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Interacting holes in Si and Ge double quantum dots: From a multiband
approach to an effective-spin picture
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The states of two electrons in tunnel-coupled semiconductor quantum dots can be effectively described in
terms of a two-spin Hamiltonian with an isotropic Heisenberg interaction. A similar description needs to be
generalized in the case of holes due to their multiband character and spin-orbit coupling, which mixes orbital
and spin degrees of freedom and splits j = 3/2 and j = 1/2 multiplets. Here we investigate two-hole states
in prototypical coupled Si and Ge quantum dots via different theoretical approaches. Multiband k · p and
configuration-interaction calculations are combined with entanglement measures in order to thoroughly charac-
terize the two-hole states in terms of band mixing and justify the introduction of an effective spin representation,
which we analytically derive a from generalized Hubbard model. We find that, in the weak interdot regime, the
ground state and first excited multiplet of the two-hole system display—unlike their electronic counterparts—a
high degree of J mixing, even in the limit of purely heavy-hole states. The light-hole component additionally
induces M mixing and a weak coupling between spinors characterized by different permutational symmetries.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) and double quantum
dots (DQDs) [1–3] represent the solid-state analogs of atoms
and biatomic molecules, respectively. Unlike in the case of
atoms, the main QD features, such as the shape of the confin-
ing potential and the interdot coupling, can be widely tuned
by means of electrostatic gates. Besides, the properties of
confined particles in QDs are affected and diversified by the
host semiconductor and its band structure.

From a technological viewpoint, one of the most relevant
applications of QDs is the implementation of spin qubits [4].
In this perspective, Si/Ge nanostructures seem to represent
ideal building blocks. In fact, both semiconductors present a
reduced hyperfine interaction, due to the natural abundance of
nonmagnetic isotopes (>95% and >92% for Si and Ge, re-
spectively) and to the possibility of isotopically purifying the
samples [5,6]. Moreover, the availability of well-established
industrial technologies for the production of Si/Ge nanostruc-
tures, such as metal-oxide-semiconductor devices, is possibly
a crucial asset toward scalability [7,8].

Although a great deal of work has been performed on
conduction-band Si QDs [9–18], the implementation of hole
QDs has recently attracted considerable interest for quantum
applications [6,19–27]. One reason is that the valence band of
both Si and Ge does not display the sixfold valley degener-
acy that characterizes the conduction band [28] and provides
an unwanted additional degree of freedom. Furthermore, the
valence band is generated by the hybridization of p atomic
orbitals [29], which have nodes at the atomic nuclei, so that
the residual hyperfine interaction affects the hole states only
weakly. In the case of hole-spin qubits, germanium presents

*andrea.secchi@nano.cnr.it

a further additional advantage [6,22–26]: Because of their
small effective mass, Ge holes tunnel more efficiently between
neighboring QDs, which implies less stringent requirements
on dot sizes and interdot distances.

Si and Ge have six valence bands with a maximum at the
� point, which, at zero magnetic field, form three Kramers-
degenerate couples which are respectively called heavy-hole,
light-hole, and split-off bands [29,30]. The heavy- and light-
hole bands are degenerate at �, while the split-off bands lie at
a higher energy that is equal to the spin-orbit parameter. This
scenario results from a strong spin-orbit coupling between the
hole spins and orbital angular momenta, which can be ex-
ploited for efficient spin manipulation through electric-dipole
spin resonance [23,31]. The much weaker spin-orbit coupling
acting in the conduction band makes the implementation of
this concept more challenging for electrons [32].

The existence of distinct valence bands also complicates
the character of two-particle states in coupled quantum dots.
In a single-band system, interdot tunneling induces a hy-
bridization of the single-dot orbitals. In the case of weak
tunneling and identical dots, the single-particle spatial wave
functions can be approximately identified with symmetric and
antisymmetric combinations of single-dot orbitals. The low-
est two-particle eigenstates result from the interplay between
tunneling and Coulomb interactions and, for weak spin-orbit
coupling, they can be assigned well-defined values of the
total spin S. In particular, the ground and first excited states
respectively correspond to a spin singlet (S = 0) and triplet
(S = 1) [33].

In a multiband system, instead, the single-dot ground state
is a combination of different Bloch states corresponding to
the distinct bands, each of which might be coupled to a dif-
ferent orbital envelope function. For tunnel-coupled quantum
dots, this results in a richer and more complicated picture
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than the one outlined in the single-band case. The lowest
molecular orbitals are determined by the competition between
different excitations, associated to interdot and band degrees
of freedom. In particular geometries, the interplay between
confinement potential and spin-orbit coupling can lead to the
appearance of anomalous features, like the vanishing of the
tunneling energy at finite interdot distances, and the related
vanishing of the singlet-triplet splitting [2,34–36].

The purpose of this work is to elucidate the effect of
the multiband structure of the valence band on the single-
and two-hole wave functions of Si and Ge confined states.
We consider electrostatically defined DQDs, where tunnel-
ing takes place within a given quantum well and across a
smooth barrier, modulated by top gates. The single- and
two-hole states are determined for a model DQD potential
within a six-band k · p envelope-function approach combined
with the configuration-interaction (CI) scheme for the di-
agonalization of the two-hole interacting Hamiltonian. The
numerical results are taken as the benchmark and the starting
point for an effective representation in terms of an analytical
model. The latter is inspired by the Hubbard model, with
the two QDs playing the role of the atomic sites and two
Kramers-degenerate single-hole spin-orbital states for each
QD. Crucially, the band structure of each of these spin or-
bitals allows us to derive analytical expressions for both the
two-hole eigenstates and the reduced spin states. We find that
the two-hole states are nontrivial mixtures of spinors with
different values of the total spin J and its third component
M. As a central result, the predictions of the Hubbard model
are checked against the numerical modeling and reveal a very
good agreement.

Our second main result follows from the numerical cal-
culations of the linear entropies associated with the reduced
spin-density matrices of the lowest single- and two-hole
eigenstates. These calculations reveal that spin-orbit entan-
glement is rather weak in these systems; this implies that the
single-hole orbital wave functions corresponding to different
bands are approximately parallel (i.e., they differ by a multi-
plicative constant). This allows us to simplify the results of the
Hubbard model and to derive a simpler description of single-
and two-hole states in terms of pseudospin-1/2 states. This

demonstrates that linear entropies are a powerful tool for the
analysis and the derivation of effective models for multiband
systems.

The rest of this article is organized as follows. In Secs. II
and III we present the calculation and characterization of
single- and two-hole states, respectively. Section IV is de-
voted to the analytical Hubbard model and to the comparison
between its predictions and the numerical results. In Sec. V
we introduce the approximation of neglecting spin-orbit en-
tanglement, which allows to obtain from the Hubbard model
a simpler pseudospin-1/2 representation of single- and two-
hole states. Finally, the conclusions are drawn in Sec. VI.
Further technical details related to the comparison between
the numerical results and the four-band Hubbard model are
reported in the Appendix.

II. SINGLE-HOLE STATES

A. Method

1. Diagonalization of the single-hole Hamiltonian

The calculation of the confined single-hole states in Si and
Ge is performed within the Lüttinger-Kohn (LK) envelope-
function approach [37]. As a first step, the kinetic-energy
operator for the electronic states close to the top of the va-
lence bands (which occurs at the � point in both Si and
Ge) is represented by a k · p Hamiltonian matrix (Hk·p). This
acts on vectors, each component of which corresponds to
a Bloch state with crystal momentum � ≡ 0. In the cases
of Si and Ge, the relevant Bloch states for the valence
bands are built from p-type atomic orbitals [29,38], car-
rying an angular momentum l = 1. Combining this with
the electron s = 1/2 spin, one can write the Bloch ba-
sis set at � as a quartet of states with j = 3/2 and a
doublet of states with j = 1/2. The quartet generates the
heavy- (m = ±3/2) and light-hole (m = ±1/2) bands, while
the doublet generates the spin-orbit split-off bands. The k ·
p Hamiltonian is therefore a 6 × 6 matrix which, in the
{| 3

2 , 3
2 〉, | 3

2 , 1
2 〉, | 3

2 ,− 1
2 〉, | 3

2 ,− 3
2 〉, | 1

2 , 1
2 〉, | 1

2 ,− 1
2 〉} basis, reads

as [29,30]
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Here we have chosen the sign such that the hole effective
masses are positive, and

P = h̄2

2m0
γ1
(
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x + k2
y + k2
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)
, (2)
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)
, (3)
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R = h̄2

2m0

√
3
[−γ3

(
k2

x − k2
y

)+ 2iγ2kxky
]
, (4)

S = h̄2

2m0
2
√

3γ3(kx − iky)kz. (5)

The above expressions of P, Q, R, and S apply when the
following correspondence holds between the reference and
crystallographic axes [39]:

x̂ ‖ [110], ŷ ‖ [1̄10], ẑ ‖ [001]. (6)

The Lüttinger parameters {γ1, γ2, γ3} are equal to
{4.285, 0.339, 1.446} for Si and {13.38, 4.24, 5.69} for Ge;
the spin-orbit parameter is � = 44 meV for Si and � =
290 meV for Ge.

In the presence of an external electrostatic potential V (r)
that varies smoothly over the spatial scale of the lattice con-
stant, the effective Hamiltonian for the low-energy hole states
is given by the LK expression,

HLK = Hk·p + diag[V (r)], (7)

where the external potential is added to the diagonal elements
of Hk·p [Eq. (1)]. The solution of the matrix Schrödinger
equation determined by HLK yields eigenvectors whose r-
dependent components are the envelope functions: We denote
them as ψα,b(r), where α is the eigenstate index and b ≡
( j, m) distinguishes the six components (bands). The total
eigenstates, including the microscopic (Bloch) parts, are writ-
ten as

|ψα〉 =
∫

dr
∑

b

ψα,b(r)|ε+
b (r)〉, (8)

where

|ε+
b (r)〉 =

√
Va

∑
Rk

(−1)k
∑
ξ,sz

Sb,ξ ,szφpξ
(r − Rk )|r, sz〉 (9)

is the Bloch state [29,38] for the band b. This combines p-type
atomic orbitals φpξ

(with ξ ∈ {x, y, z}) centered on all the Na

atomic positions Rk of the crystal (where k ∈ {0, 1} labels the
two atoms in each unit cell) with the spin states sz = ±1/2,
through the Clebsch-Gordan coefficients Sb,ξ ,sz ; |r, sz〉 is a
position-spin eigenstate. The constant Va is the volume oc-
cupied by a single atom in the Si or Ge lattice, i.e., half of the
two-atom unit cell; the normalization is chosen such that∫

dr
∑

b

ψ∗
α,b(r) ψα′,b(r) = δα,α′ . (10)

In this work, we focus on prototypical DQDs, defined
within a Si or Ge quantum well by means of electrostatic
gates. The hole confinement is accounted for by the total
potential

V (r) = VDQD(x) + VQD(y) + V‖θ (|z| − Lz/2), (11)

where the last term accounts for the confinement in a well of
width Lz along the z direction, with a height V‖ that mimics
the band offset between the semiconductor and the surround-
ing insulating materials. The confinement along the x and y

directions is respectively given by the quartic and parabolic
potentials

VDQD(x) = 1

2
κ

(x2 − a2)2

4a2
, (12)

VQD(y) = 1

2
κy2. (13)

The minima of VDQD(x) are located at x = ±a, and are thus
separated by a distance D = 2a, to which we refer in the
following as the interdot distance. The height of the interdot
barrier is V (0) = κa2/8. For |x ∓ a| 
 a, the confinement
along the x direction is approximately harmonic, with the
same spring constant as the one that characterizes the har-
monic potential along the y direction:

VDQD(x) ≈ 1
2κ (x ∓ a)2. (14)

2. Characterization of the single-hole states

If the r- dependence of the Bloch states in Eq. (8) is ne-
glected, then the single-hole eigenstates can be rewritten as

|ψα〉 =
∑

b

|ψα,b〉 ⊗ |b〉, (15)

where the band states |b〉 replace the Bloch states and can be
considered as spinors in this picture, and 〈r|ψα,b〉 = ψα,b(r).
Hereinafter, we refer to envelope and band as the orbital and
spin degrees of freedom, respectively.

The occupations of the six bands, whose sum is normalized
to 1, are given by

pα,b ≡ 〈ψα,b|ψα,b〉. (16)

The eigenstates |ψα〉 can be also characterized in terms
of their spatial symmetries. In the following, we specifically
refer to the expectation value of the operator σyz, which im-
plements a reflection of the orbital states about the yz plane
and is thus defined by the equation

〈x, y, z|σyz|ψα〉 = 〈−x, y, z|ψα〉. (17)

In the single-hole states |ψα〉, orbital and spin degrees of
freedom are in general entangled. This means that it is not
possible to write such states exactly in the factorized form∣∣ψ fact

α

〉 ≡ |ψα,1〉 ⊗
∑

b

cα,b|b〉. (18)

The state in Eq. (18) is the product of an orbital function
|ψα,1〉, common for all bands, and a spin state

∑
b cα,b|b〉,

which is in general a linear combination of different band
states.

In general, the hole eigenstates display band mixing, i.e.,
different bands are coupled to different orbital functions. In
order to investigate such mixing, we first compute the reduced
single-spin density matrix:

ρsp
α =

∑
b,b′

〈ψα,b′ |ψα,b〉|b〉〈b′|. (19)

Then, the entanglement between the orbital (envelope) and
spin (band) degrees of freedom is quantified through the linear
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entropy of the reduced spin state:

SL
(
ρsp

α

) = 1 − tr
[(

ρsp
α

)2] = 1 −
∑
b,b′

|〈ψα,b′ |ψα,b〉|2, (20)

which ranges from 0 to 5/6, for increasing spin-orbit correla-
tions and mixing of the density matrix ρ

sp
α . One has SL(ρsp

α ) =
0 if and only if the hole state |ψα〉 has the factorized form
given in Eq. (18).

In this system, spin-orbit entanglement [SL(ρsp
α ) �= 0] re-

quires the fulfillment of two conditions. The first one is the
occurrence of band mixing, i.e., the distribution of population
among different bands. The second condition is that the orbital
states corresponding to such different bands are not parallel to
each other, i.e., that there are no constants cα,b such that |ψα〉
can be factorized as in Eq. (18).

In order to separately quantify the effect of these two con-
tributions, we compare the linear entropy of ρ

sp
α with that of

the fully dephased reduced density operator

σ sp
α =

∑
b

〈ψα,b|ψα,b〉|b〉〈b|, (21)

which is given by

SL
(
σ sp

α

) = 1 −
∑

b

|〈ψα,b|ψα,b〉|2 � SL
(
ρsp

α

)
. (22)

The linear entropy SL(σ sp
α ) quantifies the band mixing alone,

while the difference

SL
(
σ sp

α

)− SL
(
ρsp

α

) =
∑

b

∑
b′ �=b

|〈ψα,b′ |ψα,b〉|2 (23)

singles out the contribution to spin-orbit entanglement result-
ing from the different spatial dependencies of the orbital states
corresponding to different bands. Low values of SL(ρsp

α ) imply
that the state |ψα〉 can be associated with a well-defined (non-
mixed) spin state, either because the hole eigenstate presents a
low degree of band mixing [relatively low values of SL(σ sp

α )]
or because the orbital states corresponding to different spin
components are strongly overlapping [relatively high values
of SL(σ sp

α )].

B. Numerical results

In this subsection, we report the properties of single-hole
states in two Si and Ge horizontally coupled quantum dots as a
function of the interdot distance. In particular, single-hole en-
ergies are used to identify the parameter range corresponding
to a weak interdot coupling, where the excitation energy asso-
ciated with the motion along x is smaller than that associated
with the motion along y and z, and the approximations under-
lying the Hubbard model apply. The comparison between the
symmetry properties and spatial distributions of the different
band components within each hole eigenstate provides a first
representation of the correlation between spin and orbital de-
grees of freedom, which is quantitatively characterized by the
linear entropies. Such characterization is propaedeutic to the
introduction of the effective spin representation of single- and
two-hole states.

1. Interdot tunneling

Within the present model, interdot tunneling is tuned by
varying the parameter a in the potential VDQD(x, y). In fact,
a determines the distance D = 2a between the two poten-
tial minima (x = ±a, y = 0) that define the positions of the
dots, as well as the height of the interdot barrier, given by
VDQD(0, 0) = κa2/8. The strength of confinement is deter-
mined by κ = m0ω

2/γ1, which can in turn be derived from the
“effective mass” m0/γ1 and from ω. Here we set h̄ω = 5 meV
for both Si and Ge dots, while the parameter γ1, and thus the
effective mass, is different in the two materials. Such differ-
ence can be quantified by the ratio between the characteristic
length scales lGe/lSi ≈ 1.767, where l ≡ (h̄γ1/m0ω)1/2. The
parameter ω determines not only the interdot tunneling but
also the strength of the parabolic confinement along the y
direction. Finally, the confinement along the z direction is
induced by a potential well whose depth and width are given
by V‖ = 4.0 eV and Lz = 5 nm, respectively.

We are specifically interested in the regime of weak inter-
dot coupling, where the energy scale associated with interdot
tunneling is smaller than that associated with intradot exci-
tations (δ). In order to identify such regime, we compute the
lowest-energy eigenvalues eα as a function of a for both Si and
Ge DQDs (Fig. 1). In the absence of an applied magnetic field,
each energy level is doubly degenerate (Kramers degeneracy).
The energy difference between the ground (α = 1, 2) and the
first excited doublet (α = 3, 4) decreases faster than expo-
nentially for increasing a and drops below the intradot gap
(δSi ≈ 3.94 meV) for a ≈ 4 nm in the case of Si. In the case of
Ge (δGe ≈ 4.58 meV), all considered values of a correspond
to a regime of weak interdot coupling.

In order to visualize the effect of interdot tunneling and the
degree of orthogonality between the orbitals corresponding to
different bands, we plot the profile along the xy plane of the
band-resolved charge density

ρch
α,b(r) = |〈r|ψα,b〉|2, (24)

for states α = 1 and α = 3 and for two representative values
of D (Fig. 2). The overall character of each eigenstate is
determined by the dominant heavy-hole contribution ( j, m) =
(3/2, 3/2), which is bonding and antibonding for the ground
[Figs. 2(a) and 2(e)] and first excited [Figs. 2(c) and 2(g)]
states, respectively. The main light-hole component ( j, m) =
(3/2,−1/2) clearly displays a different spatial distribution,
with a larger number of nodes [Figs. 2(b), 2(d) 2(f), and 2(h)].
In particular, we observe a transition in the excited state: at
small interdot distances, its heavy- and light- hole spatial dis-
tributions [Figs. 2(c) and 2(d)] are very similar, while at larger
distances they are nearly disjointed [Figs. 2(g) and 2(h)]. Such
transition is captured in the dependence of the linear entropies
on a (see below). We omit the minority contributions to the
charge density, which for states α = 1 and α = 3 correspond
to ( j, m) = (3/2,−3/2), ( j, m) = (3/2, 1/2) and j = 1/2, as
they are comparatively negligible.

2. Band composition, symmetries, and spin-orbit correlation

Single-hole states can be characterized in terms of their
band composition, the symmetry of their band components,
and spin-orbit correlation.
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FIG. 1. Energies eα of the single-hole ground (α = 1) and first-
excited (α = 3) states in the (a) Si and (c) Ge double quantum dot,
as functions of the half interdot distance a = D/2. Panels (b) and
(d) report the differences e3 − e1 for Si and Ge, respectively.

In the case of Si, ground states |ψ1〉 and |ψ2〉 have a
predominant heavy-hole character. At zero magnetic field, the
individual eigenstates within each Kramers doublet are not
unambiguously defined. In this set of calculations we break
the Kramers degeneracy and unambiguously define the eigen-
states by including a magnetic field of 10−2 T along z, which
is weak enough to avoid mixing between states belonging to
different doublets (the hole coupling to the magnetic field
is accounted for by means of Peierls’s substitution and by
including the Zeeman-Bloch Hamiltonian; see Ref. [40] for

FIG. 2. Profile along the in-plane directions, for z = 0, of the
band-resolved charge density ρch

α,(3/2,m)(r) in the Si dots (arbitrary
units). Panels (a)–(d) and (e)–(h) refer to the representative interdot
distances D = 8 nm and D = 26 nm, respectively. [(a) and (e)]
(α, m) = (1, 3/2); [(b) and (f)] (α, m) = (1, −1/2); [(c) and (g)]
(α, m) = (3, 3/2); [(d) and (h)] (α, m) = (3, −1/2). Since the states
with α = 2 and α = 4 are the time-reversal conjugates of those
with α = 1 and α = 3, respectively, one has ρch

2,( j,m) = ρch
1,( j,−m) and

ρch
4,( j,m) = ρch

3,( j,−m).

details). Therefore, state |ψ1〉 is characterized by a dominant
( j, m) = (3/2, 3/2) component (while the main contribution
to |ψ2〉 corresponds to m = −3/2). The weight of such band
decreases monotonically while the interdot distance increases,
while that of the second-largest contribution, namely ( j, m) =
(3/2,−1/2), increases with increasing D; the opposite be-
havior characterizes state |ψ3〉, belonging to the first excited
Kramers doublet. In Table I we report the values of the band
occupations corresponding to the smallest and largest values
of a in the considered range. The occupation probabilities of
the m = −3/2, ( j, m) = (3/2, 1/2), and j = 1/2 subbands
(not reported) for states |ψ1〉 and |ψ3〉 are negligible. States
|ψ2〉 and |ψ4〉 are the time-reversal conjugates of |ψ1〉 and
|ψ3〉, respectively; therefore, p2, j,m = p1, j,−m and p4, j,m =
p3, j,−m.

Different orientations of the small magnetic field yield
different occupations of the individual bands: For example, for
B along the x direction one has p1, j,m = p1, j,−m. This is due to
the fact that the magnetic field, in the weak-field regime that
we are considering, selects different linear combinations of
the degenerate Kramers states, depending on its orientation.
However, the total occupation of the heavy- and light-hole
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TABLE I. Characteristic quantities associated with single-hole
states |ψ1〉 and |ψ3〉 of the Si DQD for two representative values of a.
The table displays the two largest band occupations pα,b; the expec-
tation value of the symmetry operator σyz, i.e., 〈σyz〉α = 〈ψα|σyz|ψα〉;
and the linear entropy of the spin reduced density operators ρsp

α

and σ sp
α .

Si |ψ1〉 |ψ3〉
a (nm) 4 22 4 22

pα,3/2,3/2 0.989 0.904 0.895 0.919
pα,3/2,−1/2 0.006 0.0801 0.083 0.0643
〈σyz〉α 0.996 1.00 −0.973 −1.00
SL (ρsp

α ) 0.0212 0.0216 0.0480 0.0207
SL (σ sp

α ) 0.0217 0.0225 0.193 0.0207

bands for each Kramers doublet is independent of the field
orientation.

The expectation values of the mirror symmetry operator σyz

show that, in the considered range of parameter values, the
ground and first excited molecular spin orbitals can be labeled
as spatially symmetric and antisymmetric states to a good de-
gree of approximation. The band-resolved expectation values
show that the symmetry along the x direction is well defined
and coincides for the subbands ( j, m) having the largest occu-
pations, namely b = (3/2, 3/2) and b = (3/2,−1/2) (while
it is undefined for the remaining ones). In fact, we find that in
these cases |〈ψα,b|σyz|ψα,b〉| > 0.99 〈ψα,b|ψα,b〉 in the whole
considered range of values of a. The same inequality ap-
plies to the mirror symmetries about the two other coordinate
planes.

We finally analyze the degree of entanglement between the
spin and orbital degrees of freedom. In the case of Si (Fig. 3),
the ground state displays a low degree of mixing between the
subbands [low SL(σ sp

1 )], which also implies a small degree
of entanglement between spin and orbital components [low
SL(ρsp

1 )]. In the case of the first excited state, the difference
between the two entropies is significant, especially for the
smallest values of the interdot distance. This corresponds to
a significant amount of band mixing, where, however, the
orbital components corresponding to the two main subbands,
b = (3/2, 3/2) and b′ = (3/2,−1/2), have a large overlap.

FIG. 3. Linear entropies of the reduced spin density matrices ρsp
α

and their dephased counterparts σ sp
α for the hole eigenstates |ψα〉

(α = 1, 3) of the Si DQD, as functions of the half interdot distance
a. The maximum possible value for SL (ρsp

α ) is 5/6 ≈ 0.833.

In fact, the normalized overlap |〈ψ3,b|ψ3,b′ 〉|(p3,b p3,b′ )−1/2

decreases monotonically from 0.88 for a = 5 nm to less than
0.01 for a = 22 nm. In any case, as the interdot distance
varies, we either find a small amount of band mixing, or a
large overlap between the orbitals corresponding to the main
spin components. Therefore, a well-defined spin state can be
assigned to each of the hole eigenstates.

In the case of Ge, the eigenstates |ψα〉 (with α = 1, 2, 3, 4)
display symmetry properties similar to those of Si. However,
the degree of band mixing is very limited, as the weight of the
heavy-hole bands is higher than 0.999 and 0.997, respectively,
for the ground (α = 1, 2) and first excited states (α = 3, 4)
in the whole investigated range of interdot distance values.
Therefore, the linear entropies of both ρ

sp
α and σ

sp
α deviate

negligibly from 0.
This degree of band mixing is not expected to change in

the presence of strain, that can affect the Ge well in SixGe1−x

barriers. In particular, the uniaxial strain generated by the
lattice mismatch between Ge and the SixGe1−x substrate tends
to increase the energy splittings between heavy-hole, light-
hole and split-off bands, while it does not contribute to the
off-diagonal (i.e., band mixing) terms of the LK Hamiltonian
(since Rε = Sε = 0 for uniaxial strain, where Rε and Sε are
the strain-dependent corrections to the terms R and S, respec-
tively, of the k · p Hamiltonian within Bir-Pikus’s theory of
strain) [26]. Altogether, this results in a further suppression of
the band mixing, and therefore does not qualitatively modify
the above picture.

III. TWO-HOLE STATES

Our six-band calculations show that, for the considered
confinement potentials, the occupation probability of the split-
off bands ( j = 1/2) in the lowest-energy single-hole states
is negligible. However, the split-off bands indirectly affect
the overall band mixing, for they provide a coupling path
between light- and heavy-hole bands. Therefore, in order to
simplify the following discussion, we project the single-hole
states onto the j = 3/2 subspace before proceeding with the
calculation of the two-hole states. As a consequence, all hole
states considered in the following have j = 3/2, and their
individual spin state will be specified by the quantum number
m only.

A. Method

1. Diagonalization of the two-hole Hamiltonian

In the case of two spin-1/2 fermions (such as electrons
in one band with l = 0), one can combine the Slater deter-
minants corresponding to different spin orbitals to obtain a
basis set formed by states with defined values of the total spin
J = S ∈ {0, 1}. In the absence of spin-orbit interaction, each
two-fermion state is the product either of a symmetric orbital
and an antisymmetric spinor (J = 0), or of an antisymmetric
orbital and a symmetric spinor (J = 1). The eigenstates of the
Hamiltonian retain these symmetries.

In the case of spin-3/2 fermions, such as heavy and light
holes in Si and Ge, it is still possible to combine the Slater
determinants and obtain basis states that have a defined sym-
metry for both spin and orbital parts. In fact, one can introduce
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spinors |J, M〉, where J ∈ {0, 1, 2, 3} corresponds to the total
spin and M = m1 + m2 is the eigenvalue of the two-hole spin-
projection operator Jz = j1,z + j2,z. Spinors |J, M〉 are either
symmetric or antisymmetric with respect to particle exchange,
depending on whether J is odd or even. Therefore, an odd-
J spinor must be combined with an antisymmetric orbital,
and an even-J spinor must be combined with a symmetric
orbital, so that the product is antisymmetric. As a further
complication with respect to the two-electron case, the hole
Hamiltonian induces a mixing between symmetric and anti-
symmetric spinors, such that neither J nor its parity are good
quantum numbers (see below).

The basis set for the two-hole states is constructed from
a set of orthonormal single-hole states |ψα〉 [Eq. (15)]. From
these, one can define the two-hole Slater determinants,

|�αβ〉 = 1√
2

(|ψα〉|ψβ〉 − |ψβ〉|ψα〉)

=
∑
ζ=±1

∑
m1�m2

∣∣�αβζ
m1,m2

〉∣∣ϒζ
m1,m2

〉
, (25)

where ∣∣ϒζ
m1>m2

〉 ≡ 1√
2

(|m1〉|m2〉 − ζ |m2〉|m1〉), (26)

∣∣ϒζ
m1=m2

〉 ≡ 1

2
(1 − ζ )|m1〉|m2〉, (27)

are the symmetric (ζ = −1) and antisymmetric (ζ = +1)
combinations of the spinors |m1〉|m2〉 and |m2〉|m1〉. In the
j = 1/2 case (electrons), such combinations coincide respec-
tively with the triplet and singlet states. In the present j = 3/2
case, states |ϒ−1

m1>m2
〉 and |ϒ1

m1>m2
〉 belong respectively to the

subspaces J ∈ {1, 3} and J ∈ {0, 2}, but each of them gener-
ally includes components from different J multiplets with the
same parity.

In order to guarantee the overall antisymmetry of the two-
hole state, the orbitals corresponding to the J ∈ {0, 2} and
J ∈ {1, 3} subspaces must be symmetric and antisymmetric,
respectively:∣∣�αβζ

m1>m2

〉 ≡ 1

2

[∣∣ψα,m1

〉∣∣ψβ,m2

〉+ ζ
∣∣ψβ,m2

〉∣∣ψα,m1

〉
− ζ

∣∣ψα,m2

〉∣∣ψβ,m1

〉− ∣∣ψβ,m1

〉∣∣ψα,m2

〉]
,∣∣�αβζ

m1=m2

〉 ≡ 1 − ζ

2
√

2

[∣∣ψα,m1

〉∣∣ψβ,m2

〉− ∣∣ψβ,m2

〉∣∣ψα,m1

〉]
. (28)

The normalized states |ϒζ
m1,m2

〉 defined in spin space are
mutually orthogonal. The orbitals |�αβζ

m1,m2
〉 defined in real

space instead are in general not normalized and not mutually
orthogonal.

The two-hole eigenstates are obtained by means of a CI ap-
proach. The first step is the diagonalization of the single-hole
LK Hamiltonian, which gives the eigenstates |ψα〉 [Eq. (15)],
and the corresponding energy eigenvalues eα . From these,
one constructs the basis for two-hole states, formed by the
Slater determinants |�αβ〉 [Eq. (25)]. In this basis, the total
Hamiltonian is given by:

〈�αβ |H |�α′β ′ 〉 = (eα + eβ )(δα,α′δβ,β ′ − δα,β ′δβ,α′ )

+ VC (αβ, α′β ′), (29)

where the Coulomb term reads as

VC (αβ, α′β ′) =
∑

m1,m2

∫
dr1dr2 ψ∗

α,m1
(r1) ψ∗

β,m2
(r2)

× VC (r1 − r2)
[
ψα′,m1 (r1)ψβ ′,m2 (r2)

− ψβ ′,m1 (r1)ψα′,m2 (r2)
]
, (30)

and ψα,m(r) = 〈r|ψα,m〉. We assume here a uniform screening,
VC (r1 − r2) = (ε|r1 − r2|)−1, quantified by the dielectric con-
stants εSi = 11.68 for Si and εGe = 16.2 for Ge. As we have
shown in Ref. [38], the Coulomb interaction also includes
short-ranged interband processes, which can play a role in
strongly confined systems. However, Eq. (30) is correct under
the widely used approximation that the Coulomb potential is
intraband.

The diagonalization of this matrix yields the two-hole
eigenstates as linear combinations of the basis Slater deter-
minants,

|�k〉 ≡
∑
α,β

Ck
αβ |�αβ〉 ≡

∑
ζ=±1

∑
m1�m2

∣∣�kζ
m1,m2

〉∣∣ϒζ
m1,m2

〉
, (31)

where ∣∣�kζ
m1,m2

〉 ≡ ∑
α,β

Ck
αβ

∣∣�αβζ
m1,m2

〉
, (32)

and the coefficients Ck
αβ , which define the kth eigenstate, result

from the diagonalization of the two-hole Hamiltonian.

2. Characterization of the two-hole states

Analogously to the single-hole case, we define the spin
reduced density matrix for the two-hole state k:

ρ
tp
k ≡

∑
ζ=±1

∑
m1�m2
m′

1�m′
2

〈
�

kζ

m′
1,m

′
2

∣∣�kζ
m1,m2

〉∣∣ϒζ
m1,m2

〉〈
ϒ

ζ

m′
1,m

′
2

∣∣. (33)

From the reduced density matrix one can derive the weights
of the J multiplets, which are given by:

pk,J =
J∑

M=−J

pk,J,M =
J∑

M=−J

〈J, M|ρ tp
k |J, M〉. (34)

Since the length of the constituent spins is j = 3/2, the possi-
ble values of J range from 0 to 3.

The entanglement between spin and orbital components of
the kth two-hole eigenstate is quantified by the linear entropy

SL
(
ρ

tp
k

) = 1 − tr
[(

ρ
tp
k

)2]
. (35)

Analogously to the case of single-hole states, here spin-orbit
entanglement requires the distribution of the reduced spin
states among different two-hole spinors (J, M ). However, for
a given occupation of these spinors, the amount of entan-
glement (and thus the linear entropy of ρ

tp
k ) depends on the

overlap between the corresponding orbital states. In order to
single out the contributions of these factors, we compare the
linear entropy of the reduced spin state ρ

tp
k with that of its

dephased counterpart

σ
tp
k =

∑
ζ=±1

∑
m1�m2

〈
�kζ

m1,m2

∣∣�kζ
m1,m2

〉∣∣ϒζ
m1,m2

〉〈
ϒζ

m1,m2

∣∣. (36)
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The dephasing is performed in the (m1, m2) basis because
the weights of the |ϒζ

m1,m2
〉〈ϒζ

m1,m2
| projectors differ from one

another if the orbitals corresponding to different subbands are
not parallel. One has that

SL
(
σ

tp
k

)
� SL

(
ρ

tp
k

)
, (37)

where the first entropy quantifies the mixing between different
(m1, m2) components, i.e., the spin-orbit entanglement that
would be present if the orbitals corresponding to different
bands were mutually orthogonal. The comparison between
the above entropies thus allows to estimate the degree of
orthogonality between the orbitals corresponding to different
values of (m1, m2).

B. Numerical results

In the present subsection, we report the properties of the
two-hole states in coupled quantum dots, as a function of the
interdot distance. As in the case of single-hole states, the en-
ergies are used to identify the parameter range corresponding
to a small yet finite splitting between the ground state (sin-
glet) and the first excited multiplet (triplet). The reduced spin
states, obtained after averaging over the envelope functions,
represent the reference for validating the Hubbard model and
the effective spin representation presented in the following
sections.

1. Singlet and triplet

The lowest-energy two-hole states at zero magnetic field
consist of a ground singlet (|S〉, corresponding in the follow-
ing to k = 1) and an excited triplet (degenerate states |T−〉,
|T0〉 and |T+〉, corresponding respectively to k = 2, 3, and
4). These degeneracies are analogous to those found in the
single-band two-electron system. However, in that standard
case singlet and triplet are eigenstates of J2 with eigenvalues
J = 0 and J = 1, respectively, while the four-band two-hole
system that we are treating is more complicated, as the eigen-
states of the Hamiltonian are linear combinations of several
two-particle spinors with different values of J .

As the interdot distance increases, the singlet-triplet energy
gap decreases faster than the tunneling-induced gap between
the single-particle bonding and antibonding states, for both Si
and Ge DQDs (Fig. 4). This is analogous to what is expected
within a Hubbard-model picture, where the singlet-triplet en-
ergy splitting decays with increasing interdot distance as the
second power of the hopping parameter.

2. Reduced spin states

We characterize the lowest two-hole eigenstates by means
of the occupation probabilities pk,J,M of the spinors (J, M )
(Table II). This analysis shows that the dominant part of the
singlet state has M = 0 and is given by comparable contribu-
tions from J = 0 and J = 2 spinors, which are antisymmetric
with respect to permutation of the spin components m1 and
m2. In the limit of vanishing band mixing, where the ground
state has a purely heavy-hole character, the singlet state con-
sists of a linear superposition of only these two contributions,
with equal weights (p1,0,0 = p1,2,0 = 1

2 ). Here, due to the
presence of a small light-hole component in the single-particle

FIG. 4. Energies of the lowest singlet (E1) and of the three degen-
erate first-excited states (E2 = E3 = E4), and singlet-triplet splitting
(E3 − E1) as a function of the half interdot distance a for the cases of
Si [(a) and (b)] and Ge [(c) and (d)].

states, the weights p1,0,0 and p1,2,0 slightly differ from one
another, and minor contributions with (J, M ) = (2,±2) ap-
pear. Besides, contributions from odd-J (symmetric) spinors
appear, as is seen from p1,3,±2 �= 0. Although the mixing
between J subspaces with different symmetries is here very
limited, it is allowed by the symmetries of the Hamiltonian,
and always expected to some degree if the single-hole states
are not factorized (see the discussion of this topic in Secs. IV
and V).

The triplet states are characterized by dominant contribu-
tions from J = 1 and J = 3 spinors, which have a symmetric
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TABLE II. Main occupation probabilities pk,J,M corresponding
to the k = 1 (singlet S) and k = 3 (triplet T0) two-hole eigenstates
and to the spin configuration (J, M ).

Si S (k = 1) T0 (k = 3)

a (nm) 5 14 5 14

pk,0,0 0.490 0.487 0.000 0.000
pk,2,0 0.477 0.488 0.000 0.006
pk,2,±2 0.012 0.001 0.008 0.012

pk,1,0 0.000 0.000 0.860 0.878
pk,3,0 0.000 0.000 0.099 0.098
pk,3,±2 0.004 0.005 0.012 0.005

Ge S (k = 1) T0 (k = 3)

a (nm) 12 34 12 34

pk,0,0 0.499 0.499 0.000 0.000
pk,2,0 0.499 0.499 0.000 0.000
pk,2,±2 0.000 0.000 0.000 0.000

pk,1,0 0.000 0.000 0.897 0.898
pk,3,0 0.000 0.000 0.100 0.100
pk,3,±2 0.000 0.000 0.000 0.000

character. In particular, the main terms of the T0 state have
M = 0; in the single (heavy-hole) band limit, p3,1,0 = 9

10 and
p3,3,0 = 1

10 . The small light-hole component causes deviations
from these limiting values, and the presence of additional
contributions from the (J, M ) = (3,±2) states, as well as
mixing with J = 2 (antisymmetric) spinors. Finally, the T±
states are characterized by odd values of J and M, and tend to
the maximally polarized states in the absence of a light-hole
component (p2,3,−3 = p4,3,3 = 1).

Overall, the dependence of the occupation probabilities
p1,J,M and p3,J,M on the interdot distance is very weak, es-
pecially in the case of Ge. This is reflected in the dependence
of the linear entropies on a (see Fig. 5 for the case of Si). The
linear entropy of the reduced two-spin density matrix ρ

tp
k is of

the order of a few percents for both singlet and triplet. One
can thus associate well-defined spin states to the four lowest
eigenstates. The entropy would vanish and the limit of purely

FIG. 5. Linear entropies (multiplied by a factor 100) of the re-
duced spin density matrices ρ

tp
k and of their dephased counterparts

σ
tp
k for the singlet (k = 1) and triplet (k = 3) states in the Si double

dot. For the three triplet states, SL (ρ tp
2 ) = SL (ρ tp

3 ) = SL (ρ tp
4 ). The

maximum possible value of SL (ρ tp
k ) is 15/16 = 0.9375.

spin states would be achieved if the orbitals corresponding
to the different spin states were parallel to each other. The
opposite limit is the case where the orbitals corresponding
to different bands are all mutually orthogonal. The reduced
spin density matrix ρ

tp
k would then coincide with the dephased

spin density matrix σ
tp
k , whose linear entropy is also plotted

in Fig. 5 for a comparison. The difference between the linear
entropy of σ

tp
k and that of ρ

tp
k thus represents an indicator of

the orthogonality between the two-hole orbitals.

IV. FOUR-BAND HUBBARD MODEL

We now build a semianalytical Hubbard model that ac-
counts for the main features of one- and two-hole DQD states
in Si and Ge. The model reproduces with a good degree of
approximation the numerical results presented in the previous
section and provides a more general and transparent physical
picture, while including the complexity that originates from
the four-band structure of the valence band.

In the spirit of the Hubbard model [41], the DQD single-
and two-hole states are derived from the single-hole eigen-
states of the isolated dots. The two dots correspond to the
regions close to the minima of the confinement potential
V (r). For sufficiently large values of the interdot distance
D = 2a, the single-dot orbitals centered in different dots are
approximately orthogonal and form a convenient basis for the
description of the DQD states. The simplest model is obtained
by considering only the ground Kramers doublet for each of
the two dots, obtaining a basis of four single-hole states. The
complication of the present model, with respect to standard
(one-band) Hubbard models, lies in the fact that we take into
account the four-band structure of the basis states.

A. Derivation of the Hamiltonian

As a first step, we consider the single-hole Hamiltonian and
divide the DQD potential in three parts, in order to isolate the
single-dot contributions:

ĤDQD = Ĥk·p + V̂1 + V̂2 + V̂12︸ ︷︷ ︸
V̂DQD

. (38)

Here V̂s, with s ∈ {1, 2}, is the confining potential for dot
s, and V̂12 = V̂DQD − V̂1 − V̂2 is the tunneling-enabling po-
tential. The single-dot terms V̂s can be identified with the
harmonic approximations of the DQD potential around its
minima [Eq. (14)], i.e., V̂s = 1

2κ[x − (−1)sa]2. The definition
of V̂s is not univocal, but the formulation of the model is
independent on its exact expression, as long as the symmetry
between the two dots is preserved.

The single-hole states that form the ground Kramers dou-
blet within each of the two dots satisfy the equation

(Ĥk·p + V̂s)|ψs,τ 〉 = Es,τ |ψs,τ 〉, (39)

and they can be written as

|ψs,⇑〉 =
∑

m

|ψs,⇑,m〉 ⊗ |m〉,
(40)

|ψs,⇓〉 =
∑

m

(−1)
3
2 −m|ψ∗

s,⇑,−m〉 ⊗ |m〉,
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where m ∈ {3/2, 1/2,−1/2,−3/2} is the eigenvalue of jz,
and the relation between |ψs,⇑〉 and |ψs,⇓〉 results from
time-reversal symmetry. The index τ ∈ {⇑,⇓} specifies the
eigenstate within the doublet and is akin to the eigenvalue
of the third component of a pseudospin-1/2 operator, as we
shall see. The excited states of each single dot are assumed
to lie at energies high enough that they can be neglected in
the development of a low-energy model for one- and two-hole
states.

Numerical calculations performed on single-hole states of
single dots suggest that, when B = (Bx, 0, 0) and Bx → 0, the
orbitals satisfy

|ψs,⇑,m〉 = |ψs,⇑,−m〉, |ψs,⇓,m〉 = −|ψs,⇓,−m〉 (41)

to a very good approximation; this constraint conveniently re-
duces the size of the functional space. Besides, the imaginary
parts of the orbitals are negligible with respect to the real parts.
In the following, we develop and solve the model assuming
the validity of Eq. (41), and then discuss the simplifications
introduced by the further assumption that the orbitals are real
(end of Sec. IV B, and Sec. IV D). These approximations will
be justified a posteriori, by comparing the results derived
from the Hubbard model with those obtained from the full
numerical approach (see the Appendix).

From Eq. (41), it follows that

|ψs,⇑〉 ≡ |ψs,H 〉 ⊗ (∣∣ 3
2

〉+ ∣∣− 3
2

〉)+ |ψs,L〉 ⊗ (∣∣ 1
2

〉+ ∣∣− 1
2

〉)
,

|ψs,⇓〉 ≡ |ψ∗
s,H 〉 ⊗ (∣∣ 3

2

〉− ∣∣− 3
2

〉)− |ψ∗
s,L〉 ⊗ (∣∣ 1

2

〉− ∣∣− 1
2

〉)
,

(42)

where |ψs,H 〉 ≡ |ψs,⇑, 3
2
〉 and |ψs,L〉 ≡ |ψs,⇑, 1

2
〉 are the heavy-

and light-hole orbitals for dot s.
If the interdot distance is large compared to the extension

along x of the single-dot eigenstates |ψs,τ 〉, then one has that

V̂2|ψ1,τ 〉 ≈ 0, V̂1|ψ2,τ 〉 ≈ 0, 〈ψ1,τ |ψ2,τ ′ 〉 ≈ 0, (43)

and the matrix elements of the single-hole Hamiltonian are

〈ψs,τ |ĤDQD|ψs′,τ ′ 〉 = δτ,τ ′
[
δs,s′Es,τ + T (τ )

s,s′
]
, (44)

where

T (⇑)
s,s′ = 2

∑
h∈{H,L}

∫
drV12(r)ψs,h(r) ψs′,h(r)

= 〈ψs,⇑|V̂12|ψs′,⇑〉 = 〈ψs,⇓|V̂12|ψs′,⇓〉∗,
T (⇓)

s,s′ = [T (⇑)
s,s′ ]∗. (45)

In second quantization, the single-hole Hamiltonian result-
ing from the above considerations reads as

ĤDQD =
∑

τ

∑
s,s′

[
δs,s′Es,τ + T (τ )

s,s′
]
ψ̂†

s,τ ψ̂s′,τ . (46)

The on-site single-hole parameters [E1,⇑ = E2,⇑ = E1,⇓ =
E2,⇓ and T (⇑)

1,1 = T (⇑)
2,2 = T (⇓)

1,1 = T (⇓)
2,2 ] only add a constant

contribution to the eigenvalues and can thus be set to 0. The
only relevant single-hole parameter is the one related to inter-
site hopping:

T (⇑)
1,2 = [

T (⇑)
2,1

]∗ = [
T (⇓)

1,2

]∗ = T (⇓)
2,1 ≡ T . (47)

In order to obtain an analytically solvable model, we as-
sume that the interaction Hamiltonian is intraband and on-site.
Its expression is thus given by

ĤU = 1

2

∑
s

∑
τ1,τ2,τ3,τ4

Uτ1,τ2,τ3,τ4ψ̂
†
s,τ1

ψ̂†
s,τ2

ψ̂s,τ3ψ̂s,τ4 , (48)

where

Uτ1,τ2,τ3,τ4 =
∑
m,m′

∫
dr
∫

dr′ ψ∗
s,τ1,m(r)ψ∗

s,τ2,m′ (r′)

× VCoulomb(r − r′) ψs,τ3,m′ (r′)ψs,τ4,m(r)

≡ δτ1,τ4δτ2,τ3U, (49)

and

U ≡ 4
∫

dr
∫

dr′ {|ψs,H (r)|2 + |ψs,L (r)|2}

× VCoulomb(r − r′) {|ψs,H (r′)|2 + |ψs,L(r′)|2}. (50)

The two-site Hubbard Hamiltonian resulting from the pre-
vious considerations is

ĤHubbard = [T (ψ̂†
1,⇑ψ̂2,⇑ + ψ̂

†
2,⇓ψ̂1,⇓) + H.c.]

+ U (n̂1,⇑n̂1,⇓ + n̂2,⇑n̂2,⇓), (51)

where n̂s,τ = ψ̂†
s,τ ψ̂s,τ , and the hopping parameter T = |T |eiθ

is, in general, complex.
The two-site Hubbard model can be solved analytically at

any occupation number N ∈ {0, 1, 2, 3, 4}. We are interested
here in the cases of N = 1 and N = 2.

B. One-hole solutions of the Hubbard model

In the case of N = 1, there are two energy eigenvalues
e± = ±|T |, both doubly degenerate. The eigenstates

|ψ±,τ 〉 = 1√
2

(ψ̂†
1,τ ± e−iθ ψ̂

†
2,τ )|0〉 (52)

are explicitly given by the expressions

|ψ±,⇑〉 = 1√
2

[
(|ψ1,H 〉 ± e−iθ |ψ2,H 〉) ⊗

(∣∣∣∣32
〉
+
∣∣∣∣−3

2

〉)

+ (|ψ1,L〉 ± e−iθ |ψ2,L〉) ⊗
(∣∣∣∣12

〉
+
∣∣∣∣−1

2

〉)]
,

|ψ±,⇓〉 = 1√
2

[
(|ψ∗

1,H 〉 ± e−iθ |ψ∗
2,H 〉) ⊗

(∣∣∣∣32
〉
−
∣∣∣∣−3

2

〉)

− (|ψ∗
1,L〉 ± e−iθ |ψ∗

2,L〉) ⊗
(∣∣∣∣12

〉
−
∣∣∣∣−1

2

〉)]
. (53)

Under the (numerically justified) approximation that the
single-dot orbitals are real, the hopping parameter T is real
as well. In this case, it follows from Eqs. (53) that, despite
the complexity associated with the presence of four bands,
the orbital wave functions contributing to each single-hole
eigenstate of the Hubbard model have the same, well-defined
molecular character (bonding or antibonding), analogously to
what is found in single-band systems. This is consistent with
our numerical results in the regime of weak coupling between
the dots, as discussed in Sec. II B. According to Eqs. (53), the
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sign of T (i.e., whether e−iθ = −1 or +1) determines the or-
dering of the single-hole eigenstates; our numerical results are
consistent with T < 0 (i.e., e−iθ = −1), yielding a bonding
ground state, as in natural diatomic molecules. We mention
that in different four-band systems, such as vertically cou-
pled DQDs in InGaAs/GaAs, also the alternative possibility
of having T > 0 and an antibonding ground state has been
reported [2,34,35].

C. Two-hole solutions of the Hubbard model

In the case of N = 2, it is convenient to write the basis
states as

|S〉 ≡ 1√
2

(ψ̂†
1,⇑ψ̂

†
2,⇓ − ψ̂

†
1,⇓ψ̂

†
2,⇑)|0〉,

|T⇑〉 ≡ ψ̂
†
1,⇑ψ̂

†
2,⇑|0〉,

|T0〉 ≡ 1√
2

(ψ̂†
1,⇑ψ̂

†
2,⇓ + ψ̂

†
1,⇓ψ̂

†
2,⇑)|0〉,

|T⇓〉 ≡ ψ̂
†
1,⇓ψ̂

†
2,⇓|0〉,

|D−〉 ≡ 1√
2

(ψ̂†
1,⇑ψ̂

†
1,⇓ − ψ̂

†
2,⇑ψ̂

†
2,⇓)|0〉,

|D+〉 ≡ 1√
2

(ψ̂†
1,⇑ψ̂

†
1,⇓ + ψ̂

†
2,⇑ψ̂

†
2,⇓)|0〉. (54)

From the diagonalization of the Hubbard Hamiltonian on
this basis, it is found that the six eigenstates are distributed
among four distinct energy levels (three singlets and one
triplet). In terms of the exchange energy

J ≡
√

U 2 + 16|T |2 − U

2
, (55)

the lowest energy level is E = −J and it corresponds to the
eigenstate

|−J〉 = 2|T |[− cos(θ )|S〉 − i sin(θ )|T0〉] − E−|D+〉√
4|T |2 + (E−)2

. (56)

The energy level E = 0 corresponds to the following three
degenerate eigenstates:

|Tx,0〉 = − cos(θ )|T0〉 − i sin(θ )|S〉,
|Tx,+〉 = |T⇑〉, |Tx,−〉 = |T⇓〉. (57)

The energy level E = U corresponds to the eigenstate

|U 〉 = |D−〉, (58)

the eigenvalue E = U + J corresponds to the eigenstate

|U + J〉 = 2|T |[− cos(θ )|S〉 − i sin(θ )|T0〉] − E+|D+〉√
4|T |2 + (E+)2

.

(59)

It should be noticed that, in the case of a real hopping param-
eter (θ ∈ {0, π}), the |T0〉 components in the singlets vanish,
just like the |S〉 component in the triplet. One thus recovers
the formal results of the standard Hubbard model.

D. Spin-orbital wave functions for the low-energy
two-hole eigenstates

In order to gain a deeper physical understanding of the
two-hole eigenstates, we determine the corresponding spin-
orbital wave functions. By combining Eqs. (42) and (54), one
can write explicit expressions for the two-hole eigenstates of
the Hubbard model, displaying the four-band structure of the
envelope functions. The resulting expressions are unwieldy
in the most general case but can be simplified by assuming
that the orbital wave functions are real, as we already did in
the case of N = 1 (see the end of Sec. IV B). In the limit of
|T | 
 U , one can neglect the double-occupancy contributions
to the ground state, and

|−J〉 ≈ |S〉. (60)

The lowest singlet and triplet states thus coincide with the
(single-occupancy) eigenstates of an effective pseudospin-1/2
Heisenberg Hamiltonian,

ĤHeisenberg = J
(
Ŝ1 · Ŝ2 − 1

4

)
, (61)

where

Ŝs = 1

2

∑
τ,τ ′∈{⇑,⇓}

ψ̂†
s,τστ,τ ′ψ̂s,τ ′ , (62)

is the pseudospin operator for site s ∈ {1, 2}, and σ is the
vector of Pauli matrices.

While the ground state is uniquely determined, the triplet
states are degenerate; therefore, given a solution for those
three states, we can equivalently consider any set of three
orthogonal linear combinations of them. To facilitate the com-
parison with numerical results (see Secs. II B and III B and
the Appendix), we look for linear combinations of the triplet
states that are compatible with those found numerically at
B = (0, 0, Bz ), Bz → 0. We find that, under the assumption
that envelope functions are real, the sought-after combinations
are

|Tz,0〉 ≡ 1√
2
|T⇑〉 − 1√

2
|T⇓〉,

|Tz,+〉 ≡ 1

2
|T⇑〉 + 1√

2
|T0〉 + 1

2
|T⇓〉,

|Tz,−〉 ≡ 1

2
|T⇑〉 − 1√

2
|T0〉 + 1

2
|T⇓〉. (63)

We switch from the spinor basis |m1, m2〉 to the spinor basis
|J, M〉, where M = m1 + m2 and J ∈ {0, 1, 2, 3}. The change
of basis is achieved through the Clebsch-Gordan transforma-
tion, see Table III. We also introduce the condensed notation∣∣�S

sh,s′h′
〉 ≡ |ψsh〉|ψs′h′ 〉 + |ψs′h′ 〉|ψsh〉,

(64)∣∣�A
sh,s′h′

〉 ≡ |ψsh〉|ψs′h′ 〉 − |ψsh〉|ψs′h′ 〉,

which identifies symmetric and antisymmetric two-hole or-
bitals; here h, h′ ∈ {H, L} denote the hole bands among those
included in the model (heavy or light).
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TABLE III. Clebsch-Gordan coefficients SJ
m1,M−m1

defining the
decomposition of states |J, M〉 in terms of states |m1, m2〉, for
j1 = j2 = 3/2. Specifically, |J, M〉 = ∑

m1
SJ

m1,M−m1
|m1, M − m1〉.

We use the Condon-Shortley phase convention.

|J, M〉 SJ
3/2,M−3/2 SJ

1/2,M−1/2 SJ
−1/2,M+1/2 SJ

−3/2,M+3/2

|0, 0〉 −1/2 1/2 −1/2 1/2

|1, 1〉 √
3/

√
10 −2/

√
10

√
3/

√
10 –

|1, 0〉 3/
√

20 −1/
√

20 −1/
√

20 3/
√

20

|1, −1〉 – −√
3/

√
10 2/

√
10 −√

3/
√

10

|2, 2〉 −1/
√

2 1/
√

2 – –

|2, 1〉 −1/
√

2 – 1/
√

2 –
|2, 0〉 −1/2 −1/2 1/2 1/2

|2, −1〉 – 1/
√

2 – −1/
√

2

|2, −2〉 – – −1/
√

2 1/
√

2
|3, 3〉 1 – – –

|3, 2〉 1/
√

2 1/
√

2 – –

|3, 1〉 −1/
√

5 −√
3/

√
5 −1/

√
5 –

|3, 0〉 1/
√

20 3/
√

20 3/
√

20 1/
√

20

|3, −1〉 – 1/
√

5
√

3/
√

5 1/
√

5

|3, −2〉 – – 1/
√

2 1/
√

2
|3, −3〉 – – – 1

We now list the resulting spin-orbital wave functions. The
singlet ground state is

|S〉 = (∣∣�S
1H,2H

〉+ ∣∣�S
1L,2L

〉)⊗ |0, 0〉
+ (∣∣�S

1H,2H

〉− ∣∣�S
1L,2L

〉)⊗ |2, 0〉

+ 1√
2

(∣∣�S
1L,2H

〉+ ∣∣�S
1H,2L

〉)⊗ (|2, 2〉 + |2,−2〉)

+ 1√
2

(∣∣�A
1L,2H

〉− ∣∣�A
1H,2L

〉)⊗ (|3, 2〉 − |3,−2〉),

(65)

and the triplet states are

|Tz,+〉 =
√

2
∣∣�A

1H,2H

〉⊗ |3, 3〉

+
√

2
∣∣�A

1L,2L

〉⊗
(√

2

5

∣∣1,−1
〉+√

3

5

∣∣3,−1
〉)

+ (∣∣�A
1L,2H

〉+ ∣∣�A
1H,2L

〉)⊗
(√

3

5
|1, 1〉

−
√

2

5
|3, 1〉

)
+ (∣∣�S

1L,2H

〉− ∣∣�S
1H,2L

〉)⊗ |2, 1〉,
(66)

|Tz,0〉 = 1√
2

(∣∣�A
1L,2H

〉+∣∣�A
1H,2L

〉)⊗ (|3, 2〉+|3,−2〉)

+ 1√
2

(∣∣�S
1L,2H

〉−∣∣�S
1H,2L

〉)⊗ (|2, 2〉 − |2,−2〉)

+ 1√
5

[(
3
∣∣�A

1H,2H

〉− ∣∣�A
1L,2L

〉)⊗ |1, 0〉

+ (∣∣�A
1H,2H

〉+ 3
∣∣�A

1L,2L

〉)⊗ |3, 0〉], (67)

and

|Tz,−〉 =
√

2
∣∣�A

1H,2H

〉⊗ |3,−3〉

−
√

2
∣∣�A

1L,2L

〉⊗
(√

2

5

∣∣1, 1
〉+√

3

5

∣∣3, 1
〉)

− (∣∣�A
1L,2H

〉+ ∣∣�A
1H,2L

〉)⊗
(√

3

5

∣∣1,−1
〉

−
√

2

5

∣∣3,−1
〉)+ (∣∣�S

1L,2H

〉− ∣∣�S
1H,2L

〉)⊗ |2,−1〉.
(68)

The good agreement between this analytical theory and the
numerical results is discussed in the Appendix.

One of the interesting features of the two-hole states is
that they are not eigenstates of the total angular momentum
operators Ĵ

2
and Ĵz. Therefore, as seen from the expressions

(65), (66), (67), and (68), they are linear combinations of
two-hole spinors |J, M〉, with various values of J and M.
Moreover, the spinors contributing to each state do not all
have the same symmetry under exchange of the two particles,
and consequently the same holds true for the orbitals. There-
fore, two-hole eigenstates cannot be factorized as products
of orbital and spin parts. This mixing is a peculiar feature
of the four-band system, which is strikingly different from
more common one-band systems. However, we have found
numerically that the weights of the antisymmetric orbitals in
the singlet and of the symmetric orbitals in the triplet are small
(details are given in Sec. III B and the Appendix). The small-
ness of these terms, in the systems that we have considered,
can be interpreted as a consequence of the small degree of
entanglement between orbital and spin degrees of freedom,
which we have already demonstrated via the calculation of
the linear entropies associated with the spin reduced density
matrix. We discuss this connection in Sec. V.

We also notice that, within the present model, nonzero
light-hole components are necessary for the even-odd J mix-
ing: If we were to set |ψsL〉 → 0, then the two-hole states
would reduce to

|S〉 →
√

2
∣∣�S

1H,2H

〉⊗ 1√
2

(|0, 0〉 + |2, 0〉),

|Tz,+〉 →
√

2
∣∣�A

1H,2H

〉⊗ |3, 3〉,

|Tz,0〉 →
√

2
∣∣�A

1H,2H

〉⊗ 1√
10

(3|1, 0〉 + |3, 0〉),

|Tz,−〉 →
√

2
∣∣�A

1H,2H

〉⊗ |3,−3〉. (69)

These are in agreement with the single-band limits discussed
in Sec. III B.

V. PSEUDOSPIN REPRESENTATION OF THE
ONE- AND TWO-HOLE STATES

Since the lowest single-hole eigenstates are characterized
by a limited amount of mixing between orbital and spin com-
ponents (see Sec. III), they can be approximately described
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within an effective spin picture, and represented as combina-
tions of spinors |J, M〉 only.

A. Single-hole states

In particular, single-hole states |ψα〉, with α ∈ {1, 2, 3, 4},
are here characterized by a dominant heavy-hole component
m = ±3/2 and a significant contribution from the light-hole
m = ∓1/2 (see Table I in Sec. II B). Besides, both single-
and two-hole lowest-energy states display a limited amount
of entanglement between spin and orbital degrees of freedom.
As a reference for the actual reduced spin states, we consider
hereafter the limiting case where such entanglement is exactly
zero, due to a perfect overlap between the orbital states corre-
sponding to different bands:

|ψs,L〉 ≈ −r|ψs,H 〉, |ψs,H 〉 ≈ |ψ∗
s,H 〉, |ψs,L〉 ≈ |ψ∗

s,L〉,
(70)

with s ∈ {1, 2}. One has r2 = pi,∓1/2/pi,±3/2; the particular
case of r = 0 reproduces the single-band limit [see Eqs. (69)].
The approximation (70), for arbitrary r, amounts to freezing
the orbital degrees of freedom, since it implies that there is
only one independent orbital function for each dot; single-hole
states are then factorized as in Eq. (18).

This allows us to introduce a pseudospin-1/2 represen-
tation for the single-hole states localized in each dot, and
express them exclusively in terms of the eigenstates |m〉
of jz:

|↑〉s ≡ 1√
1 + r2

(∣∣∣∣32
〉

s

− r

∣∣∣∣− 1

2

〉
s

)
,

|↓〉s ≡ 1√
1 + r2

(∣∣∣∣− 3

2

〉
s

− r

∣∣∣∣12
〉

s

)
. (71)

Each spinor for site s incorporates the heavy-hole orbital wave
function for dot s, namely, ψs,H (r).

B. Two-hole states

The four lowest two-holes states in the pseudospin-1/2
representation are obtained from Eqs. (65), (66), (67), and (68)
by applying the approximations (70) to the single-hole orbitals
that constitute the two-hole orbitals. Equivalently, they can be
obtained by writing the singlet and triplet states in terms of
two pseudospin-1/2 single-hole states as follows:

|Sps〉 = 1√
2

(|↓〉1|↑〉2 − |↑〉1|↓〉2),

|T ps
+ 〉 = |↑〉1|↑〉2,∣∣T ps
0

〉 = 1√
2

(|↓〉1|↑〉2 + |↑〉1|↓〉2),

|T ps
− 〉 = |↓〉1|↓〉2,

(72)

and replacing states |↑〉s and |↓〉s with the expressions given in
Eqs. (71). One obtains the following expansions in the |J, M〉

basis:

|Sps〉 = 1

1 + r2

[
1√
2

(1 + r2)|0, 0〉

+ 1√
2

(1 − r2)|2, 0〉 − r(|2, 2〉 + |2,−2〉)

]
, (73)

∣∣T ps
+
〉 = 1

1 + r2

[∣∣3, 3
〉+ r2

(√
2

5

∣∣1,−1
〉+√

3

5

∣∣3,−1
〉)

−
√

2r

(√
3

5

∣∣1, 1
〉−√

2

5

∣∣3, 1
〉)]

, (74)

∣∣T ps
0

〉 = 1

1 + r2

[
− r (|3, 2〉 + |3,−2〉)

+ 1√
10

(3 − r2) |1, 0〉 + 1√
10

(1 + 3r2) |3, 0〉
]
,

(75)

and

|T ps
− 〉 = 1

1 + r2

[
|3,−3〉 − r2

(√
2

5
|1, 1〉 +

√
3

5
|3, 1〉

)

+
√

2r

(√
3

5
|1,−1〉 −

√
2

5
|3,−1〉

)]
. (76)

It is intended that the two-hole spinors |J, M〉 incorporate the
information about two-hole orbitals; namely spinors with even
J (antisymmetric) incorporate �S

1H,2H (r1, r2), while spinors
with odd J (symmetric) incorporate �A

1H,2H (r1, r2).
By comparing the two-hole spinors entering Eqs. (73),

(74), (75), and (76) with those entering the Hubbard states,
we notice that the difference of antisymmetric orbitals which
multiplies the J = 3 spinors in the Hubbard singlet [Eq. (65)]
cancels out as a consequence of approximation (70), just as the
differences between symmetric orbitals multiplying the J = 2
spinors in the triplet states [Eqs. (66), (67), and (68)]. The sin-
glet now contains only spinors with even J (antisymmetric),
while the triplet contains only spinors with odd J (symmetric);
accordingly, all components of the singlet have the symmetric
orbital �S

1H,2H (r1, r2), while all components of each triplet
state have the antisymmetric orbital �A

1H,2H (r1, r2).
Therefore, within the Hubbard model the source of

even/odd J mixing is the difference in the spatial dependence
(nonparallelism) of the heavy-hole and light-hole orbitals,
as we have just seen that, when this difference is removed,
the mixing disappears. However, the two-hole states in the
pseudospin-1/2 formalism are still not eigenstates of Ĵ

2
and

Ĵz, an effect of spin-orbit coupling. At the single-hole level,
this can be traced to the fact that it is not possible to choose
a basis of single-hole states which are eigenstates of Ĵz [see
Eqs. (71)].
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VI. CONCLUSIONS

In conclusion, we have applied different theoretical ap-
proaches to investigate the properties of single- and two-hole
states in prototypical coupled Si and Ge quantum dots. These
states are comprehensively modeled within a six-band k · p
and configuration-interaction approach, from which we ex-
tract the band mixing, the weight of the relevant orbitals, and
the reduced spin states corresponding to the lowest two-hole
eigenstates. In particular, we propose the use of entanglement
measures (such as the linear entropy) to achieve a deeper
characterization of the band mixing, beyond what is allowed
by the study of band-occupation probabilities. The numerical
results are used to define the range of validity of effective
representations, provided by a reduced spin model and by
a generalized Hubbard model, which in turn allows for an
analytic derivation of the spin states. The lowest two-hole
eigenstates display both analogies and differences with re-
spect to the singlet and triplet states obtained in two-electron
(one-band) systems. In particular, the singlet ground state
and the triplet excited states are predominantly antisymmetric
and symmetric with respect to spin exchange, respectively,
as in the electron case. However, unlike in that case, they
also display a strong J mixing, even in the absence of band
mixing. The presence of light-hole components additionally
results in M mixing within spin subspaces having the same
permutation symmetry, as well as in small contributions from
spin subspaces with opposite symmetry with respect to the
dominant one.
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APPENDIX A: COMPARISON BETWEEN THE HUBBARD
MODEL AND THE NUMERICAL RESULTS

In order to compare the predictions of the Hubbard
model with our numerical results, we consider the weights
of the (J, M ) components of the four lowest two-hole
states, i.e., pk,J,M , with k ∈ {1, 2, 3, 4} corresponding to states
{S, Tz,+, Tz,0, Tz,−}. From the expressions of two-hole states,
Eqs. (65), (66), (67), and (68), we see that the Hubbard model
predicts precise relationships between the weights of certain
(J, M ) components in different states, or within the same state.
These relationships, which hold independently of the specific
form of the single-hole wave functions, are as follows:

p1,2,2 = p1,2,−2, p1,3,2 = p1,3,−2,

p2,3,3 = p4,3,−3, p2,1,−1 = p4,1,1, p2,3,−1 = p4,3,1,

p2,1,1 = p4,1,−1, p2,3,1 = p4,3,−1, p2,2,1 = p4,2,−1;
(A1)

p3,1,0 + p3,3,0 − p2,3,3 − 5

2
p2,1,−1

= p3,1,0 + p3,3,0 − p4,3,−3 − 5

2
p4,1,1 = 0; (A2)

TABLE IV. Comparison between the predictions of the Hubbard
model and the numerical results.

Quantity Model a = 5 nm a = 10 nm a = 14 nm

p2,1,1/p2,3,1 1.5 1.515 1.500 1.500
p4,1,−1/p4,3,−1 1.5 1.488 1.500 1.500
p2,3,1/p3,3,2 0.8 0.795 0.800 0.809
p4,3,−1/p3,3,2 0.8 0.803 0.800 0.809
p2,2,1/p3,2,2 2 1.987 2.000 2.000
p4,2,−1/p3,2,2 2 1.987 2.000 2.000

p2,1,1

p2,3,1
= p2,3,−1

p2,1,−1
= p4,1,−1

p4,3,−1
= p4,3,1

p4,1,1
= 3

2
,

p2,3,1

p3,3,2
= p4,3,−1

p3,3,2
= 4

5
,

p2,2,1

p3,2,2
= p4,2,−1

p3,2,2
= 2. (A3)

Moreover, the model predicts certain quantities pk,J,M to be
zero, since each of the states {S, Tz,+, Tz,0, Tz,−} only involves
6 spinors |J, M〉 of 16.

To estimate the accuracy of the model, we compare its pre-
dictions with the two-hole calculations performed for silicon,
in the exemplary cases of a ∈ {5, 10, 14} nm. The results of
the comparison apply similarly to all other calculations that
we have performed, for both silicon and germanium.

We find that all identities (A1) and linear combinations
(A2) are satisfied within an error �10−4, which is comparable
to the estimated accuracy of the numerical calculations. The
ratios given by Eqs. (A3) are shown in Table IV: The second
column provides the model prediction, while columns 3–5
provide the numerical results for the three cases that we are
considering. Some of the weights (p2,3,−1, p2,1,−1, p4,3,1, and
p4,1,1) involved in Eqs. (A3) are found to be ≈10−4, which is
below the estimated accuracy of the numerical calculations;
therefore, computing their ratios is not significant, and we
omit those from our analysis. This smallness can be inter-
preted within the Hubbard model by assuming that, in the
systems considered in our calculations, the orbital |�A

1L,2L〉 has
a small amplitude [see Eqs. (66) and (68)]. In all significant
cases, the model accurately accounts for the numerical results.

We find that the states obtained from the numerical cal-
culations include very small, but nonzero, contributions from
some (J, M ) components for which pk,J,M = 0 according to
the model. We call hk the sum of the weights of these (J, M )
components beyond the Hubbard model for state k. For the
singlet, we obtain h1 ≈ {6, 5, 5} × 10−3 for the three consid-
ered values of a, respectively. The weights of the individual

TABLE V. Weights of the antisymmetric orbitals in the singlet
and of the symmetric orbitals in the triplet.

Quantity a = 5 nm a = 10 nm a = 14 nm

p1,3,2 = p1,3,−2 4 × 10−3 6 × 10−3 5 × 10−3

p2,2,1 = p4,2,−1 16 × 10−3 12 × 10−3 10 × 10−3

p3,2,2 = p3,2,−2 8 × 10−3 6 × 10−3 5 × 10−3
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terms beyond Hubbard are all �10−4, except for p1,2,1 =
p1,2,−1 = 1.3 × 10−3 in all the three cases. For the triplet, we
obtain h2 ≈ h3 ≈ h4 ≈ {8, 6, 5} × 10−3 for the three values of
a, respectively. The weights of the individual terms beyond
Hubbard are all �10−4, except for p2,3,2 = p2,2,2 = p4,3,−2 =
p4,2,−2, which is equal to ≈ {3.5, 2.7, 2.5} × 10−3 for the
three values of a, respectively.

One of the predictions of the Hubbard model in this
four-band scenario is that both symmetric and antisymmetric
two-hole orbitals contribute to the singlet and triplet states.

The weight of the antisymmetric orbitals in the singlet is
given by the quantities p1,3,2 = p1,3,−2, while the weight of
the symmetric orbitals in the triplet is given by the quantities
p2,2,1 = p4,2,−1 and p3,2,2 = p3,2,−2 [compare with Eqs. (65),
(66), (67), and (68)]. We report them in Table V for the same
three cases considered above. In all cases, it is seen that the
orbitals with minority symmetry have a total weight of the
order of ≈10−2. The connection between this smallness and
the small degree of spin-orbital entanglement is discussed in
Sec. V.

[1] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59,
2070 (1999).

[2] J. I. Climente, M. Korkusinski, G. Goldoni, and P. Hawrylak,
Phys. Rev. B 78, 115323 (2008).

[3] A. I. Yakimov, A. A. Bloshkin, and A. V. Dvurechenskii, Phys.
Rev. B 81, 115434 (2010).

[4] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[5] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons,

L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith,
and M. A. Eriksson, Rev. Mod. Phys. 85, 961 (2013).

[6] G. Scappucci, C. Kloeffel, F. A. Zwanenburg, D. Loss, M.
Myronov, J.-J. Zhang, S. De Franceschi, G. Katsaros, and M.
Veldhorst, Nature Rev. Mat. (2020), doi: 10.1038/s41578-020-
00262-z.

[7] K. Horibe, T. Kodera, and S. Oda, Appl. Phys. Lett. 106, 083111
(2015).

[8] Y. Yamaoka, S. Oda, and T. Kodera, Appl. Phys. Lett. 109,
113109 (2016).

[9] Y. Hada and M. Eto, Jpn. J. Appl. Phys. 43, 7329 (2004).
[10] L. Wang, K. Shen, B. Y. Sun, and M. W. Wu, Phys. Rev. B 81,

235326 (2010).
[11] L. Wang and M. W. Wu, J. Appl. Phys. 110, 043716 (2011).
[12] S. Das Sarma, X. Wang, and S. Yang, Phys. Rev. B 83, 235314

(2011).
[13] C. B. Simmons, J. R. Prance, B. J. Van Bael, T. S. Koh, Z.

Shi, D. E. Savage, M. G. Lagally, R. Joynt, M. Friesen, S. N.
Coppersmith, and M. A. Eriksson, Phys. Rev. Lett. 106, 156804
(2011).

[14] M. Raith, P. Stano, and J. Fabian, Phys. Rev. B 86, 205321
(2012).

[15] E. Nielsen, R. Rahman, and R. P. Muller, J. Appl. Phys. 112,
114304 (2012).

[16] T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward,
P. Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, M.
Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K.
Vandersypen, Nature (Lond.) 555, 633 (2018).

[17] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor,
G. Burkard, and J. R. Petta, Science 359, 439 (2018).

[18] F. Ansaloni, A. Chatterjee, H. Bohuslavskyi, B. Bertrand, L.
Hutin, M. Vinet, and F. Kuemmeth, Nat. Commun. 11, 6399
(2020).

[19] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H.
Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M.
Sanquer, and S. De Franceschi, Nat. Commun. 7, 13575 (2016).

[20] S. Bonen, U. Alakusu, Y. Duan, M. J. Gong, M. S. Dadash,
L. Lucci, D. R. Daughton, G. C. Adam, S. Iordănescu, M.
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