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Thermal diffusivity and its lower bound in orthorhombic SnSe
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The orthorhombic monochalcogenide SnSe has attracted much attention in recent years as a promising
high-temperature thermoelectric material. We present a study of its thermal conductivity and specific heat of
SnSe between 2 K and 300 K and quantify its anisotropic thermal diffusivity D. For both crystallographic
orientations, thermal diffusivity remains above the recently identified Planckian limit (D > v2

s τP, where vs is
the sound velocity and τP = h̄/kBT ) and its anisotropy in D is set by the anisotropy of vs. Comparison with
cubic members of the IV-VI family leads to a consistent picture, where the diffusivity in all members of the
family is set by the product of vs, τP and the ‘melting’ velocity derived from the melting temperature.
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I. INTRODUCTION

Like elemental black phosphorus, SnSe crystallizes in
an orthorhombic crystal structure. A member of group-IV
monochalcogenides, it is a promising material with potential
applications in fields ranging from solar cells and batteries
to supercapacitors [1]. Its properties in the monolayer limit
are also attracting new attention [2–8]. The bulk solid became
a well-known thermoelectric material following the report of
a large figure of merit driven by its low thermal conductiv-
ity [9–11]. The magnitude of thermal conductivity became
a subject of controversy, with a large variety in its reported
amplitudes [12–18].

SnSe is a layered solid with easy-cleaving b − c planes in
which atomic bonds are stronger than in the perpendicular
orientation generating a significant anisotropy in structural
properties. This orthorhombic crystal structure, found in other
binary IV-VI salts (like GeSe) can be viewed as a distorted
rock-salt cubic structure of PbTe, another member of this
family [19]. The competition between the rock-salt structure
and the two (orthorhombic and rhombohedral) less symmetric
options in this family is driven by an interplay between Peierls
distortion, s-p hybridization, and spin-orbit coupling and has
been a longstanding subject of meditation, contemplation, and
debate [19–23].

Planckian time (τp = h̄/kBT , with kB Boltzmann constant
and T the absolute temperature) as a boundary to rate of
dissipation has attracted much attention in recent years. In
2013, Bruin et al. [24] noticed that the effective scattering time
of electrons in a variety of metals when electrical resistivity
is linear in temperature is of the order of τP. The behavior
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of phonons in insulators came under scrutiny a few years
afterwards and it was found that when phonon-phonon scatter-
ing becomes dominant and thermal resistivity is T -linear, the
phonon scattering time approaches τP without falling below
it [25,26]. This experimental observation raised a question.
Above the Debye temperature, phonons obey the Boltzmann-
Maxwell distribution. Therefore, how can the Planck constant
infer with their dissipation rate? Mousatov and Hartnoll [27]
argued that this lower bound to thermal diffusivity is set by the
energy scale of the melting temperature of the crystal. They
proposed a universal scaling relation between the ratio of the
phonon scattering time to the Planckian time and the ratio of
the ‘melting’ velocity to the sound velocity.

The previous experimental observations [25,26,28] and the
theoretical scenarios [27,29] were focused on cubic insulators
and ignored the issue of anisotropy. In this paper, we will
present and examine the case of orthorhombic, and therefore
anisotropic, SnSe. By quantifying the thermal diffusivity and
sound velocity along the b and c directions, we will examine
the account of the amplitude and anisotropy of thermal diffu-
sivity in the Moussatov-Hartnoll picture.

II. EXPERIMENTAL

High-quality SnSe crystals were synthesized using a mod-
ified vertical Bridgman method [10]. High-purity elemental
constitutes were measured and loaded into carbon-coated con-
ical silicon tubes and the crystals were grown in a temperature
gradient from 1213 K to 973 K at a slow rate of 1 K/h.
Finally, SnSe crystals with diameter of 12 mm and length
of 30 mm were obtained. The investigated single crystals
display an n-type behavior, with a carriers density of the
order of 1016 cm−3. The contribution of charge carriers to
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thermal transport can be estimated by Wiedemann-Franz law
and remains negligible in our range of measurements.

The specimens were aligned and cut appropriately to
apply a thermal gradient along the in-plane b and c crystal-
lographic directions, obtaining a geometric factor g = S

L =
1.5 mm where S is the cross section area and L is the
separation between the leads that probe the temperature gra-
dient. We measured thermal conductivity with a standard
two-thermometers one-heater setup in the 2–300 K temper-
ature range. Heat capacity was also determined between 2
and 300 K, using a standard platform in a Quantum Design
cryostat. The molar heat capacity is divided by the mass of
the specimen and multiplied by the molar mass of SnSe,
Mm = 197.67 g/mol. The density of the single crystals was
determined by combining volume and mass measurements
ρ = (6.4 ± 0.4) g cm−3 that inside the experimental uncer-
tainty is in agreement with the expected value for a fully dense
sample.

III. RESULTS

Figure 1(b) shows the temperature dependence of the spe-
cific heat data Cv (T ) to be compared with what was reported
previously [9,13,15]. We find that above ∼200 K the specific
heat plateaus to a value of about ∼50 J K−1 mol−1, consistent
with the expected Dulong-Petit value of 50 J K−1 mol−1

for a solid with biatomic crystal cell. The Debye tempera-
ture θD, determined by fitting the specific heat contribution
β in Cv/T = γ + βT 2 and quantifying β, was found to be
θD ≈ 190 K, consistent with previous experimental data [15].
The theoretically expected value has been calculated to be
θD ≈ 140 K [32].

As seen in Fig. 1(c), for both directions thermal conduc-
tivity displays the typical behavior expected for an insulator.
Thermal conductivity κ peaks at intermediate temperatures for
both orientations. The peak height is about 20 W/m K for both
directions. The peak occurs at 12 K for the b direction and at
9 K for the c direction. At low temperatures, below the peak,
κ displays a T 3 power law (see inset).

As seen in Fig. 2, according to our data, at room tempera-
ture, the amplitude of κ is 2.4 W/m K and 1.6 W/m K along
the b and c axes, respectively. A comparison of our data with
previous publications indicates that our result is in good agree-
ment with most works on single crystals [13,14,31] but differs
by a factor 3 with respect to the reported ultralow values
[9]. The discrepancy among different data sets was debated
previously [12]. Our results on fully dense single crystalline
samples reaffirm that likely the thermal conductivity of single
crystalline SnSe is not as low as initially claimed and the
discrepancy is a matter of accurate measurement.

Our experimental results can also be compared with ab
initio calculations in both the low temperature orthorhombic
phase (Pnma, T < 800 T) [32] and in the high-temperature
base-centered orthorhombic phase (Cmcm, T > 800 T) [33].
Since the structural phase transition is of second order, one
expects a smooth evolution of the physical properties across
it. Both theoretical works [32,33] are in agreement with the
results presented in this work and in other previous exper-
imental studies [13,31]. This settles the magnitude of the

FIG. 1. Thermal conductivity and specific heat of SnSe: (a) The
projections of the main crystallographic directions of the orthorhom-
bic SnSe. Lattice parameters from Ref. [30]. (b) Specific heat
(2–300 K) of SnSe. The inset shows the same data set in a linear
scale. (c) Thermal conductivity of SnSe as a function of temperature
between 2–300 K when a thermal gradient is applied along the b and
c directions.

intrinsic thermal conductivity in single-crystalline SnSe to be
∼2 W/m K at room temperature.

The amplitude of the peak in κ around 10 K varies be-
tween 20 and 60 W/m K, indicative of the difference in the
maximum phonon-mean-free-path across samples. At high
temperature, thermal conductivity follows a 1/T behavior
with a clear anisotropy between the two crystallographic ori-
entations, in agreement with what was previously reported
[13,31].

Thermal diffusivity D of a solid is defined by the heat equa-
tion ∂T

∂t = D ∂2T
∂x2 , where thermal transport is supposed to be

established along a certain direction (for instance x). Combin-
ing the Fourier equation with the conservation of energy, one
finds that D is the ratio of thermal conductivity and specific
heat per volume. Figure 3(a) shows the obtained D along b and
c orientations. One can see that they cross around 10 K. Above
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FIG. 2. Thermal conductivity of SnSe: Extended temperature
range thermal conductivity of SnSe with heat conduction along the b
and c direction, in the upper and lower panel, respectively. Compari-
son between this work and previously reported data [9,13,14,31].

100 K, they display a ∼T −1 behavior. The phonon mean free
path (λ) along the two orientations is shown in Fig. 3(b),
extracted using κ = 1

3 cphvsλ. The sound velocity vs for each
direction was determined as discussed in the Appendix. At the
lowest investigated temperature, λ ∼ 0.05 mm, still more than
one order of magnitude lower than the smallest geometrical
dimension of the sample (∼2 mm), indicating that phonons
do not reach the ballistic regime.

FIG. 3. Anisotropic diffusivity: (a) Thermal diffusivity and
(b) mean free path of SnSe for b and c crystallographic directions.
The solid and dashed lines in (a) represent T −1 power law.

Figure 4 compares our thermal diffusivity with previous
studies of single crystalline SnSe and with three cubic mem-
bers of the IV-VI family. We can see that our results agree with
the data reported by Ibrahim et al. [13].

IV. DISCUSSION

It is instructive to compare the amplitude of the maximum
κ in SnSe and in black phosphorus, which are isostructural.
The 20–60 W/m K peak in SnSe is more than one order of
magnitude smaller than what was observed in black phospho-
rus [34]. In the latter system, below the peak temperature, the
phonon mean-free-path is comparable to the thickness and the
amplitude of the thermal conductivity is size dependent [34].
In contrast, in SnSe, the ballistic regime is not attained. This
implies the presence of disorder spatially extended enough
to scatter long wavelength phonons. The absence of ballistic
phonon transport hinders the possible emergence of phonon
hydrodynamics [35] driven by abundance of momentum-
conserving phonon-phonon collisions [25,34,36].

We now turn our attention to the thermal diffusivity. The
existence of a lower bound to thermal diffusivity D in insula-
tors [25,26] was noticed through the scrutiny of the slope of D
as a function of inverse of temperature in various solids. The
phonon scattering time τ can be extracted, using:

D = v2
s τ. (1)

FIG. 4. High-temperature diffusivity: (a) High-temperature dif-
fusivity of SnSe compared with other calchogenides. Values for
PbTe, PSe, and PbS are obtained from Refs. [37–40]; SnSe
[13]. (b) Structural phase diagram of IV-VI salts (adapted from
Refs. [19,23]).

035208-3



VALENTINA MARTELLI et al. PHYSICAL REVIEW B 104, 035208 (2021)

It was found that even in the least conducting known materials
τ approaches but does not fall below the Planckian time τp:

τ = sτp = s

[
h̄

kBT

]
, (2)

where s is a material-dependent constant that was found to be
larger than unity in all known materials.

Mousatov and Hartnoll [27] proposed that the proximity
to the Planckian limit is controlled by the sound velocity vs

constrained by the bound vs � vM , where vM is the crystal
melting velocity. The latter is defined as vM ≡ kBTM

h̄ a where
TM is the melting temperature and a is the lattice spacing.
The closer vs is to vM , the closer a certain material is to the
lower bound. The melting velocity defined by the melting
temperature and the atomic spacing sets an upper boundary
to the velocity in a crystal. They showed that for a large
number of compounds τ/τp and vM/vs display a roughly
linear correlation [27]. More recently, Xu et al. [28] mea-
sured the thermal conductivity and diffusivity of cubic In2O3

and found that the properties of this compound fit in this
picture.

The case of orthorhombic SnSe provides an opportunity
to probe the role of the anisotropy of the sound velocity
in this picture. Using the components of the elastic tensor
experimentally reported in Ref. [41], we calculated the lon-
gitudinal sound velocities along b and c to be, respectively,
vl,b = 3146 m/s and vl,c = 2317 m/s (see Appendix). Re-
markably, the ratio of the velocities along the two orientation
corresponds to the anisotropy of thermal diffusivity in the
intrinsic regime. Both thermal diffusivity and sound velocity
are roughly 1.3 times larger along the b axis compared to the c
axis.

We note that the amplitude of sound velocity is com-
patible with the moderate atomic mass of atoms in SnSe.
According to a recent expression for the speed of sound
vs = α

c

√
(me/2M ) [42], where c is the light velocity, α is the

fine structure constant, and me and M are the masses of bare
electron and the atom, respectively. Injecting the mass of Sn
(119 atomic mass units), one finds 3500 m/s.

Taking the high temperature slope of the diffusivity D ·
kB/(h̄v2

s ) as a function of T −1 [see straight lines in Fig. 3(a)]
one can quantify the parameter s for both directions consid-
ering the computed value for the direction-dependent sound
velocity vs. We found that s||b = 6.3 and s||c = 8. We did
not measure thermal conductivity along the a axis, but using
the data reported by Ibrahim et al., one obtains s||a = 4. The
phonon lifetime according to Raman spectroscopy is τ ∼ 0.1
ps at 800 K [43]; using this time, one finds τ/τP ∼ 10 in good
agreement with what is found here.

The melting velocity vM of SnSe can be calculated from
the melting temperature TM = 1134 K [44] and the average

interatomic distance a = 3

√
Mm

NAnm
where Mm is the molar mass

(197.67 g/mol), NA is the Avogadro number, and nm = 2 is the
number of atoms per unit formula in SnSe. We obtain vM =
44658 m/s for SnSe. This allows us to put SnSe on Fig. 5
(re-adapted from Ref. [28]) together with a large number of
systems previously tabulated [27]. One can see that along the
b axis, SnSe is close to the cubic members of the IV-VI family.
The larger s for the c axis can be explained by a lower sound

FIG. 5. Scattering time vs sound velocity: τ/τp vs vM/vs for
different materials (figure adapted from Ref. [28]) compared with
SnSe data of this work. The new points of SnSe are determined
taking into account, as the vs, the longitudinal sound velocity for
each direction.

velocity along this direction, which amplifies both τ/τp and
vM/vs.

Let us note that D
v2

s τP
∝ vM

vs
can be rewritten as D

vs
∝ τPvM .

The right hand side is isotropic implying that the anisotropy
of D and vs should cancel out. As one can see in Fig. 5, for
the four members of the IV-VI family examined here, the
proportionality factor is close to 0.5. As a consequence, the
expression D ≈ 0.5vsvMτP gives a satisfactory account of the
magnitude of D for both orientations in SnSe as well as the
cubic members of this family, confirming the relevance of the
picture put forward in Ref. [27] to members of this family.

The anisotropy of thermal diffusivity appears to be driven
by the anisotropy of sound velocity. The intrinsic phonon
anharmonicity due to the proximity of a lowering-symmetry
structural transition [17,19,23] plays a major role. Moreover,
sound velocity depends on the elastic constants, whose link
to phonon anharmonicity was discussed previously [45]. Re-
cently, Wu and Sau [46] have proposed a heat transport model
in a strongly anharmonic system in which the thermal diffu-
sivity can become lower than the Planckian bound. Our results
indicate that SnSe in spite of its low thermal diffusivity and
strong anharmonicity respects the Planckian bound.

We end our discussion by comparing the magnitude of ther-
mal diffusivity in this solid with the universal lower bounds
to thermal diffusivity of liquids [47]. If D decreases linearly
down to the melting temperature of 1138 K, it will become
as small as ≈ 0.2 mm2/s at the onset of melting. This is
still one order of magnitude larger than the lower boundary
(Dmin = 1

4π
h̄

meM ) [47] in a supercritical fluid with an atomic
mass of M ≈ 100 amu.

In summary, we studied the anisotropic thermal diffusivity
of SnSe for two crystallographic orientations between 2 K
and 300 K. We found that our experimental findings match
a recent theoretical framework provided that one takes into
account the anisotropy of sound velocity.
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APPENDIX

In this Appendix we recall the relation between longitudi-
nal velocity and elastic moduli, in particular for the case of
an orthorhombic crystal structure. In a generic crystal, for a
certain crystallographic direction, we can define three sound
velocities (one longitudinal and two transverse), whose de-
scription is a function of the stress tensor [48]. In a Cartesian
representation, nine stress components acting on the elemen-
tary cell can be generally considered: Xx, Xy, Xz, Yx, Yy, Yz, Zx,
Zy, Zz. The capital letters point to the direction of the force,
whereas the index indicates the direction which is perpen-
dicular to the area where the force acts. As the total torque
acting on the elementary cell has to be zero, the independent
conditions are six as Yz = Zy, Zx = Xz, Xy = Yx.

In response to that external stress, the displacement of the
deformation can be described by the strain R(r):

R(r) = u(r)x̂ + v(r)ŷ + w(r)ẑ, (A1)

where u(r), v(r), and w(r) represent the displacements along
the x, y, and z axes, respectively. We define the strain compo-
nents by the following relations:

exx ≡ ∂u

∂x
eyy ≡ ∂v

∂y
ezz ≡ ∂w

∂z
(A2)

exy ≡ ∂u

∂y
+ ∂v

∂x
eyz ≡ ∂v

∂z
+ ∂w

∂y
exy ≡ ∂u

∂z
+ ∂w

∂x
. (A3)

For small deformation, we can apply the Hooke’s law and
relate, at first approximation, the force (stress) to the strain
through the elastic moduli Cαβ . For instance, for the Xx stress
component:

Xx = C11exx + C12eyy + C13ezz + C14eyz + C15ezx + C16exy.

(A4)
The 36 Cαβ elastic constants, obtained when Eq. (A4) is writ-
ten for all directions, reduce to 21, as it can be shown that
Cαβ = Cβα .

When the crystal symmetry is taken into account, the num-
ber of nonzero elastic constants can be reduced to three for
a cubic system, five for a hexagonal system, and nine for
an orthorhombic. The latter is the case of interest in this
work. The sound velocities of SnSe can be computed through
the nine nonzero elastic moduli of the stiffness tensor (see
Table I), which were measured by ultrasound spectroscopy in
single crystalline SnSe [41].

Then, we can relate the resultant force with the dis-
placement, writing the motion equation. For instance, let us
consider a traveling wave along [100], which corresponds to

TABLE I. Elastic constants: The nonzero constant for an or-
thorhombic system. Numerical values are obtained from Ref. [41]
and expressed in GPa: C11 = 41.8, C22 = 59.7, C33 = 32.4, C44 =
13.2, C55 = 24.5, C66 = 20.5, C12 = 3.15, C13 = 10.7, C23 = 26.8.

exx eyy ezz eyz ezx exy

Xx C11 C12 C13 0 0 0
Yy C21 C22 C23 0 0 0
Zz C31 C32 C33 0 0 0
Yz 0 0 0 C44 0 0
Zx 0 0 0 0 C55 0
Xy 0 0 0 0 0 C66

what was dubbed the x direction

u(r) = u0exp[i(kx − ωt )]. (A5)

The motion equation is:

ρ
∂2u

∂t2
= ∂Xx

∂x
+ ∂Xy

∂y
+ ∂Xz

∂z
(A6)

and a similar expression is found for v(r) and w(r).
Let us substitute u(r) in equation (A6).

ω2ρ = C11k2 (A7)

that leads to the longitudinal velocity:

vlx = ω

k
=

√
C11

ρ
. (A8)

Considering instead a transverse displacement (v or w),
with the wave propagating again along the x direction, v =
v0exp[i(kx − ωt )], we can obtain the transverse velocity.

With an analogous approach, the second transverse veloc-
ity can be obtained. Again, applying the calculation to the
other two directions and solving the motion equations, we can
complete Table II. Finally, we can compute sound velocities
for SnSe using the available elastic constants (Table III). The
longitudinal velocities found here are used in the main text for
the b and c crystallographic directions.

The average sound velocity, which is often employed, can
be related to the elastic moduli. Nevertheless, it is noteworthy
to observe that this implies an approximation that we recall
here below.

TABLE II. Sound velocities: Anisotropic sound velocities for an
orthorhombic structure.

Wave Longitudinal I-Transverse II-Transverse
direction velocity velocity velocity

x
√

C11
ρ

vxy =
√

C66
ρ

vxz =
√

C55
ρ

y
√

C22
ρ

vyx =
√

C66
ρ

vyz =
√

C44
ρ

z
√

C33
ρ

vzx =
√

C55
ρ

vzy =
√

C44
ρ
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TABLE III. SnSe sound velocities: Longitudinal and transverse
sound velocities of SnSe calculated starting from the elastic constant
elements, along the main crystallographic axes.

Axis vl vt1 vt2

(m/s) (m/s) (m/s)

a 2632 1843 2015
b 3146 1843 1479
c 2317 2015 1479

The average sound velocity can be determined from the
following formula [49]:

vs =
(

1

3

3∑
i=1

∫
V

1

v3
i

d

4π

)−1/3

, (A9)

where the integral considers the three velocities (longitudinal
and two transverse) for a large number of directions in the
space. The expression simplifies in the frequently used equa-
tion:

vs =
(

1

3

[
2

v3
t

+ 1

v3
l

])
(A10)

that strictly holds only when the material is isotropic,
which means when transverse (vt ) and longitudinal sound

velocities (vl ) are invariant with the direction. The latter
condition applies for instance in polycrystalline materials
or isotropic glasses. In 1963, it was shown that a good
approximation of the average sound velocity can be obtained
through the so called VRHG approximation (Voigt, Reuss,
Hill, and Gilvarry), which establishes a criterium to connect
the elastic tensor determined for a single crystal with the
average shear and bulk moduli determined for the same com-
pounds but in the polycrystalline form [50]. There, average
transverse (v̄t ) and longitudinal (v̄l ) velocities are defined
according to: v̄t = √

G/ρ and v̄l = √
B/ρ, where B and G

are, respectively, the Hill’s average bulk and shear moduli of
a polycrystal isotropic sample that are obtained as a function
of the stress tensor’s components of a single crystal of the
same compound: B = B(Ci j ) and B = B(Si j ) [41,50]. Ci j are
the elastic constants and Si j = C−1

i j are the elastic compliance
constants. The elements of this tensor can be experimentally
determined and so the average velocity v̄m = ( 1

3 [ 2
v̄3

s
+ 1

v̄3
l
]).

v̄s was shown to approximate closely vs for a large class of
materials. Applying this recipe, the average sound velocity
for polycrystalline SnSe can be calculated from the elastic
moduli: 1803 m/s as in Ref. [41]. It is important to observe
that in SnSe there exists a significant difference among the
average sound velocities and the direction-dependent sound
velocities.
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