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Coherent transfer matrix analysis of the transmission spectra of Rydberg excitons in cuprous oxide
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In this paper, we analyze the transmission spectrum of a thin plate of cuprous oxide in the range of the
absorption of the yellow exciton states with the coherent transfer matrix method. We demonstrate that, in
contrast to the usual analysis using the Bouguer-Lambert law, a consistent quantitative description over the whole
spectral range under consideration is possible. This leads to more accurate parameters not only for the Rydberg
exciton states but also for the strengths of indirect transitions. Furthermore, the results have consequences for
the interaction of Rydberg excitons with other systems, e.g., Rydberg states themselves or for the determination
of the density of electron-hole pairs after optical excitation.

DOI: 10.1103/PhysRevB.104.035206

I. INTRODUCTION

The recent experimental observation of excitons with high
quantum numbers up to n = 25 in cuprous oxide Cu2O at
low temperatures [1] has triggered a series of papers on the
behavior of these Rydberg excitons in electric and magnetic
fields, as maser materials, for studies of quantum properties
of matter, etc. (for an overview, see Ref. [2]). On the other
hand, we expect that, due to their fragile character, Ryd-
berg excitons are extremely sensitive probes for every kind
of deviation from a perfect crystal, so that the presence of
other excitations in the crystal, e.g., a plasma of electron-hole
pairs, will influence the absorption lines. Indeed, as has been
found recently, the presence of an electron-hole plasma or
uncompensated impurities with densities around 1010 cm−3

already quenches the absorption of P states with high quantum
numbers (n > 20) [3–6].

These Rydberg excitons are usually detected as resonances
in the transmission spectrum of a thin sample. For details
of the experimental setup, see Refs. [1,2]. In the analysis
of the transmission spectra, one hitherto assumed [1,2] that
multiple reflections and interferences at the sample surfaces
can be neglected due to the high absorption. Then one can
convert a measured transmission T (λprobe) into the absorp-
tion coefficient α(E ) by the simplified expression based on
Bouguer-Lambert’s law [7,8]:

α(E ) = − ln (CreflCstreuT )

d
= − ln

[ T (λprobe )
T0

]
d

, (1)

where Crefl and Cscat are the reflection and scattering losses
at the window and sample surfaces, d is the thickness of
the sample, and E = 2π h̄c0/λprobe is the photon energy (h̄
is Planck’s constant, and c0 the velocity of light in vacuum).
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Also, the use of the optical density α(E )d is common [1,2].
Since the scattering losses are not well known, one usually
looks for a spectral region where, due to physical reasons (e.g.,
in a semiconductor well below the lowest exciton transitions),
the absorption coefficient is zero. Then one can take T0 as the
measured transmission in this region. In the spectrum shown
in Fig. 1, this has been done by starting the measurement
well below the yellow 1S ortho exciton quadrupole transition
(marked by *). For a very thin sample also, the thickness is
not well known. From mechanical measurements, we estimate
for our sample dCu2O = (33 ± 3) μm, but one can determine
it more accurately by adjusting the absorption coefficient to
the well-known value around the �−

3 absorption edge (at
E1Sy,�−

3
= 2.046165 eV [9]) given by [10]

α(E ) = α0

√
E − E1Sy,�−

3
meV−1/2; α0 = (8 ± 0.25) cm−1.

(2)

The dependence of α for higher photon energies is also
well known [11,12], so that the indirect absorption coefficient
can be continued. Furthermore, it is well known [13] that
the absorption lines of the yellow P states are sitting on top
of this phonon background. Since both processes lead to the
same final state, we observe for the P lines an asymmetric
Lorentzian line shape.

The result for the indirect absorption background is shown
by the dashed blue lines in Fig. 1. Obviously, there is no
agreement between the measured and calculated absorption
coefficient around the P lines. The absorption coefficient from
Eq. (1) is smaller than that expected from the indirect process.
On first sight, this means that the determination of T0 is not
correct. However, an additional absorption band around the
indirect absorption threshold must have a very peculiar line
shape (it must exactly compensate for the square root behavior
around the threshold) and would also require a much smaller
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FIG. 1. Experimental results for absorption coefficient of Cu2O [calculated with Eq. (1)] from the transmission spectrum (red line) plotted
vs the difference of photon energy and band gap from the yellow 1S ortho quadrupole transition (marked by *) to beyond the band gap of the
yellow exciton (zero of the abscissa). The left side shows the spectrum around the indirect band gap with enlarged scale (×5). The blue lines
are the calculated phonon-assisted absorption. The red vertical arrow indicates the indirect �−

3 absorption edge. The inset shows the absorption
below the band gap with P lines up to n = 22. The blue vertical arrow denotes the apparent gap position.

sample thickness. Changing the value of α0 in Eq. (2) is not
possible, as it is an intrinsic property of Cu2O. Therefore, a
highly likely other reason that might lead to such a behavior
is an interference effect. Its occurrence seems to be quite pos-
sible due to the long coherence length of the single-frequency
laser used as a light source. Another possibility would be the
existence of surface layers, either as a layer of cupric oxide
(CuO [14]) due to surface oxidation or as an exciton free dead
layer [15].

In this paper, we therefore analyze the transmission spec-
trum of a thin plate of Cu2O shown in Fig. 1, fully considering
the coherence of the measuring laser beam by using the well-
established coherence transfer matrix (CTM) [16] method to
calculate the transmission spectra directly from the dielectric
function (DF) of the crystal. We find that a single layer of
Cu2O without any exciton dead layer or other surface films
is sufficient for a qualitative description, but a quantitative
comparison at the level of accuracy of the experimental data
requires a more complex structure with thin additional layers
of a copper oxide, probably CuO or Cu3O2, which are known
to exist on the surface of Cu2O [17]. Furthermore, we consider
the optical properties of the whole setup including reflection
and scattering of the quartz windows of the cryostat and
possible scattering from the optical surfaces of the sample.
Also adjusting the strength of the indirect absorption process
into the green exciton states, which is not so well known, it is
possible to achieve excellent agreement between experiment
and theory.

II. TRANSFER MATRIX CALCULATION OF THE
TRANSMISSION SPECTRUM

In deriving the dielectric response of the excitons from the
transmission spectrum by the CTM method, which is our final
goal, we face the serious problem that, despite the long coher-
ence length of the probe laser, we did not observe interference
effects in the experimentally measured spectrum (see Fig. 1).
The reason why no interference effects are observed may be
twofold. On the one hand, the sample may show a slight
wedge. Here, it turns out that already a small wedge of the
order of w = 1 μm/mm is enough to completely remove any
interference effect by incoherently averaging the transmis-

sion over the finite laser spot size(fullwidthathalfmaximum =
170 μm). The other possibility would be a certain surface
roughness, which also reduces the interference effects (see,
e.g., Ref. [18]). In the following analysis, we include both
effects. Therefore, we describe the light propagation through
the sample by the coherent transfer and propagation matrices
method (CTM), whereby the transfer matrices are modified
due to interface scattering [18]

Hi j = 1

γ τi j

(
γ 2τ12τ21 + αβρ2

21 βρi j

αρi j 1

)
. (3)

The reflection and transmission coefficients for perpendic-
ular incidence are given by

τi j = 2ñi

ñi + ñ j
, ρi j = ñi − ñ j

ñi + ñ j
, (4)

and the roughness parameters are defined as

α = exp

[
−2

(
2πsi jni

λ

)2]
, β = exp

[
−2

(
2πsi jn j

λ

)2]
,

γ = exp

[
−1

2

(
2πsi j

λ

)2

(n j − ni )
2

]
, (5)

with a surface or interface roughness of root mean square
deviation si j . Note that already a roughness of the order of
λ/10 reduces the coherence effects significantly.

The propagation matrix is

L j =
(

e−iβ j 0
0 eiβ j

)
, β j = 2π

λ0
(n j − iκ j )d j, (6)

with d j the thickness and ñ j = n j − iκ j the complex index of
refraction of layer j.

For a single plate of Cu2O, the system matrix would be
(with 1 denoting the outside vacuum and 2 the sample)

S = H12L2H21. (7)

The reflection and transmission coefficients are obtained as

ρ = S12

S22
, τ = 1

S22
, (8)
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from which we obtain the reflectivity R and transmission T
by taking the modulus square, as the medium on both sides
is vacuum. These expressions can be easily extended to more
complicated layer structures.

Since the diameter of the probe beam is finite, we
must average over the thickness variation across the
probe beam. Assuming a Gaussian intensity distribution ∝
exp(−ρ2/2σ 2

L ) and a wedge w, we have a thickness dis-
tribution ∝ exp(−ρ2/2σ 2

d ) with σd = w σL. The effects of
the six cryostat windows can be considered by normaliz-
ing the transmission by the reflection and scattering losses
[(1 − RQ(λ)][1 − SQ(λ)]12, where RQ(λ) and SQ(λ) are the
reflection and scattering of a single surface (note that, due to
the window thickness of several millimeters, we can neglect
the coherence of the light beam here).

To obtain the optical parameters of the P excitons like
oscillator strength, linewidth, and resonance energies, we have
to calculate the full DF ε(ω) = εr (ω) + iεi(ω) from which the
complex index of refraction

ñ = n − iκ, (9)

with κ � 0 can be calculated as

n(ω) =
√

1
2 [εr (ω) +

√
εr (ω)2 + εi(ω)2],

κ (ω) =
√

1
2 [−εr (ω) +

√
εr (ω)2 + εi(ω)2],

α(ω) = 2ω

c0
κ (ω), (10)

the last line giving the absorption coefficient. The real and
imaginary part of the DF are related by a Kramers-Kronig
transformation:

εr (ω) = n2
b(ω) + 1

π
℘

∫ ∞

−∞

1

ω′ − ω
εi(ω)dω,

εi(ω) = − 1

π
℘

∫ ∞

−∞

1

ω′ − ω
εr (ω)dω. (11)

From Eq. (10), it is clear that we need the expression for
the DF that includes all excitonic resonances, i.e., the indi-
rect processes involving the various phonons (see Ref. [11]),
the P absorption lines, the corresponding continuum (see
Refs. [3,19]), and also a background due to the higher exci-
tonic transitions, for which we take the refractive index nb(ω)
given in Ref. [20].

The treatment of the indirect absorption processes that
contribute to the background absorption requires great care,
as there are several constraints on the positions of the exci-
ton states (from absorption measurements) and the possible
phonon modes (from symmetry [11] and resonance Raman
studies [21]) that must be considered.

It has been known for a long time that the lowest energy
transition is due to the �−

3 phonon (energy 13.5 meV) side-
band of the 1S yellow ortho exciton [22–24], which recently
has been reanalyzed, revealing a strong wave vector depen-
dence of the deformation potential [11]. Its contribution to the
imaginary part of the DF is given by [11]

εi,ind,�−
3

(h̄ω) = aind,�−
3

√
h̄ω − E1Sy,�−

3

×[1+b,1Sy�−
3

(h̄ω−Ei1Sy,�−
3

)]2�(h̄ω−E1Sy,�−
3

),
(12)

where E1Sy,�−
3

= (2.04622 ± 1 × 10−5) eV is the threshold
energy [9], and aind,�−

3
is a parameter that must be adjusted

by matching the absorption coefficient at energies near the
onset to the empirical law Eq. (2). It turns out to be aind,�−

3
=

(7.20663 ± 0.23) × 10−6/μeV1/2. The parameter b1Sy,�−
3

de-
scribes the nonlinearity due to a wave-vector-dependent
deformation potential of the phonon mode η and has been
determined to be 0.91 × 10−3/meV [11]. Besides the indirect
absorption process involving the �−

5 phonon (energy 10.8
meV, strength ≈ 3% of the �−

3 process [10]), the only other
important absorption process is due to the longitudinal optical
phonon (symmetry �−

4 ) with energy 82.1 meV. Its strength is
not so well known and varies between 1% [10] to 20% [11]
of aind,�−

3
. Therefore, we consider these strengths as fitting

parameters in the following.
The next strong absorption band is due to the green exciton

series with the lowest 1S ortho state at 2154.4 meV [25].
Here, we expect the �−

3 phonon to be strongest. In Ref. [11],
the strength parameter is given as 2.4 times that of the 1S
yellow state. Its nonlinearity parameter is 2.8 × 10−3/meV
[11]. All other green states are outside the considered spectral
region. However, we must consider that the yellow S states
with quantum numbers n = 2, 3, and 4 are strongly mixed
with the green 1S state [26]; so they should contribute to the
absorption according to their green content of 11% and 4%,
respectively. Since for n = 3 and 4 the absorption threshold
is above the yellow band edge energy (Egy = 2172.087meV),
only the 2S state must be considered below the gap. Since both
the 1S green and the 2S yellow absorption strength is not well
known, we consider them as fitting parameters as well.

However, there is another complication connected with
these indirect processes, namely, that the exciton states are
considerably broadened due to their short lifetime. The life-
time broadening can be easily derived from the recent second
harmonic spectroscopy [25] to be 0.44 meV for the 1S green
ortho state and 0.40 meV for the 2S yellow ortho state. For
the 1S yellow ortho state, this effect can be neglected (width
≈ 2 μeV as determined from the transmission spectrum in
Fig. 1). The contribution in the broadened case is given by

εi,η(h̄ω) = aη

π
(−1)1/4

{√
γiη − i(h̄ω − Eη ) arctan

[ √
iE0√

γη − i(h̄ω − Eη )

]
−√

γη + i(h̄ω − Eη ) arctan h

[ √
iE0√

γη + i(h̄ω − Eη )

]}

+ bη

2π

{
2
√

E0γη + (−1)1/4
√

γη − i(h̄ω − Eη )[iγη + (h̄ω − Eη )] arctan

[ √
iE0√

γη − i(h̄ω − Eη )

]
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+(−1)1/4[γη + i(h̄ω − Eη )]3/2 arctan

[
i
√

iE0√
γη + i(h̄ω − Eη )

]}

+ b2
η

3π

{
2
√

E0γη[E0 + 6(h̄ω − Eη )] − 3(−1)1/4[γη − i(h̄ω − Eη )]5/2 arctan

[ √
iE0√

γη − i(h̄ω − Eη )

]

− 3(−1)3/4[γη + i(h̄ω − Eη )]5/2 arctan

[
i
√

iE0√
γη + i(h̄ω − Eη )

]}
, (13)

where Eη, γη, and aη = Aηaind denote the absorption threshold, the damping of the exciton state, and the strength of the indirect
process η, respectively. Here, E0 is a cutoff energy (for which we assume E0 = 2.5 eV), and bη denotes the nonlinearity.

The real part of the DF can in principle be obtained by a Kramers-Kronig transform, which for a contribution of the form of
Eq. (12) is given by (here, Eg,i denotes the threshold energy of the phonon process)

εr,ind(h̄ω) = aind

⎧⎨
⎩

− 2
π

[√
E0 − Eg,i − √

Eg,i − h̄ω arctan
(√

E0−Eg,i

Eg,i−h̄ω

)]
for h̄ω < Eg,i

− 2
π

[√
E0 − Eg,i − √

h̄ω − Eg,iatanh
(√

h̄ω−Eg,i

E0−Eg,i

)]
for h̄ω > Eg,i

+ aindbη

3π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
√

E0 − Eg,i(E0 − 4Eg,i + 3h̄ω) + 6(Eg,i − h̄ω)3/2atan
[√

E0−Eg,i

Eg,i−ω

]
for h̄ω < Eg,i

2
√

E0 − Eg,i(E0 − 4Eg,i + 3h̄ω) + 3(h̄ω − Eg,i )
3/2 ln

⎡
⎣

√
E0−Eg,i
h̄ω−Eg,i

−1√
E0−Eg,i
h̄ω−Eg,i

+1

⎤
⎦ for h̄ω > Eg,i

. (14)

For the broadened expression, there exists no closed so-
lution, so we must do it numerically. However, it turns out
that the difference to the nonbroadened results in Eq. (14) is
negligible compared with the dominant contributions due to
the background dielectric constant.

All the parameters used in the analysis are given in Table I.
From semiconductor optics [13,19,27], we get the follow-

ing expression for the contribution of the P absorption lines to

the imaginary part of the DF

εi,P(ω) =
∞∑

n=2

f̃n
1

π

�n + 2An(ω − ωn)

(ω − ωn)2 + �2
n

. (15)

Here, the sum goes over the P states, and f̃n denotes strength
constants proportional to the oscillator strengths per vol-
ume [27] ( fn/V = 2m0ε0/πe2

0 h̄2 · f̃n), ωn, �n, andAn are the

TABLE I. Values of general parameters used in the fit of the transmission spectrum.

Parameter Notation Value Note Parameter Notation Value Note

Thickness DCu2O (μm) 32.11 Fit Indirect transitions aind (μeV−1/2) 7.20663 × 10−6 Ref. [11]
Wedge w ( μm

mm ) 1 Fit 1Sy(5+) − �−
3 A 1.000 Ref. [11]

E1Sy,�−
3

(meV) 2046.228 Ref. [9]
β (1/meV) 0.91 × 10−3 Ref. [11]

γ1Sy,�−
3

(μeV) 2 Fit
Roughness srhg(nm) 25.0 Fit 2Sy(5+) − �−

3 A 1.313 Fit
E2Sy,�−

3
(meV) 2152.60 Ref. [33]

γ2Sy,�−
3

(meV) 0.40 Ref. [33]
β (1/meV) 2.0 × 10−3 Ref. [33]

Band gap shift � (μeV) −178.6 Fit 1Sy(5+) − �−
42 A 0.188 Fit

E1Sy,�−
4 (2)(meV) 2114.83 Ref. [11]

γ1Sy,�−
3

(μeV) 2 Fit
Strength ac 1.645 × 10−3 Fit 1Sg(5+) − �−

3 A 2.470 Fit
E1Sg(5+),�−

3
(meV) 2167.7 Ref. [33]

β (1/meV) 2.0 × 10−3 Fit
γ2Sy,�−

3
(meV) 0.44 Ref. [33]

Urbach-tail 1 Eur1 (μeV) 98.0 Fit 1Sg(5+) − �−
5 A 0.975 Fit

E1Sg(5+),�−
5

2165.5 Ref. [33]
Urbach-tail 2 Eur2 (μeV) 3442 Fit 1Sy(5+) − �−

5 A 0.115 Fit
E1Sy(5+),�−

5
(meV) 2143.53 Ref. [9]

γ1Sy,�−
3

(μeV) 2 Fit
Fraction aur 0.90 Fit
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FIG. 2. (a) Reflection (red) and transmission (blue) spectra of
a plate of Cu2O with a constant thickness of 30 μm, calculated
with the coherent transfer matrix (CTM) method. (b) Comparison
of the measured transmission spectrum (red line) with the calculated
spectrum assuming a single layer of Cu2O (with parameters given in
Tables I and II) The green line gives the difference of the spectra.
Note the logarithmic energy scale.

resonance energy, damping, and asymmetry of an exciton
state, which are to be determined. Furthermore, m0, e0, and ε0

denote the electron mass, charge, and the permittivity of
the vacuum, respectively. Both the damping �n and the
asymmetry parameter An, which in principle are energy de-
pendent, will be assumed to be constant. However, there arises
the problem that, far away from the resonance, the contri-
bution of each P state to εi decreases only proportional to
1/(ω − ωn), which leads to a negative overall DF above the
band edge, resulting in a peak in the transmission spectrum
directly above the band edge in contrast to experiment [see
Fig. 2(b)]. One can correct for this discrepancy by introducing
either a frequency dependence of An that sets An = 0 above a
certain distance from the resonance as proposed in Ref. [6]
or by an energy-dependent broadening that goes over into an
Urbach-like tail, as proposed in Ref. [28]. Here, we achieve
this by multiplying the damping with a function gn(ω) =
cosh[(ω − ωn)/3�n], whereby the factor 3 has been chosen
to obtain the best agreement with the experimental line shape.
The contribution of the P lines to the real part of the DF is
given by

εr,P =
∑

n

f̃n
1

π

(ω − ωn) − 2�nAn

(ω − ωn)2 + �2
n

, (16)

as calculated by the Kramers-Kronig transformation of
Eq. (15), but disregarding the factor gn(ω) [29].

For the P continuum absorption, we have from Ref. [30]

εi,c(h̄ω) = ac

(
1 + h̄ω − Eg

Ry

)
�(h̄ω − Eg), (17)

where Eg is the yellow band gap, and Ry is the exciton Ryd-
berg energy.

TABLE II. Results for the parameters of the Rydberg exciton
states as obtained from the fits of the transmission spectrum accord-
ing to the dielectric theory. The errors for the energies and linewidths
are ∼ ±1μeV, while that for the oscillator strengths and asymmetry
parameters are ∼ ±1%, except otherwise indicated.

Oscillator
Quantum Energy strength Linewidth Asymmetry
number n = En(μeV) f̃n(μeV) �n(μeV) An

2 −23 677 ± 5 15.268 1280 ± 5 −0.488
3 −10 720 ± 5 8.554 305.2 ± 2 −0.277
4 −5986 ± 2 5.043 150.8 −0.225
5 −3780.4 2.7136 81.83 −0.254
6 −2594.1 1.5568 45.87 −0.261
7 −1887.8 0.9507 30.99 −0.272
8 −1436.6 0.6532 22.88 −0.260
9 −1127.6 0.4491 17.63 −0.246
10 −908.1 0.3208 14.16 −0.237
11 −747.1 0.2388 12.10 −0.239
12 −625.2 0.1803 10.53 −0.263
13 −530.7 0.1403 9.63 −0.250
14 −455.9 0.1096 8.55 −0.227
15 −395.9 0.0903 8.06 −0.223
16 −346.2 0.0656 6.96 −0.249
17 −306.0 0.0495 6.58 −0.216
18 −272.2 0.0338 6.04 −0.202
19 −243.6 0.0244 6.20 −0.181
20 −219.9 0.0181 7.15 −0.075
21 −199.5 0.0082 6.50 0.05
22 −182.7 (1 ± 0.3) × 10−3 5 ± 1 0.0 ± 0.1

The corresponding real part is then

εr,c(h̄ω)= ac

π

{E0−Eg

Ry −(
1 + h̄ω−Eg

Ry

)
ln

( Eg−h̄ω

E0−h̄ω

)
for h̄ω < Eg

E0−Eg

Ry −(
1 + h̄ω−Eg

Ry

)
ln

( h̄ω−Eg

E0−h̄ω

)
for h̄ω > Eg

.

(18)

We also must treat the Urbach tail for a complete descrip-
tion [11]. Assuming the following form,

εiUT (h̄ω) = acexp

(−Eg + h̄ω

Eu

)
�(Eg − h̄ω), (19)

we obtain for the real part

εr,UT (h̄ω) = ac

π

{
exp

(−Eg+h̄ω

Eu

)
Ei

(Eg−h̄ω

Eu

)
for h̄ω < Eg

exp
(−Eg+h̄ω

Eu

)
�

(
0,

h̄ω−Eg

Eu

)
for h̄ω > Eg

,

(20)

where Ei(z) denotes the exponential integral and �(a, z) the
incomplete Gamma function [31].

In total, we get for the imaginary part of the DF

εi(ω) =
∑

εi,ind(ω) + εi,c(ω) + εi,UF (ω) + εi,P(ω), (21)

and for the real part

εr (ω) =
∑

εr,ind(ω) + εr,c(ω) + εr,UF (ω) + εr,P(ω). (22)
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FIG. 3. Comparison of the measured transmission spectrum (red line) with the calculated spectrum assuming a layered structure of a plate
of Cu2O with thin layers of CuO on top and bottom (thickness, other parameters see text), the green line gives the difference of the spectra.
Note the logarithmic energy scale.

From the DF, we calculate with Eqs. (8) and (10) the trans-
mission spectrum T (ω) = |τ (ω)|2. The relevant parameters,
which include the resonance energies, strength parameters,
dampings, and asymmetries of all P excitons, are obtained
by searching for the best fit of the calculated spectrum to the
experimental data. In this way, impacts of spectral changes
of the reflectivity of the sample, which were neglected in the
previous analyses [1,2,11] but amount up to 10% of the effect,
are consistently considered.

To determine the global parameters sCu2O, dCu2O, and w, we
adjusted the value of the calculated transmission in the spec-
tral region below the indirect absorption threshold E1Sy,�−

3
,

where the absorption due to the exciton states should be zero,
to the measured one and fitted the transmission in the spectral
region close to the threshold to Eq. (12).

In Fig. 2(a), the result of the calculation of the reflec-
tion and transmission for a sample with constant thickness is
plotted, showing pronounced interference fringes. As demon-
strated in part (b), these interference effects are completely
absent in a slightly wedged sample (w = 1μm/mm). The
comparison with the measured transmission spectrum [red
curve in Fig. 2(b)] shows that a single layer of Cu2O
can reproduce the whole transmission spectrum from the
quadrupole yellow 1S line to the yellow band edge at least
qualitatively with sufficient accuracy. However, in the spectral
region below the 2P transition, there is a systematic deviation
between the experimental and theoretical transmission spec-
trum, which looks like a very broad oscillatory behavior with
period ∼150 meV. Considering Fabry-Perot resonances as the
potential origin of these oscillations, this would correspond
to a thin layer with optical thickness of only 2 μm. Because
such a thin plate is not present in the setup, one must consider
other origins of this structure. Here, one might think of a
very thin layer of CuO or Cu3O2 [17] on the sample, which
might occur due to oxidation or a thin layer due to polishing.
Indeed, considering such a layer (with index of refraction
given by nCuO(λ)2 = 4.05 + 2.4λ2/[λ2 − (0.447 μm)2] [32],
an absorption constant κCuO = 2.09 × 10−3, and a thick-
ness dCuO = 0.64 μm), we obtain the transmission spectrum
shown in Fig. 3 that completely eliminates this oscillations.

In comparison of Fig. 2(b) (and Fig. 3) with Fig. 1, we
clearly see that we must fully consider the coherence proper-
ties of the laser to describe the transmission spectrum across
the whole range from the yellow 1S ortho exciton to the yel-
low band gap correctly. The residual differences of the order
of a few percent [green curve in Fig. 2(b)] will be discussed
below.

III. DISCUSSION

The foregoing analysis has shown that a fully consistent
description of the transmission spectrum is possible using the
correct DF and the CTM method.

A closer look at the residual differences [green curve in
Fig. 2(b)] reveals that there are four types of deviations be-
having quite differently:

(1) Most prominent are the sharp peaks slightly above the
P exciton lines for n = 4 to 8, which are triplets. These are
the well-known F exciton lines [33], which have not been
included in the DF.

(2) Above the band gap, the transmission of the sample is
expected to be smooth, as only continuous processes (indirect
phonon-assisted processes and absorption into the continuum)
occur. We observe a pronounced oscillatory pattern shown in
Fig. 4(a) (red line). The oscillation consists of several compo-
nents with oscillation periods from 100 to 500 eV. If the origin
were Fabry-Perot resonances of various quartz plates, their
thicknesses would be between 1.7 and 8 mm, corresponding
roughly to the thicknesses of the optical windows. Then we
expect these interferences to occur in the whole spectral range
with similar periods. Indeed, around the indirect absorption
edge, similar structures do exist [see Fig. 4(a), blue line].

(3) Looking more closely to the fit around the P lines [see
also Fig. 4(b)], we see a characteristic deviation that looks like
a second derivative of the P line shape. This points toward a
deficiency of the asymmetric Lorentz line shape, Eq. (15), that
requires a more accurate theory of the phonon-assisted pro-
cesses. Note that, until now, all efforts to quantitatively derive
the line shapes of the P excitons from the basic interaction
processes [13] have not been successful (see, e.g., Ref. [34]).
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FIG. 4. (a) Comparison of residual transmission spectra directly above the band gap (red curve, Eref = Eg) with that 100 meV below the
band gap (blue curve, Eref = Eg − 100 meV) showing a similar structure. (b) Transmission spectrum (red experiment, blue calculation) near the
band gap showing Rydberg transitions up to n = 22. The green colored line gives the difference of measured and calculated spectra showing
additional absorption peaks (marked by *) and weak residual interferences, which are continuing above the band gap (arrow).

(4) Most interesting is the residual transmission spectrum
just below the band gap in the region of the Rydberg states
[see Fig. 3(b)]. By properly fitting the asymmetric Lorentzian
lines of the P states, the weak peaks situated between the P
lines (marked by *) already observed previously [35] turn out
to be much stronger than the interference structure that con-
tinues from above the band edge. As the energy difference to
the next lower P state scales as 1/n3, one might speculate that
these lines originate in forbidden transitions into D exciton
states, which are shifted from the P states by a different quan-
tum defect [36] and become allowed through the electric field
of the charged impurities [6]. To substantiate this hypothesis, a
thorough analysis of these lines in different samples including
the effects of external electric fields is underway.

The parameters of the fit can be grouped into three cate-
gories: (1) the parameters of the P lines (resonance energies,
oscillator strength, linewidth, and asymmetry), (2) the param-
eters of the continuum absorption (band gap shift, absorption
strength, and Urbach tail) and of the phonon-assisted indirect

transitions, and (3) the parameters describing the sample prop-
erties (thickness, wedge, and surface roughness). The first two
sets of parameters are given in Table I, while those of the P
lines are given in Table II and shown in Fig. 5.

Defining a hypothetical “exact” energy of each
P state in the form of a modified quantum defect
formula [37]

En = − Ry

(n − δn)2 + Eg with δn = δ0

+ δ2

(n − δ0)2 + δ4

(n − δ0)4 + δ6

(n − δ0)6 + . . . , (23)

the parameters of the best fit are given in Table III. Equation
(23) allows us to describe all P lines in the range between n =
2 and 22 with an accuracy of ±1 μeV [see Fig. 5(a)]. For the
oscillator strengths and linewidths, we used a similar quantum
defect formula as for the energies

fn = f0
(n − δ f n)2 − 1

(n − δ f n)5 with δ f n = δ f 0 + δ f 2

(n − δ f 0)2 + δ f 4

(n − δ f 0)4 + δ f 6

(n − δ f 0)6 + . . . . (24)

For the linewidth we assume

�n = �0
(n − δ�n)2 − 1

(n − δ�n)5 +�r with δ�n = δ�0 + δ�2

(n − δ�0)2 + δ�4

(n − δ�0)4 + δ�6

(n − δ�0)6 + . . . , (25)

where �r is a sample-dependent homogeneous broadening
constant. For the obtained parameters, see Table III.

The resonance energies of the P excitons and the linewidths
can be described with Eq. (23) or Eq. (25) by a generalized

quantum defect formula for all quantum numbers from n = 2
to 22 with good accuracy [see inset in Fig. 4(a)]. The same
holds for the linewidths. In contrast, the oscillator strength
follows a quantum defect equation only up to n = 15; for
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FIG. 5. (a) Energies, (b) oscillator strengths, (c) linewidths, and (d) asymmetry parameters for the Rydberg P exciton states are plotted
against the principal quantum number n. The red diamonds give the experimental values (see Table II), the full blue lines the fitted expressions
Eqs. (23)–(25) for diagrams (a)–(c), respectively. The inset in (a) gives the difference of the fitted energies to Eq. (23). The vertical bar gives
the approximate error. The green dots in (b) and (c) give the ratio of the quantities from the fits to that obtained from Eqs. (24) and (25),
showing that the experimental values are reproduced only up to n = 15 for the oscillator strength but up to n = 22 for the linewidth. Note that,
for the asymmetry parameter, no theoretical expression exists.

higher n, the effects of charged impurities must be considered
[6].

Finally, we discuss the problem of the number of absorbed
photons that are converted into elementary excitations in the
crystal. Usually, this is calculated from the Bouguer-Lambert
law as [3]

Ṅphot = [1 − exp(−αd )](1 − RCu2O)I0. (26)

This, however, is not possible anymore, as one has standing
waves due to interference inside the crystal and scattering

due to surface roughness leading to a loss of laser intensity.
Instead, one must calculate the absorbed power per volume
of the crystal applying Fermi’s golden rule. This leads to the
following expression:

dP

dtdV
= 2

ω

n2
〈u〉κ, (27)

where 〈u〉 is the energy density of the electromagnetic field

〈u〉 = 1
2ε0n2|E |2, (28)

TABLE III. Parameters for the Rydberg exciton states according to Eqs. (23)–(25).

Parameter Energy Parameter Oscillator strength Parameter Linewidth

Ry (meV) −87 461.98 f0(μeV) 285.42 �0 (μeV) 8360
δ0 −0.206 δ f 0 0.3931 δ�0 0.112
δ2 0.135 δ f 2 −0.8870 δ�2 −0.21
δ4 7.709 δ f 4 41.67 δ�4 0
δ6 −25.957 δ f 6 −86.23 δ�6 0
Eg(meV) 21 720.701 �r(μeV) 4.23
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FIG. 6. Transmission (T , red line) and reflection (R, blue dotted line) spectra (left ordinate) in comparison with the spectrum of the
absorbed fraction of laser power incident on the sample using the simple Bouguer-Lambert law (ABL, magenta dashed line, right ordinate) and
the exact calculation in the CTM method (ACTM, black line, right ordinate).

where n and κ are the real and imaginary part of the refractive
index [see Eq. (6)]. Here, we have assumed that κ 
 n. The
field inside the sample is given by

E (z) = Er exp

(
iβz

d

)
+ El exp

[
− iβ(d − z)

d

]
, (29)

where β is given by Eq. (6). Here, Er and El are the electric
field strengths of the right and left propagating waves at the
surface of the sample at z = 0 and can be obtained from the
transmission [Eq. (8)] by(

El

Er

)
= L1H12

(
0
τ

)
. (30)

This shows that the laser intensity inside the sample might
considerably vary spatially over distances of <100 nm.

To obtain the total absorbed power inside the sample, one
must integrate over the sample thickness (note that this also
requires averaging over the sample surface because of the
wedge). This gives

dP

dt
=

[
1 − exp

(
−2ωκd

c0

)]
ηcorI0. (31)

Here, ηcor is given by

ηcor = |Er |2 + |El |2 exp

(
2ωκd

c0

)
+ 2Re{ErĒl

× exp

[
iω(n − iκ )d

c0

]}
. (32)

As seen from Fig. 6 , where the results of Eqs. (26) and (31)
are compared, using the Bouguer-Lambert law overestimates
the absorbed power by almost a factor of 2. This must be
considered not only in deriving the densities of excitons or
electron-hole pairs (see Ref. [3]) after optical excitation but

also in the recently published theory of optical nonlinearities
of Rydberg excitons if the excitation laser has a long co-
herence length [38]. Also, a calculation of the absorbance A
by the relation A + R + T = 1 does give wrong results (see
the corresponding curves in Fig. 6), as the sample shows
substantial surface scattering.

IV. CONCLUSIONS

In this paper, we have analyzed the transmission spectrum
of a thin plate of Cu2O in the range of the absorption of the
yellow exciton states with the CTM method and demonstrated
that a consistent quantitative description is possible. The anal-
ysis gives accurate values for the parameters of the Rydberg
P excitons such as resonance energies, oscillator strengths,
and linewidths. These can be parameterized by a generalized
quantum defect formula. Fortunately, it turns out that the more
exact CTM method almost gives the same results for the pa-
rameters of the P excitons as the usually used simpler analysis
based on the Bouguer-Lambert law, at least for high quantum
numbers n > 10 (see Ref. [1]). However, if one needs a highly
accurate quantitative analysis, e.g., in the investigations of the
action of an electron-hole plasma on the Rydberg states, the
CTM method, as exemplified in this paper, should be used.
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