunings are set to zero.
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