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Nonlinear optical processes in cavity light-matter systems
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We study nonlinear optical effects in electron systems with and without inversion symmetry in a Fabry-Perot
cavity. General photon up- and down-conversion processes are modeled by the coupling of a noninteracting
lattice model to two modes of the quantized light field. Effective descriptions retaining the most relevant states
are devised via downfolding and a generalized Householder transformation. These models are used to relate
the transition amplitudes for even order photon-conversion processes to the shift vector, a topological quantity
describing the difference in polarization between the valence and conduction band in noncentrosymmetric
systems. We also demonstrate that the truncated models, despite their small Hilbert space, capture correlation
effects induced by the photons in the electronic subsystem.
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I. INTRODUCTION

Understanding the properties of light-matter coupled sys-
tems is a long-standing challenge in condensed matter
physics. The goal of controlling material properties with clas-
sical light has been pursued actively in recent years, and
remarkable phenomena such as interaction tuning or quali-
tative changes in the band structure via Floquet engineering
have been theoretically demonstrated [1-8]. On the spec-
troscopy side, research on high-harmonic generation (HHG)
has shown that nonlinear optical processes inherit important
fingerprints of the electronic structure and even the Berry
curvature of solids [9-14].

Another stimulating prospect is the exploration and con-
trol of strongly coupled light-matter systems in cavities,
where the quantized nature of the photon field plays an im-
portant role [15-19]. Despite decades of studies of cavity
quantum electrodynamics (CQED) problems, as exemplified
by the Rabi or Dicke model [20], this field has attracted
renewed interest in the condensed matter community with
the discussion of purported superradiant states and the
possibility of engineering novel states of matter [21-25].
With phenomena such as HHG in mind, one may ask
how photon up and down conversion occurs in these fully
quantized light-matter systems, and what these nonlinear
phenomena reveal about the (topological) properties of the
material.

Following up on the pioneering work of Sipe et al. [26,27],
arecent Floquet study by Morimoto and Nagaosa [28] showed
that in systems with time-reversal symmetry (TRS), but
without inversion symmetry (IS), nonlinear optical processes
can be related to topological quantities. Specifically, it was
demonstrated that Floquet theory for an effective two-band
model provides a suitable framework to investigate the shift
current and nonlinear Hall conductivity. Here we extend this
approach to a cavity setup with quantized light. Instead of
Floquet sidebands, we will consider a low-energy theory in
a system with two dominant photon modes. This simple
setup allows us to derive expressions for photon up- and
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down-conversion processes which are analogous to those in
Refs. [26-28].

We further show that it is possible to capture the most
relevant effects of the photons on the electronic states in an
effective description involving a small number of “molecular
orbitals.” This description is obtained by a block Householder
transformation, which enables systematic truncations of the
Hilbert space. Even after a truncation to just four states,
the effective model correctly describes the photon-conversion
processes, and provides qualitatively correct results for the
kinetic energy and charge correlation functions.

The paper is organized as follows. In Sec. II we derive
our minimal model for photon conversion in solids interacting
with quantized light. This model is downfolded to an effective
photon model in Sec. III, and it is shown that the transition
amplitudes for even order up or down conversion are related
to the shift vector. In Sec. IV we introduce the block House-
holder transformation and derive few-states electron-photon
models. Section V tests the few-states effective description
against the full model for a one-dimensional chain coupled
to two photon modes.

II. MODEL
A. Coulomb gauge Hamiltonian

We consider a matter Hamiltonian representing a nonin-
teracting lattice model with two orbitals in each unit cell. To
describe the coupling to an electromagnetic field, we employ
here the Coulomb gauge [29] (similar to the velocity gauge in
Ref. [30]). The form of our Hamiltonian is thus different from
the Hamiltonians encountered in recent studies which employ
either a dipole gauge, obtainable through a Power-Zienau-
Wolley (PZW) [22,31] gauge transformation of the Coulomb
gauge Hamiltonian, or the multicenter PZW transformation
which preserves translational invariance [22,31,32]. We refer
to Appendix A for a discussion of the mappings between these
different representations.

©2021 American Physical Society
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FIG. 1. Top panel: Sketch of a Fabry-Perot cavity with two rel-
evant photon modes, and a one-dimensional material placed at an
antinode of the second mode. The box indicates a possible choice
of unit cell. Bottom panel: Illustration of the undressed valence and
conduction bands (black lines), and the valence band dressed with
two additional photons of energy 2; (red), as well as the valence
band dressed with one photon of energy €2, (blue). Here the box
encloses the states considered in the low-energy model. The bottom
right part of the figure illustrates the energy levels of the many-body
system (see text).

The Coulomb gauge Hamiltonian in a second quantized
form can be written as [30]

I'?CG = Z @Z’a(uk,a’]jlo (k — quMA[L> ‘“hﬁ)ék»ﬁ

k.o, B "

+ 3 (2 4 A2), (M

with u denoting the different modes of the transverse electro-
magnetic field. The vector potential and its conjugate variable
are defined as A, = \%(&u + &L) and I1, = ﬁ(&; —a,)
in terms of the photon creation (annihilation) operators aL
(a,), and satisfy the commutation relations [A,, laI,L] =i,
(all other commutators being zero). The photon energy for
mode p is €2, and the photon coupling (which we assume
to be real) is denoted by g,. Ela creates an electron in a
Bloch state with momentum & and band index «: 6Z |vac) =
Vka) = €5 o), o ()| tra) = €a(k)luty), With €q (k) the
corresponding energy. Here f(k) = e~*" Hye™ with Hy the
Hamiltonian of the noninteracting matter system. We will use
units where the charge g = —|e| = —1.

For the study of general nonlinear optical processes involv-
ing two modes (see top panel of Fig. 1), one may expand

ho(k + glAl + g24A2)

8m+nh0(k) A m A R 5
= Z e @A @A) @)
where we assume that each term for n or m > 0 in Eq. (2)
scales as ﬁ with lattice size N. Specifically, we will con-

sider a two-band system with a conduction band (¢ = c¢)
and a valence band (¢ = v), and we will be primarily inter-
ested in photon up- and down-conversion processes where
Qp = 2Q; < ming(€g . — €k,y) (splitting between the conduc-
tion and valence band, see bottom left panel of Fig. 1), and
where the couplings g, are so small that we only need to
consider one and two-photon transitions in modes © = 2 and
w = 1 respectively. In this case, one can restrict the sum in
Eq. (2) to the first order term in A, and the second order term
in A and write

ho(k + 141 + g2A2) ~ ho(k) + D(k)g2As + 10/ (K)g1AT,  (3)

with d(k) = dxo(k) and ¥'(k) = 92ho(k). Note that the latter
two operators may have off-diagonal elements in the band
basis, since generically Hy does not commute with [#, Hp]
and [, [F, Ho]], so that there is no complete set of common
eigenstates of Ao (k) and d(k) or hg(k) and ¥’ (k).

In addition to the weak coupling assumption, we will
employ the rotating wave approximation (RWA) and neglect
terms such as 6Z’Uék,cg2212, é,tAvék,cgza%, etc. Also the contri-

bution from a}al in the expansion of A2, which leads to a

level renormalization O(g%), will be neglected. With these
approximations, the Coulomb gauge Hamiltonian becomes

HCG ~ an w€a(k) + Z I:;g/z—vvc(k)ck Uck caz
L8y

. Qo a A
_vm (k)ck ka,c(aI)2+H.C.i|+ Z TM(H/?L —I—Ai),
I

with veg (k) = (ug o |0(k)|uk, g) and similarly for foﬁ (k).

The photon coupling strengths g, and g; are assumed to
scale with system size N as g» = ,/+/N and g21 = gzl/JN
where ¢; and g, are fixed parameters. This scaling yields
results independent of system size, but requires some justi-
fications. The canonical scaling of the coupling with cavity
volume V is g; ~ 1/4/V and assuming V ~ N one finds
gi ~ 1/+/N. If there are /N photons in mode 1, the matrix
element (v/N, 0|&%|«/ﬁ +2,0) ~ +/N contributes a factor
which leads to a total scaling of 1/+/N in the second term of
Eq. (4). Assuming that such large-N photon matrix elements
are being subsumed into g2, we will henceforth consider states
with 0, 1, or 2 photons.

The specific setup which we have in mind is illustrated
in Fig. 1 and consists of a one-dimensional material placed
within a Fabry-Perot cavity with two relevant photon modes.
The polarization of the modes is along the direction of the
chain (x axis) and the propagation direction perpendicular to
the chain (y axis). By placing the sample at an antinode of
the higher energy mode, we can assure a coupling to both
modes. Additionally, the dipole approximation is employed
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along the direction of the chain. In this situation the canon-
ical commutation relations read [A, (y) I, O] =i(y — y)
[33]. A convenient mode expansion isA(y) = Z Ox. H(y)AH,
flx(y) => u e(y)¢j, M(y)f[ « With €(y) the dielectric function
in the cavity, [4,,, [1,] = i8,,,, and [ dye@t, (s (y) =
8, [22,34]. As noted in Ref. [34], the free-field part of Eq. (1)
will depend on €(y) in dielectric media. In the following we
will use € = 1 for simplicity. If e(y) # 1, one can apply a
suitable scaling transformation on the variables in Eq. (1). The
cavity may be finite or infinitely extended along the directions
x and z, as long as there is no mixing with any modes with
wave vectors k, , # 0.

B. Low-energy model

@ i) with |a;) € {lci) = [V, o), [vi) = [Yr,.0)} represent-
ing an electron with momentum k; in either the conduction or
valence band, and m (n) the number of photons with frequency
21 (£23). The relevant states for photon up and down conver-
sion can be identified by looking at the bottom panel in Fig. 1.
This figure displays the band structure, including photon-
dressed states, and suggests to consider a subspace (black
box) comprised of conduction band states (states of the type
V1, ..., Vi1, Ciy Vixt, ..., Un)]0,0)) as well as the valence
band dressed with 1 or 2 photons of frequency €2, and 2,
respectively (states |vy, ..., vy)|0, 1) and vy, ..., vy)|2, 0)).
These many-body states, along with their energies, are
sketched in the bottom right panel of the figure. The corre-
sponding low-energy model is described by the Hamiltonian
matrix H'Y expressed in the basis {|v;, va, ..., vy)]0, 1),

For the electron-photon coupled many-body system, it is vy, va, ..., un)|2, 0), {Jvy, V2, ..., Ciy ..., UN)YO, 0)}}, which
convenient to introduce the basis states |«)|m, n), where |a) = reads
J
QZ 0 g_zvvc(kl ) £ vvc(k2) £ vvc(kN)
0 29 ;jiv k) s ﬁvwacz) ; ﬁvuc<kN)
o _ | etk S ek — etk 0 . 0 s
Hveu(ka) 2ﬁvm,(kz) 0 €.(ka) — €,(k2)
& ' k Sy (k 0 k — k
ﬁvcv( N) 2J§U5U( N) €(ky) — €, (ky)

III. PHOTON CONVERSION AND SHIFT VECTOR

Even though model (5) has no direct coupling between
the different photon states, photon conversion processes are
induced via the coupling to electron-hole excitations. Similar
phenomena are observed in HHG experiments on semicon-
ductors [35], where electron excitation and de-excitation
processes result in photon up conversion. More specifically,
the conversion from two €2; photons to a single €2, pho-
ton in our cavity setup is reminiscent of second harmonic
generation in semiconductors (without inversion symmetry),
where electrons are excited from the valence to the con-
duction band by an electric field with frequency €2, while
the de-excitation process generates radiation with frequency
2, = 2Q2;. Analogous photon up and down conversions have
also been discussed in atomic physics [36].

Following Ref. [36] we introduce the states |i), | f) repre-
senting the initial and final states of the photon conversion
process, respectively, and evaluate the transition amplitude
through time-dependent perturbation theory. This calculation
is valid if |i), | f) are similar in energy and their energy dif-
ference to other states |j) is sufficiently large. Splitting the
Hamiltonian in Eq. (4) into

Ay = Qiajar + 2aja + Y ea®)iya, (©6)
k,a

where we have used that —(f[
constant, and

a
= &722 Z Ucu(k)ék Cck v+_ Z Ucv(k)Ck Cck,v‘i‘H-C-»
k

(N

AZ) = QM&L&H up to a

~

we obtain in second order perturbation theory the effective
photon model

Hpn = duans| [Nl + ditans X1+ d(LEXF] = XD, (®)
with

d[rans - Z W

E—E €))

JALSf
Equation (9) corresponds to the amplitude for second or-
der photon conversion if we choose |i) =|2,0) and |f) =
|0, 1), where |m,n) = |vy,...,vy)|m,n), and E; = 2Q2; +
E, = Q, + E, = E; (E, denotes the energy of the full valence
band). The state |j) describes the system with one or two
photons less, but the electron with momentum k; in the con-
duction band, which has energy E; = e.(k;) — €,(k;) + E,.

A 2 A, N
Hence (j1H112,0) = 5k, (0, 1H1j) = $v,e(ky),
and we get

gig Z Vue (k) (V) o (k)
4 2S-Zl - [ec(k) - eu(k)] '
where the superscript (2) indicates that this is the amplitude

for the second order photon conversion process (£2; = 2€2).
Furthermore, dz@ is given by

s = (10)

d(Z) _ 1 Z [%h}“c(k)']z - [%'(v/)vc(k)”z

2420 — [ek) — €, (k)]

an

Assuming time reversal symmetry [vVyy(—k) = —Vgq (k)
and €¢,(—k) = €, (k)] one can show that dt(ri;s is purely imag-
inary. In fact, in the numerator of the sum in Eq. (10) we
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recognize the product [28]
Vye (k) (V) (k)

. Vee — Upo
= Ivucl?[klogue, — iCe — 6) + =—|.  (12)
v

c
where we have wused that (V). = (Z—Z)CU = .Bkvcv —
(Okttge, e [D(K) |ty v) — (ug,c| D (k)| Oty ) and inserted
[tk v) (U v| + |Uk.c){ukc| =1 in order to obtain the last
two terms above. Furthermore, we note that

ey (k)

(uk,c|3k|uk,u) = —m (13)

and recall the definition of the Berry connection [30,37]

o (k) = i{up o Ok |Up ar) s (14)
which is real, since O (Ui olUko) = (Oklkolttka) +
(Ui o | Okt ) = 0. Using that Re[d; log v, ] =

Re[0k|vyel/|vpel]s that 9 |vye| (Jvye]) is an odd (even) function
of k, and that the denominator is real and even, one thus finds
that the real parts in the sum cancel. The remaining imaginary
terms can be expressed as

o g2g2 |ch(k)|2Riv
ditans = 4 Z 29 — [e.(k) — €, (k)] (>

In Eq. (15) we introduced the shift vector R{”, defined as [28]
Ry’ = dIm(log vey) — (& — &). (16)

The shift vector is a quantity which appears in the second or-
der optical response of systems that break inversion symmetry
and its integral over the Brillouin zone can be related to the
polarization difference between the valence and conduction
band [38].

These results can be readily generalized to higher order
photon conversion processes, although the low-energy models
derived from them may be more difficult to justify. If the
mode frequencies are tuned to satisfy the resonance condition
Q, = n€2;, with n > 1 some integer, the low-energy model is
given by

~ N 82 At A A
Heg ~ an,aea(k) + Z |:7vvc(k)cz,vck,0a;
k k 2

"h(k
L4 ( ()) @Z,U@k,c(ab"jLH.c}
| ve

k"

I, + 40).

Qo
rL
%
and ﬁph involves the coupling

(n—1) k)
d(n) — gng2 ch(k)(v )cv( ’
s 2"l 4 Z n€2y — [e.(k) — €, (k)]

a7)

where we introduced 0"~V(k) = L8O If f(k) is time-
reversal symmetric and comprised of trigonometric functions,

then 8,?13(1{) = —0d(k), which leads to

Ve (V"™ D), = | sin n [vpe]? = cos ")y ")
ve cv — 2 ve 2 ve Ccv |-

(18)

FIG. 2. Depiction of different low-energy models corresponding
to second, third, and fourth order photon conversion, and the corre-
sponding values of d projected onto the x-y plane.

The calculation of dt(r';;q and dz(") then proceeds as before. In
particular, if we repeat the calculation for third order processes
(n = 3), assuming 2, = 3R, we find that dtrans is real, and
not related to the shift vector:

o __ glgz |vue ()1
Qigans = Z 3Q; — [e.(k) — €,(K)] (1

For even n, the result is purely imaginary, and nonzero only
in the presence of a nonvanishing shift vector, while for n
odd, the result is real and independent of the shift vector. As
illustrated in Fig. 2, we can define a vector d = (d,, d,, d;)

with d, = Re[d{n], d, = Im[d{1)], d, = d, which rotates
(in steps of 90°) around the z axis in a generically elliptic
spiral pattern as n increases. If d, is nonzero, as is usually
the case, the expectation values of oy, oy in the downfolded
model are less than one.

In Appendix D we show that the same effective photon
model th can also be obtained from the low-energy model (5)
by a downfolding procedure in which the states with excited
electrons are integrated out.

IV. EFFECTIVE ELECTRON-PHOTON MODEL

The model derived in the previous section allows us to
analyze the photon-conversion process, but does not provide
information on how the coupling to the photons affects the
charge degrees of freedom. We will next devise a simple few-
states model which captures this back action on the electrons.

The matrix of the low-energy model (5) represents a gen-
eralized star geometry, illustrated in the top left panel of
Fig. 3, in which two photon states (black dots) are cou-
pledtoi=1,..., N electronic states (gray dots representing
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B

COC
FIG. 3. Illustration of the mapping from a star geometry to a two-
leg ladder with cross hoppings. Block Householder transformations
are successively applied to arrive at the ladder representation in the
top right panel. The lower panels show a sketch of the nonzero ele-
ments of the corresponding Hamiltonian matrices. The black square

represents the submatrix diag(£2,, 2€2;), which is not affected by the
transformation.

Vi, ..., ¢iy...un)]0,0)). In this geometry it is not obvious
how to optimally truncate the model and to derive a few-states
model which captures the essential physics. For example, a
naive truncation from N to two conduction band states does
not yield an appropriate model, since the effect of excitations
at other k points is simply ignored. Instead, we implement a
procedure which is analogous to the mapping of the Anderson
impurity model from a star geometry to a chain geometry.
After the latter transformation, the coupling to the first site
of the chain is given by the geometric mean of all possible
impurity-bath couplings [39]. The first site in the chain hence
represents a “molecular bath orbital,” and even after a trunca-
tion of the chain, the model captures some relevant nonlocal
physics.

In the following we employ a similar mapping involving
2 x 2 block matrices. In deriving this transformation, we draw
on previous results for block transformations of symmetric
matrices [40,41]. For notational convenience, we subsume
some symbols in Eq. (5) and write

Q 0 i Vo .. Vy
0 2 vV, VvV ...V
Ve (V) € o ...
low __ 1 1
H =y Wy 0 o . Qo)
: : 0
Vi V) 0 ... 0 ey

The high degree of entanglement is evident by the off-
diagonal couplings between the electronic subsystem and the
photons. In analogy to the chain representation of the Ander-
son impurity model [39], we seek a generalized Householder
transformation that can transform the problem into a tridiag-

onal block matrix form. Adapting the derivation of Ref. [41]
to suit the present problem of a Hermitian starting matrix, we
define the following block Householder transformation:

_(laxa | Ooxn
vr= <0N><2 h )

where [42]
by =12V (Vv 'v) (1)
and Vj, is defined in terms of a still to be determined matrix X
as
(A +X
Vy= ( s ) 22)
with
V* V/ *
_ (v vy (™
A= e A= : (23)
V2 (VZ) * 7 \%
Vi (V)

[We will denote the N x 2 matrix (ﬁ;) by A.] Using the invert-
ibility of A, one can derive the following result for X:

X =1+ ATAA,

To ensure that the Householder transformation changes the
Hamiltonian matrix H'°¥ into the form

A =AAT" (24)

1
UTHIOWU] — ( Hp?l\())vt(m (hlA)T )
! mA  WHEY g a

.....

— El
- 0 th(l?,W...,N),(l ..... nh
(25)
(with Hgﬁmon denoting the first 2 x 2 diagonal block and

44444

that
A\ _(EV\ _ (E
n(3)=E)=6) e
This implies

Ey = Ay — 2A,(V,Vy) "'V A
= A V)TV, Va) — 2v{A] = 0, 27
or (VATVA) = 2V/IA. Writing out Eq. (27) using Eq. (22), we

find AIX = XTA,. To solve for X, it is useful to define the

quantity Z = X Al’l, which due to the above has the property
[43]1Z7 = Z and

7’ =7"Z =1+ ATA, (28)
with A = A>A[". The transformation [44] Z?> = PDP~' =
PDP' to the diagonal matrix D allows us to express X as

X = PV/DP7'A,. (29)

In general, a diagonal non-negative n x n matrix can have at
most 2" square roots. To avoid any possible ambiguities we
select all non-negative roots on the diagonal of +/D.
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The repeated application of such unitary transformations
leads to the block tridiagonalization of the matrix and the
ladder structure sketched in the upper right panel of Fig. 3.
The second unitary transformation U, is defined as

lixa | Ouxav-2)
U, = )
2 (0<N2)x4 |
with 4, determined by an analogous procedure as described
above. This and subsequent transformations are designed to

transform the remaining parts of the matrix to a block tridiag-
onal form. The unitary matrix U defined by the product

U=U Uy -Uyp - Uy (30)

thus produces the desired mapping.

Since as in the case of the Anderson impurity model,
the first sites of the ladder represent molecular orbitals, the
truncation of the model at this level (four-states model) still
captures the coupling of the photons to the entire lattice. We
will show in Sec. V that this simple model indeed provides an
accurate description of the photon conversion amplitudes, and
a meaningful description of the back action of the photons on
the electrons.

To measure observables in the effective four-states model,
we need to perform the same basis transformation on the
corresponding operator matrices prior to truncation, symbol-
ically denoted by O — TUTOUT, where T represents the
truncation of the transformed operator to a given number of
states.

In particular, the photon conversion in our model will be
described by the operator matrices

Ox O2xn Oy Oaxn

S = <0N><2 Onxn )’ S = <ON><2 Onxv >’ S
where o;, i = x, y are the Pauli matrices.

To conclude this section, we briefly address the compu-
tational complexity of the Householder approach. The entire
algorithm can be thought of as a series of matrix multi-
plications and 2 x 2 matrix inversions. In Appendix C we
demonstrate a O(N?) scaling of the algorithm based on an-
alytical estimates. This clearly outperforms the usual O(N?)
cost of the matrix diagonalization.

V. RESULTS
A. The model

As in the previous sections, we consider a spinless electron
system with two bands, which is coupled to two photon modes
with frequencies 2, €2, and coupling constants g; and g»,
and we assume £2; = 2Q2;. The electronic part is given by a
one-dimensional chain with a staggered potential Q and bond
strength 7, corresponding to the real-space Hamiltonian [45]

Hy = Z 2t — F(— 1)1} ¢y + Hee) + Q(=1)e/ ¢ (32)

This model has TRS but breaks IS if both 7 and Q are
nonzero [28]. In a sublattice basis we can write Hy =

3o ¥ (k)ho(k)y (k) with

—2t cos(k)

_ 2it sin(k) + Q
ho(k) = (—Zif sin(k) + 0 ) (33)

2t cos(k)

— Relvy]

/\ — Im[vy]
— Vvl
0.5

— Re[v{]
— Im[v{]

— Vil

\/

— &(k)

— &c(k)

e g, (k) +Qp
ey(k) +2Q;

0.0

—0.57
-\_/

- n _n — n

2a k 2a a k a a k a

FIG. 4. Plot of the band structure of model (32), together with

the off-diagonal matrix elements of 9(k) and ?'(k) = a’;(kk), for the

parameters 2, = 0.853,¢ = —0.2,7 = 0.1, Q = 0.6. The x axis has

been extended in the two rightmost plots to show how the functions
9 (k) are periodic over an extended BZ.

and 1/fkT = (cz, c,lrn) where k € [~75, 7] . The energy bands
for the model parameters 2, = 0.853, t = —0.2, 7 = 0.1,
Q = 0.6, as well as the corresponding matrix elements v, and
v, in the band basis are shown in Fig. 4. In calculating v, and
v, we fix the arbitrary complex phase of the Bloch functions
in such a manner as to keep the first entry of the eigenstates
real. We will use this setup in the following analysis.

A realistic estimate of the photon conversion rate [Eq. (10)]
for this model is provided in Appendix B.

B. Tests of the few-states model

To investigate the accuracy of the few-states models de-
rived by the Householder scheme we focus on the expectation
values of S, and Sy. In the practical implementation there is a
freedom in choosing the ordering of the k points in the matrix
(20). Let us define an ordered set of points ki=—-m /24 ([ —
(@@ /N),i=1,...,N. The upper panel of Fig. 5 shows the
convergence of the truncated models towards the exact results
(light red and light blue lines) with increasing number of
retained states, for the choice k; = IE,-. The results derived by
the simple truncation of the matrix (cross symbols) converge
very slowly, and these models require the full set of k points
to recover the exact reference values. On the other hand, the
few-states models obtained through the Householder transfor-
mation produce the correct expectation values independent of
the number of states retained, and in particular already for the
smallest four-states model.

The lower panels of Fig. 5 illustrate how this result changes
under cyclic permutations of the k points: ncycl(lzi) = I€i+1
(with periodic boundary conditions applied). The label n on
the horizontal axis refers to the number of cyclic permu-
tations, i.e., the corresponding k points are defined as k; =
né;CI(I}i). What is shown on the vertical axes are the expecta-

tion values of §, and S, from the four-states models obtained
by the Householder scheme (left panel) and by the simple
truncation (right panel). Again, the light red and light blue
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FIG. 5. Test of the accuracy of the truncated models for ($,) and
(S‘y>, The light red and light blue horizontal lines show the exact
reference values from the full model, while dots (crosses) indicate the
values obtained by the truncated Householder model (simple trunca-
tion). The top panel shows the convergence with the number of states
kept, while the bottom panels show results for different four-states
models obtained by cyclic permutations of the k points. Here we
consider an ordered set of k points (see text). The model parameters
are 2, = 0.035, g, = 0.005, 2, = 0.85,t = —0.2,f = 0.1, 0 = 0.6,
N = 100. The corresponding band structure is shown in the inset of
the top panel.

lines indicate the exact reference values from the solution
of the full model, while the dashed horizontal lines in the
right panel show the average of the results over all cyclic
permutations. In the simple truncation scheme, even such an
average does not recover the correct result for S

Next, let us consider the effect of a random permutation
Trand OF K;. Figure 6 shows the results analogous to the bot-
tom panels of Fig. 5, but after such a random permutation:
ki = nfycl[nrand(l;,-)]. Again, we compare the results from the
four-states models obtained by the Householder scheme (left)
and the simple truncation (right). The Householder approach
still recovers the exact expectation values independent of the

Householder Truncated
0.5 1o e W, -
0.0
0.5 [ ot PP 3 ,:" ] e el
TR R TR R TR IN GRT
[ % o o e
0.0 ,"k);; ":; o xx,(‘x" % ‘;.v:x: ,{*‘ i
P
1 ] 100 1 ) 100
permutations n permutations n
""" Sx Sx,ex X Sx ° sy
""" S_y Sy. ex + Sy e Sy

FIG. 6. Results analogous to the bottom panels of Fig. 5, but
for a random ordering of k points (see text). The parameters are
21 =0.035, g, =0.005, 2, =0.85, r =—-0.2, 7 =0.1, Q0 = 0.6,
N = 100.

number 7 of cyclic permutations, while the simple truncation
produces a large scatter of results as a function of n, whose av-
erage does not reproduce the exact value for S’y. Even though
these results depend on the particular random permutation, the
behavior seen in Fig. 6 is generic.

These results demonstrate the usefulness of the House-
holder approach for deriving reliable few-states models. In
fact, our numerical results suggest that in the case of S, and
S‘y, the few-states models derived by this scheme produce the
exact expectation values independent of the number of states
retained and the ordering of the k points. While we cannot
present a full proof, we show in Appendix E that in the case
of the four-states model, once the points k; and k, have been
fixed, the resulting model does not depend on the ordering of
the remaining k points.

C. Charge correlation functions

An interesting question is how well the few-states models
reproduce observables of the electronic subsystem, such as the
charge correlation functions,

Eo(@) = (NoNo ) (@) — (No(@))?, (34)

where N, is the electronic density operator for band o = v, c.
Even though the conduction band correlation function does
not scale with NV, the measured E, are small. For this reason
we multiply the measurements by N in all figures.

We should also discuss a subtle point about the proce-
dure used to compute the above correlation function. The
frequency content is computed by means of the Lehmann rep-
resentation, i.e., by inserting the resolution of unity in between
the operators N, (¢) and N, (0) [46]. It makes a difference if
this is the unity resolved in the truncated or non-truncated
Hilbert space. To be precise, for any operator expression,
we perform the unitary transformation on all the electronic
density operators in the expression and subsequently apply a
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FIG. 7. Charge correlation function measured in the conduction
band. The top panel shows the spectrum of the full model, with the
shaded background indicating the energy range of possible single-
particle excitations. The middle and lower panels show the results
of the truncated models after i Householder steps, both as a function
of frequency, and as a function of time. The corresponding Hilbert
space sizes are (2i+ 2). The model parameters are g; = 0.035,
2> =0.005, 2, =0.853,r =—-0.2,7 =0.1, 0 = 0.6, N = 50, for
which the band structure is shown in the inset. All shown results are
multiplied by 50.

truncation. Specifically,

Ok(t) N elTU HUT[TU O UTe—lTU HUTZ (35)

which is consistent with the implicit rule we have employed
when truncating the Hamiltonian (which is only comprised
of electronic density terms). Following this convention, in the
Lehmann formula, we insert the unity 1 = ) |n)uy (n|un in
between the operators nk (,,(t) and 7 4(0), where |n)yy are
the eigenstates of TUTHU T with H the Hamiltonian operator
corresponding to Eq. (5). (For an additional subtlety regarding
the representation of the full model see Appendix F.)

In the top panel of Fig. 7 we display the absolute value of
the charge correlation function of the full model for « = c.
The region of nonzero weight covers the semicontinuum of
energy excitations obtained from the diagonalization of model
(5). In the middle panel, results from the truncated models
obtained by the indicated numbers of Householder iterations
are shown. With just two “molecular orbitals” the four-states
model is of course not able to accurately capture the full range
of possible excitations, but it provides two peaks which in
a reasonable way represent the continuum of excitations in

the full model. At the next iteration (six-states model) the
energy range of possible excitations is already well captured,
while after ten iterations (22-states model) the envelope of the
excitation spectrum starts to be correctly captured. In contrast,
the simple truncation produces an erratic collection of peaks
that converges very slowly with increasing dimension of the
truncated space (not shown).

Alternatively, the accuracy of the Householder scheme can
be assessed by looking at the time-dependent density-density
correlations and in particular at the critical time after which
the approximate correlation functions start to deviate from the
reference data from the full model (gray line in the bottom
panel of Fig. 7). The four-states model captures the first os-
cillation, the six-states model the first three oscillations, while
the 22-states model correctly reproduces all oscillations up to
t ~ 200.

One may wonder if it is also possible to compute site-
dependent correlation functions. By assuming translational
invariance, we may define the charge correlation function
between sites 0 and R as

Roa) (fl0,a)- (36)

§a(R, 1) = (AR, (t)i0,a(0)) — (A
Focusing on the conduction band and using 6;6 =
N2y g e*Rey .. the
> g e “RE(R, t) becomes
£(q. 1) = 830N ™" D [litko(t)itp,e) —

k,p

Fourier transform £&.(q,t) =

(Aig.c)(Ape)). (37

Here we have used that in our truncated space 5;65kuc =
ik, cOk. 1> see also Appendix F. The §,, ¢ factor implies infinitely
long-ranged correlations. For the conduction band, we find
that E.(¢) = N&.(¢ = 0, t), which means that it is sufficient
to analyze the total charge correlations.

D. Kinetic energy results

In Figs. 8 and 9 we present results for the contribution of
the conduction band to the kinetic energy. Again, we compare
the results of different iterations and truncations of the House-
holder method to the full model.

Figure 8 plots

E.=Y ek)(fxc), (38)
k

which, just like the charge correlation functions discussed
previously, is a quantity that does not scale with system
size in our model. The inset panel shows the modifications
in the band structure as Q is changed from a low value,
where the photon-dressed valence band touches the con-
duction band (semitransparent band structure), to the the
higher values corresponding to a substantial gap (opaque
band structure). The thick gray line represents the results
obtained for the full model [Eq. (5)]. For all values of Q, the
accuracy of the truncated Householder model increases sys-
tematically with increasing i, but the deviations get larger for
smaller Q.

Close to the value Q = 0.38, where the bands touch,
we observe a strong enhancement of the kinetic energy. In
this parameter regime, electron-hole excitations become more
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FIG. 8. Kinetic energy contribution of the conduction band for
different values of Q in the vicinity of the band touching between
the conduction band and the photon-dressed valence band (see inset:
QO = 0.38 corresponds to the semitransparent bands and Q = 0.5 to
the opaque bands). The remaining parameters are g, = 0.035, g, =
0.005, €2, = 0.85,t = —0.2,7 = 0.1, N = 100. The thick gray line
shows the results of the full model, while the other lines indicate
the results after i Householder steps and subsequent truncation to a
(2i + 2)-states model.

probable due to the decreased energy gap. We caution how-
ever that even the full model must be treated with care in
this region, due to the increased likelihood of multielectron
excitations to the conduction band, which are not captured
in Eq. (5). Unless the coupling strengths are decreased cor-

0.0024 :
— s BB 0.0000
. .
L0.0
0.0018 05 ~0.0001
0.
I o 0.005 0.035
2a k 2a
Ec0.0012

Full
0.0006 i=1
i=2
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0.00%O
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g2

FIG. 9. Kinetic energy contribution of the conduction band for
different values of the photon coupling strength g,. The param-
eters are g, = 0.035, Q, =1.1, t = —-0.2, 7 = 0.1, 0 = 0.6, and
N =100, and the corresponding band structure is shown in the
left inset. The exact result is plotted as a thick gray line, while
the other curves indicate the results after i Householder steps
and subsequent truncation to a (2i + 2)-states model. The up-
per right inset shows the difference in E,. between the full and
truncated model.

respondingly, even the full model description will become
inaccurate.

In general, in the presence of band crossings, new basis
states must be introduced in the low-energy model, including
states that have a substantial fraction of electrons in the con-
duction band.

Finally, we plot in Fig. 9 the kinetic energy contribution of
the valence band as a function of the photon coupling strength
g», for a setup with a sufficiently large splitting between the
bands that our low-energy model (5) is justified. The devi-
ations between the full calculation (thick gray line) and the
results from the truncated Householder models increase with
increasing coupling strength, but the results of the truncated
models systematically and rapidly converge towards the exact
result with increasing number of states kept in the effective
description (see also the right inset, which plots the difference
to the exact result). These data confirm that the effective few-
states models derived via the Householder transformations
correctly capture the effect of the photon coupling on the
electronic properties.

VI. CONCLUSIONS

We have introduced a minimal model describing photon
conversion processes in cavity light-matter systems. If the
lattice model representing the matter subsystem has TRS, but
no IS, even order nonlinear processes are activated, with a
transition amplitude that is related to the shift vector. This
result generalizes previous analyses for lattice models driven
by classical light [26-28] to the quantum domain. It should
be noted, however, that the setup considered in our study
differs in one important respect from the Floquet study in
Ref. [28]. There, a low-energy model was considered which
describes a Floquet sideband of the valence band overlapping
with the conduction band. In the present study we considered
situations with a sufficiently large gap between the photon-
dressed valence band and the conduction band, and weak
photon couplings, so that it is meaningful to restrict the
low-energy model to states with at most one electron in the
conduction band. Another difference is that in the classical
description, a periodic electric field drives a time-dependent
current which (in a system with broken inversion symmetry)
contains even and odd harmonics. These different frequency
components in turn determine the emitted radiation. In the
cavity setup, the expectation value of the current will be zero
and photon conversion occurs without the induction of a net
current in the electron system. The photon conversion in the
cavity case corresponds to the formation of a light-matter
entangled ground state which mixes the different energy
photon states.

While a photon-only model capturing the effect of the
light-matter coupling on the photon states can be easily
derived by time-dependent perturbation theory [36] or down-
folding, the long-ranged correlations induced by the photons
make the derivation of an effective few-states model with
electronic degrees of freedom a nontrivial task. We employed
a generalized Householder transformation to introduce a
coupling of the photons to extended molecular orbitals. This
transformation enables systematic truncations to effective
models with a small number of electronic degrees of freedom,
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which nevertheless capture the interplay between the photons
and the electronic subsystem. In particular, we showed that
the photon conversion processes are still accurately described
even by a four-states model, while the back action of the pho-
tons on the electronic subsystem can be at least qualitatively
captured with a modest number of states. This is in stark con-
trast to a simple truncation in the original basis of our minimal
model, which due to the highly entangled nature of the pho-
ton and electron subsystems, does not result in a meaningful
description.

We illustrated the usefulness of the Householder approach
by demonstrating the fast convergence of the effective model
descriptions to the full result with increasing number of
states kept, for different observables related to the elec-
tronic and photonic subsystems. This is in particular the case
if there exists a sufficiently large energy gap between the
nonzero photon states and those with electronic excitations.
As this gap shrinks, states with multiple electrons in the
conduction band become more likely, and both our original
model and its effective few-states descriptions will eventually
break down.

Generalizations of the Householder method to multi-
mode systems or other light-matter systems with a high
degree of entanglement are interesting prospects. It is also
worthwhile to investigate more closely the structure of the
effective orbitals generated by the Householder scheme, and
to search for models in cavity QED, for which the applica-
tion of the block Householder transformation results in an
analytically solvable problem. This could produce valuable
insights into the nontrivial correlations induced by strong
light-matter coupling.
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APPENDIX A: GAUGE CONSIDERATIONS

1. General remarks

Traditionally, light-matter coupled systems in the semiclas-
sical approximation have been described in either the length
gauge or velocity gauge [47,48]. Both representations have
their merits, and the effect of basis truncations in both of
them has been discussed in terms of the (multicenter) PZW
transformation [22,31,32]. Here we demonstrate that these
representations are connected by unitary transformations and
hence equivalent in the nontruncated Hilbert space. The strat-
egy is to pass via the length gauge, corresponding to a term
7 - E in the Hamiltonian in first quantization. Since this breaks
translational invariance (something which is also apparent
in the Hamiltonian of Ref. [32]), one needs to consider the
infinite volume limit. Blount [49] showed that in this limit,
the matrix element of 7 between Bloch states can be defined in
terms of Eq. (A5) below. In a subsequent step, we will perform
yet another unitary transformation which restores translational
invariance and establishes the equivalence between the Hamil-
tonian forms encountered in some recent literature [22,32,50]
and this work. Despite the fact that these transformations are
based on the infinite volume limit, our starting Hamiltonian
does not break translational invariance and can therefore be
studied with periodic boundary conditions.

2. Coulomb gauge Hamiltonian

Using the notations and definitions of the main text, the Coulomb gauge Hamiltonian of the light-matter coupled system,

obtained through the minimal-coupling procedure [29], reads

A

Aeg = ——
CG (27T)d

. ~ o Qo -~ o
/ 0K ook — g ) + (10 + A7),

(A)

For simplicity, we consider here a single photon mode with energy ©, 1= \/Li(fﬂ —a), A= \Lﬁ(& +a"), and [A, [1] = i,

while the fermionic operators satisfy {¢¢.q, é,t ﬂ} = (277 )%84.58(k — k). Furthermore, we define A=A-n, M1 =11 -nwithn

the polarization direction of the mode.

In this Appendix we discuss how to generate the above Hamiltonian from the one without field by means of a unitary

transformation. The PZW transformation can be written as [51]

where in the Bloch basis

Note that this matrix element is ill defined, except in the infinite volume limit, where it is to be interpreted as [30,49]

Z/"[ — eiqu»fc]r‘iﬁ(r)r\i/(r)7 (A2)
o 1 R o
/ ardorbe) = o /dkdk %;c,;awk,urwk;mckaﬂ (A3)
1 , A N\ A
= W/dkdk ch’ara,,s(k, k)éy g (A4)
Fa e, k') = 2780, p[=iVie SO = k) + b p8 K =T+ 27)! (1 = 84,p)0p0 (k' — ), (AS)
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which suggests to define intra- and interband matrix elements as follows: ry g(k, k') = (r))a.p(k, k') + (re)o p(k, k'), with
(r)apk, k') = 2 )80 p|—iVipS (k' — k) + k.o p8 (k" — k)] and (ro)ep(k, k') = 2 )'(1 — Ba Bk pdk’ — k), with & o p =
itk | Vic|ug,p). Application of the Baker-Campbell-Hausdorff (BCH) formula e?Ae=# = 3", LB, .. .[B, [B, A]]] gives

1 . R
—_— A T AT n
u(2n)d /dkck o St o | o () |t o) Cre U = o )d / dke, ( qgA - Vi) ho(k) . pCs g
(271)“3 f dkéllc o U, alholke — qgA)\u p) e p. (A6)
Note that the off-diagonal elements in (A6) are generated by r,. Using Eq. (A6), we may write the Hamiltonian in Eq. (A1) as
Heg =U / 0KE] oo ()t o) ol + 22 (P2 4 42) (A7)
(27-[ )d k,a s s s )

3. Connection to the dipole gauge Hamiltonian

We define the dipole gauge Hamiltonian as

Hp = U Hcal. (A8)
By another application of the BCH formula, one finds
A 1
U = +qg(2 )/dkdk’ch ro s, K)ep g, (A9)
a.p

such that

2
E 7 2 (4 1 ; Q .
HDG (2 )d /dkck a Mk,a|h0(k)|uk,oz)€'k,a + 70 (l’H—qg(zn)d/ dkdk’z Ellr,ar“,ﬂ(k’ k/)ék’,ﬁ> + TOAZI (A10)
a,p

References [22,31,32] all used the so-called multicenter PZW transformation, motivated by the fact that the standard PZW
transformation in (A2) leads to a Hamiltonian breaking translational invariance. However, Hpg above is unitarily equivalent to
the Hamiltonian in the mentioned references, as one can show by applying the following unitary transformation:

2 {1 / et ' _k)é
0= qu e [ dkdk' Y, & Vi sk k)ck/ﬂ. (Al1)

The action of U on some operator O = (Zﬂ) f dk Zy 5 ck y O, s(k)Cr 5 is

Q2 ) / dk ) &, Oy sk — qgh)ey 5. (A12)
)

The Hamiltonian in Eq. (A10) thus transforms as

2
2. A A 1 . N Qo 2 ~ 2 Qo -
U'Bpcld = 7 / kY& €all — qgh)in + 7°w<1'1 g / dkdk’ ch’ara,,g(k,k’)ék,y ﬂ> i+ D
(A13)
Using
L. A R A 1
U =1+ ing / dkdk' "¢ ViK' = K)éy g
a.p
and
u‘( $ oy / dkdk/ch ara,ﬁ(k,k/)ek/,ﬁ)ziz 98 oyt / dkdk/z o VK — ) 4
(2 )d/ kzckaék*qgﬁ»mﬂékﬂ
we get

2
2. . B 1 A Q[ ~ 1 Qo ~
f _ At A 0 At oA 240 12
Uu HD(;Z/{ = W / dk;ck'aéa(k — qu)Ck,a + 7 (H + ng / dk;;ck,aék—qu,a,ﬁck/,ﬁ> + ) A s (A14)
which corresponds to an infinite volume version of the dipolar Hamiltonian in momentum space [Eq. (54)] presented in Ref. [22].
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One could in principle also compute the results of the main text in one of these alternative gauges. However, the observable
related to photon conversion [Eq. (31)] can be expected to become a mixture of photon and electron operators if one applies
the transformations above. Hence, the analysis relating photon conversion to the shift vector is most conveniently done in the

Coulomb gauge.

APPENDIX B: EXPERIMENTAL SETUP

In this Appendix we estimate if the photon conversion in
our model occurs on short enough timescales compared to
realistic photon lifetimes in a cavity. The specific setup we
have in mind is one in which chains along the z direction
are stacked along x to fill the x-z plane with atoms, i.e., the
number of atoms along a chain as well as the number of chains
will scale proportional to the L, and L, dimensions of the
cavity, keeping L, fixed.

In ST units, the Fermi golden rule for the transition from the
li) = vy, ..., un)|2,0) to the |f) = |vy, ..., vN)|0, 1) state
can be written as

) qu]

Z vy (k)PRY
kA th [ec(k) v(k)]

where A indicates a sum over chains. The expression for the
coupling constants is [51]

A 12
P = R B2
§ <2eosziV> B2)

where € is the permittivity of free space. The photon density
of states is approximated by a Lorentzian

2
pe(£2),  (Bl)

AQ
(@ -2+ (42)°

2

pe(Q) =

(B3)

S| =

centered at the final photon frequency 2,, as described in
Ref. [52]. A corresponds to the inverse photon lifetime.

For the Rice-Mele model, we take the parameters represen-
tative of polycarbonitrile [53],

F=028eV, r=30eV, Q=042¢V, (B4)

and choose the lattice spacing as a = 1 A, an estimate based
on Ref. [54]. Since we assume the two cavity modes to have
spatial variation only in the y direction, we can write our
mode functlons as ¢,(r) \/7 é,costk,,y) With uw =1,2,.
and k,, = 7. This assumption is valid provided we have
L,L,>L, [55]. Since these functions must satisfy [56]

2

Ag,(r) + ¢M (r) = (B5)

the frequency is related to L, as Q, = ”L’“ Finally, we

choose the photon -dressed states in the middle of the band

gap, i, = AEk_i% (AE = 1.4 eV for the parameters
above), which implies
L= _ g (B6)
= m.
" T AE ”

(

Specifically, we choose the following cavity dimensions:

L, =Na, L,=5Na, L,=1.8pum, B7)

and N = 10°. Since the cavity volume V scales as N2, the
coupling constants scale as g; ~ 1/+/V ~ 1/N, while the sum
over k and A in Eq. (B1) goes as ~NZ. Hence, the photon
occupation should be adapted in order to make Eq. (B1) inde-
pendent of system size. The most natural setup is to consider
a pumped cavity with N photons in the first mode, so that

(N.OlajIN +2,0) ~ N, (N,OlayN, 1) =1.  (BS)
The cavity lifetime is computed from the quality factor Q
as
Q
L= — B9
=, (B9)
and the time for the transition as
1
= — B10
Tir Tis ( )

Setting these times equal to each other results in a Q of less
than 10°, which according to Ref. [57] is well within the range
of quality factors (Q < 10'!) that can be achieved with state of
the art supermirrors. Hence, the nonlinear processes discussed
in our paper should indeed be experimentally detectable.

APPENDIX C: COMPUTATIONAL COMPLEXITY

In order to give an estimate of the computational complex-
ity of the Householder algorithm, it is useful to write a generic
Householder iteration as a block matrix multiplication

gitt — (a2 0 Hi, Hiy\(luz 0
o wm)\m, m )\ 0

_ Hlil Hlizhi
= (hinil hHh )’ €D
wherei = 1,2, ..., N/2 with
hi=1-2vjv-® (C2)

and H' = H. V} and VP = (vi'vi)~1vi" are constructed
from H'. The evaluat1on of the lower right block of matrix
(C1) is the computationally most expensive step. One of the
matrix multiplications needed is

( v (2 H)- vy >vz*@)), ©
ot vl et et

2xN NxN Nx2 2xN

which is easily seen to be of order O(N?) if the multiplications
are done in the order indicated by the parentheses.

Supposing that the algorithm is stopped for i < N/2, we
can assume that the diagonalization of the truncated problem
does not contribute significantly to the computational time.
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Therefore, the entire procedure can be thought of as a se-
quence of O(N?) operations.

APPENDIX D: DOWNFOLDING

In the downfolding approach [58] we split a generic Hamil-
tonian into low-energy and high-energy subspaces,

Hy  Hip
H = .
<th Hhh)
In the present context, H;; corresponds to the top left 2 x 2
block of Eq. (5) or Eq. (20). To obtain an effective model for

the low-energy space we can iteratively solve the eigenvalue
equation Hegi(€)|y;) = €|y;) with

(D1)

He(€) = Hy + Hyy, Hy. (D2)

€ — Hpp

To a first approximation one may use the eigenenergy of the
unperturbed low-energy space € = Q, = 2€2;. This yields

_ QZ + dz ddown
Heff(QZ) - ( djown 291 _ dz)’ (D3)
with
VjV-/*

diown = o , (D4)

@ XJ: 0 — [ec(k)) — €y(k))]

1 Vi[> = [V/|?

d = — : J . D5

) Z 221 — [ec(kj) — €,(kj)] (0)

J
This H.g is identical to the effective Hamiltonian obtained
from the second order perturbation calculation.

APPENDIX E: PERMUTATION OF k POINTS

The numerical evidence presented in the main text sug-
gests that the four-states models derived via the Householder
scheme do not depend on the ordering of the k points in the
original Hamiltonian matrix. Here we will provide a proof that
for given k; and k, (states selected in the first Householder
step), the result does not change upon permutation of the
remaining k points.

We have
Vo) Vi
Vow V!
Ao | TP @ pa,, (E)
Vn(N) Vyé(zv)

where m(m) denotes a permutation of the index m. Due to
the fact that permutation matrices are orthogonal (and hence

unitary since they have real entries), we have VA’TVA’ = VAT Va
and Eq. (21) becomes /| =1 —2V,(V,V4)~'V". Equation
(25) now takes the form

%) | 02><(N2)>
Owv—2x2 | U

1 | O
1 2x2 DX (N=2)
X th(?,v.v..,N),(l ..... N)hl<0(N_2)><2 | U >, (E2)

leading us to conclude that th(lf,“ﬁ),(Lg)hl is unaffected by the
permutations of k3 through ky.

APPENDIX F: DETAILS ON THE CHARGE
CORRELATION FUNCTIONS

In this Appendix we provide further details on how the
form of Eq. (37) was obtained. We will consider the string
of operators

At AT A —iHt AT A
€ Ckl,(‘,ckm’ce Ck,,L‘Ck/'*C’

which will be evaluated in our truncated space. Let B de-
note the Hilbert space comprised of all the states entering
into Eq. (5). Denoting an arbitrary state in B as |B), we
have that

é;z.w.fkj,c|B> = vk, - {e v b -0 vk ) (Vg - -k - Vg |B)

if i # j, and effectively that (B’|€’Z,_’C€k/,c|B) = (B'|fiy, ¢|B)b; j
if |B’) is another state in B. To obtain frequency dependent
quantities, we will employ the Lehmann representation and
insert unity in the basis B:

iHt At A —iA AT A
> (B e"™Me] ew, e n)(nle] é.cB).  (F1)

n

Given that |n) € B together with the fact that ¢" with A in
Eq. (5) induces transitions within B, the following simplifica-
tion will arise:

H K N 7'[? ” N
Y Bl e, e In)(nlE] G, clB)

lm,i,j n
=Y (B'le™ iy, e |n)(nli, c|B)
i n
=" (B'le™ Noe™ " |n) (n| K| B). (F2)
n

It is important to stress that inserting unity in the way done
above involves an implicit truncation to B.
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