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Flat band, spin-1 Dirac cone, and Hofstadter diagram in the fermionic square kagome model
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We study characteristic band structures of the fermions on a square kagome lattice, one of the two-dimensional
lattices hosting a corner-sharing network of triangles. We show that the band structures of the nearest-neighbor
tight-binding model exhibit many characteristic features, including a flat band which is ubiquitous among
frustrated lattices. On the flat band, we elucidate its origin by using the molecular-orbital representation and
also find localized exact eigenstates called compact localized states. In addition to the flat band, we also find two
spin-1 Dirac cones with different energies. These spin-1 Dirac cones are not described by the simplest effective
Dirac Hamiltonian because the middle band is bended and the energy spectrum is particle-hole asymmetric. We
also investigated the Hofstadter problem on a square kagome lattice in the presence of an external field and find
that the profile of the Chern numbers around the modified spin-1 Dirac cones coincides with the conventional
one.
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I. INTRODUCTION

Geometrical frustration is a source of exotic physics in
condensed-matter systems. For instance, antiferromagnetic lo-
calized spin systems on geometrically frustrated lattices are
candidates of an exotic nonmagnetic ground state called quan-
tum spin liquid [1,2]. A triangle is a basic building block that
produces frustration. Therefore, triangle-based lattice struc-
tures, such as a kagome lattice (in two dimensions) and a
pyrochlore lattice (in three dimensions), serve as a fertile
ground to study the roles of geometrical frustration.

Geometrical frustration also produces interesting features
in the dispersion relation of tight-binding models [3–8]. Typ-
ically, frustration results in the emergence of a completely
dispersionless band [3–6], called a flat band, which is also
related to the emergence of spin liquid states of the spin
models [9–11]. The Dirac cones are another feature which is
often seen in frustrated tight-binding models [7,8,12].

With these as backgrounds, in this paper we investigate
the band structures of the nearest-neighbor (NN) tight-binding
model on a square kagome lattice (Fig. 1), which is one of the
corner-sharing networks of triangles in two dimensions. Ob-
viously, the lattice structure has a high frustration. In fact, the
localized spin model on this lattice structure has been studied
in the context of frustrated magnetism [13–26]. Furthermore,
beyond the purely theoretical interests, the lattice was recently
found to be relevant to the real material [27]. However, the
band structures of the fermionic model are less understood
compared with its cousin, namely, the kagome lattice, which
motivated us to study the present model in details.

We find the two characteristic features of the band struc-
tures appear in different energies, namely, the flat band and
the spin-1 Dirac cones. We first elucidate the origin of the
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flat band by using the molecular-orbital (MO) representation
[6,28–31], namely, we rewrite the Hamiltonian by using the
nonorthogonal basis that is composed of few atomic sites. As
a bonus of this rewriting, we can easily find a set of localized
states that corresponds to the flat band in the momentum-
space representation. Such states are helpful for considering
the intriguing many-body effects such as Wigner crystalliza-
tion [32], superconductivity [33], and quantum many-body
scars [34]. As for the spin-1 Dirac cones, which is a triple
band touching including linearly dispersive bands, they ap-
pear at two different momenta with different energies. We
find that some interesting features which cannot be described
by the simple Dirac Hamiltonian. This indicates that some
symmetry-allowed modifications are needed to describe these
spin-1 Dirac cones. To further reveal the effect of a topological
gap opening of the modified spin-1 Dirac cones, we con-
sider the Hofstadter problem in the presence of the external
magnetic field. The Hofstadter problem, which deals with the
fermionic lattice models under the magnetic field, has been
considered on various lattices [35–39], and novel aspects of
this problem have still been found [40,41]. In the present
model we find that, despite the modification, the profile of
the Chern numbers around the modified spin-1 Dirac cones
coincides with the conventional one.

The rest of this paper is structured as follows. In Sec. II
we introduce the model we study in this paper, namely, the
spinless fermion model on a square kagome lattice. We closely
analyze the band structures and elucidate two characteristic
features, namely, the flat band and the spin-1 Dirac cone.
In Sec. III we show the Hofstadter diagram of the square
kagome model, paying particular attention to the topological
gap opening of the modified spin-1 Dirac cones. Finally, we
present the summary of this paper in Sec. IV. We remark
that part of the results has already been shown in Ref. [34],
where we discussed the possibility of the quantum scar state
in this model in the presence of interactions. Here we focus
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FIG. 1. A square kagome lattice. A black dashed square denotes
the unit cell.

on a comprehensive understanding of the single-particle band
structures and their topological properties, which has not been
addressed in Ref. [34].

II. MODEL AND BAND STRUCTURE

We consider the tight-binding model without external field
for spinless fermions on a square kagome lattice with nearest-
neighbor (NN) hoppings, H = ∑

〈i, j〉 ti, jc
†
i c j + (H.c.). Here

ti, j is the transfer integral between the sites i and j, and ci

(c†
i ) stands for the annihilation (creation) operator at site i.

Each site is specified by the position of the unit cell R =
Rxex + Ryey and the sublattice α = 1, . . . 6 (Fig. 1).

In the following, we consider the case where red (blue)
bonds have transfer integral t1 (t2). The Hamiltonian in the
momentum-space representation is

H =
∑

k

c†
kHkck, (1)

where ck = (ck,1, . . . , ck,6)T, and

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t1 0 t1 t2e−ikx t2e−iky

t1 0 t1 0 t2 t2e−iky

0 t1 0 t1 t2 t2
t1 0 t1 0 t2e−ikx t2

t2eikx t2 t2 t2eikx 0 0
t2eiky t2eiky t2 t2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Diagonalizing Hk, we obtain the band structure. We plot the
band structures for t1 = t2 [Fig. 2(a)], t1 < t2 [Fig. 2(b)], and
t1 > t2 [Fig. 2(c)] (here we set both t1 and t2 to be positive).
Clearly, several characteristics appear in the band structures,
as we will discuss in detail below.

A. Flat bands

We see in Fig. 2 that a flat band with the energy −2t1 exists.
For both t1 and t2 being positive, the flat band has the lowest
energy for t1 � t2, whereas a dispersive band has the lowest
energy for t1 < t2. Interestingly, for t1 < t2, the flat band inter-
sects the dispersive band and their cross section forms a ring.
Such a band structure was found in several models [42–44]
and was referred to as a type-III nodal ring [44].

The emergence of the flat band is accounted for by the
MO representation [6,28–31], which describes the generic
flat-band models. Specifically, we define the following

FIG. 2. The band structures for the tight-binding model for (a) t1 = 1, t2 = 1, (b) t1 = 1, t2 = 1.2, and (c) t1 = 1.2, t2 = 1. For (a), we
show the zoom-up of the spin-1 Dirac cones. Pink lines correspond to the directions where the middle band has flat dispersion.
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FIG. 3. Schematic figure of (a) MOs and (b) a CLS on a square
plaquette for any t1 and t2. The panels (c) and (d) are MOs and an
additional CLS on an octagonal plaquette, respectively, which exist
only for t1 = t2.

fermion operators composed of the linear combination of the
atomic orbitals:

CR,1 = cR,2 + cR,3, (3a)

CR,2 = cR,3 + cR,4, (3b)

CR,3 = cR,4 + cR,1, (3c)

CR,4 = cR,5, (3d)

and

CR,5 = cR,6. (3e)

We additionally define

C̃R = cR,1 + cR,2, (4)

which satisfies

C̃R = CR,1 + CR,3 − CR,2. (5)

We call C operators the MOs. For the schematics of the MOs,
see Fig. 3(a).

Using these MOs, the Hamiltonian of Eq. (1) can be
written as

H =
∑

R

t1
(
C†

R,1CR,1 + C†
R,2CR,2 + C†

R,3CR,3 + C̃†
RC̃R

)

+ t2
(
C†

R,1CR,4 + C†
R,2CR,5 + C†

R,3CR−ex,4 + C̃†
RCR−ey,5

)
+ (H.c.)

− 2t1
∑

i

c†
i ci. (6)

Recalling that C̃R is linearly dependent on other MOs, we find
from (6) that the Hamiltonian (up to the constant energy shift
of −2t1

∑
i c†

i ci) can be written by using five degrees of free-
dom per unit cell, whereas each unit cell contains six atomic
sites. This reduction of the number of degrees of freedom is
the origin of the flat band. To be more concrete, performing
the Fourier transformation and using Eq. (5), we find that the
Hamiltonian matrix in the momentum space, Hk, can be writ-
ten as

Hk = �khk�
†
k − 2t1I6, (7)

where

�k =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(8)

and

hk =

⎛
⎜⎜⎜⎜⎝

2t1 −t1 t1 t2 t2e−iky

−t1 2t1 −t1 0 t2(1 − e−iky )
t1 −t1 2t1 t2e−ikx t2e−iky

t2 0 t2eikx 2t1 0
t2eiky t2(1 − eiky ) t2eiky 0 2t1

⎞
⎟⎟⎟⎟⎠. (9)

Note that the �th column of the 6 × 5 matrix �k corre-
sponds to the momentum-space representation of the MOs
CR,�. Namely, the relation

Ck = �
†
k ck (10)

with Ck = (Ck,1, · · · ,Ck,5)T holds. We also note that the sec-
ond term of Eq. (7) gives a mere constant shift of the energy,
and that �k in this model is actually k independent.

Equation (7) indicates that the vector which belongs to the
kernel of �

†
k becomes an eigenstate of Hk with the eigenen-

ergy −2t1. Actually, the kernel of �
†
k can easily be found,

that is,

uk = 1

2

⎛
⎜⎜⎜⎜⎜⎝

1
−1
1

−1
0
0

⎞
⎟⎟⎟⎟⎟⎠

. (11)
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By performing the inverse Fourier transformation to uk,
we find that H has localized eigenstates on every square
plaquette [Fig. 3(b)]:

L†
R = 1√

Nu.c.

∑
k

eik·R(c†
k · uk)

= 1

2
(c†

R,1 − c†
R,2 + c†

R,3 − c†
R,4), (12)

which satisfies [H, L†
R] = −2t1L†

R and {CR,�, L†
R′ } = 0. (Nu.c. is

the number of unit cells.) Note that the symbols [·, ·] and {·, ·}
stand for the commutation and the anticommutation, respec-
tively. We also note that the same wave function was found as
a localized magnon mode in Ref. [15]. Such localized orbitals
with finite support, corresponding to the real-space represen-
tation of the flat-band eigenstates, are found in many flat-band
models [5,33] and are recently called the compact localized
states (CLSs) [34,45–47]. Remarkably, L†

R’s are orthogonal to
each other, and the neighboring L†

R’s are separated from each
other by two NN bonds. This fact indicates that the many-
body state of 1/6 filling |�L〉 = ∏

R L†
R |0〉, where |0〉 stands

for the fermion vacuum, remains to be an eigenstate when
introducing the NN interaction, Hint = V

∑
〈i, j〉 nin j , where

ni = c†
i ci, because Hint |�L〉 = 0. In fact, |�L〉 has a Wigner-

solid-like charge order [32]. Further, as we have pointed out in
prior work [34], |�L〉, becomes a quantum scar state if it does
not have the lowest energy but is embedded in the middle of
the many-body energy spectrum.

We additionally note that the case of t1 = t2 is special in
that an alternative choice of the MOs is allowed, which leads
to the twofold degeneracy of the flat band. To be specific, we
use the following four MOs living on triangles, C′

R,1-C′
R,4, to

rewrite the Hamiltonian. Their explicit forms are given as

C′
R,1 = cR,2 + cR,3 + cR,5, (13a)

C′
R,2 = cR,3 + cR,4 + cR,6, (13b)

C′
R,3 = cR,1 + cR,4 + cR−ex,5, (13c)

and

C′
R,4 = cR,2 + cR,1 + cR−ey,6. (13d)

See Fig. 3(c) for their forms in real space. Then the
Hamiltonian for t1 = t2 can be rewritten as

H = t1
∑

R

C′†
R,1C

′
R,1 + C′†

R,2C
′
R,2 + C′†

R,3C
′
R,3 + C′†

R,4C
′
R,4

− 2t1
∑

i

c†
i ci. (14)

In the momentum space, Hk can be written as

Hk = � ′
kh′

k�
′†
k − 2t1I6, (15)

where

� ′
k =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1
1 0 0 1
1 1 0 0
0 1 1 0
1 0 eikx 0
0 1 0 eiky

⎞
⎟⎟⎟⎟⎟⎠

(16)

and

h′
k = t1I4. (17)

Again, the kernel of �
′†
k equals the eigenspace of Hk with the

eigenenergy −2t1. As the dimension of the kernel of �
′†
k is 2,

the flat band for this parameter becomes doubly degenerate.
Furthermore, at k = (π, π ), the dimension of the kernel of
�

′†
k becomes 3, meaning that one additional mode having

energy −2t1 appears at this momentum. In fact, this leads to
the quadratic band touching between the flat band and the
dispersive band, which occurs in various flat-band models
including the conventional kagome lattice [5,29,48,49].

How are the CLSs changed in accordance with the change
of the MOs? To see this, we first note that {LR,C′†

R′,�} = 0
(� = 1, 2, 3, 4), thus LR still serves as the CLS. In addition, the
twofold degeneracy of the flat band indicates the existence of
additional species of the CLSs. In fact, such CLSs are located
in each octagonal plaquette:

L′†
R = 1

2
√

2
[c†

R,3 + c†
R+ex,4

+ c†
R+ex+ey,1

+ c†
R+ey,2

]

− 1

2
√

2
[c†

R,5 + c†
R+ex,6

+ c†
R+ey,5

+ c†
R,6], (18)

which satisfies [H, L′†
R ] = −2t1L′†

R and {L′
R,C′†

R′,�} = 0. See
Fig. 3(d) for its form in real space. To the best of our knowl-
edge, the CLS of Fig. 3(d) has not been presented before. Note
that L′

R’s are not orthogonal to each other as the neighboring
L′

R’s share a site. In addition, LR’s and L′
R’s are not orthogonal

to each other. To be concrete, due to the fact that the two
kinds of CLS share the sites of sublattices 1–4, they satisfy
the following relation:∑

R

(−1)Rx+Ry L†
R =

√
2

∑
R

(−1)Rx+Ry L′†
R . (19)

For the derivation of Eq. (19), we have used the following
facts to evaluate the right-hand side, both of which arise from
the sign factor (−1)Rx+Ry . (i) The atomic sites of sublattices
5 and 6 are vanishing after taking the summation over R, and
(ii) the atomic sites of sublattices 2 and 4 acquire the opposite
sign factors to those of 1 and 3 after taking the summation
over R. From (i) and (ii), we find that the right-hand side of
Eq. (19) is equal to the left-hand side.

Equation (19) indicates that one of the CLSs is linearly
dependent of the others; thus the number of linearly indepen-
dent CLSs is 2Nu.c. − 1. Meanwhile, quadratic band touching
at (kx, ky) = (π, π ) indicates that the number of states having
the energy −2t1 is 2Nu.c. + 1, which deviates from the number
of linearly independent CLSs by 2. This can be compensated
by the loop states (Fig. 4) that wind the torus on which the
system is placed (when the periodic boundary condition is
imposed), as is the case of the kagome lattice [5].

B. Duality to the square octagon model

Here we remark that the MO representation in the case of
t1 = t2 is related to the duality between the square kagome
lattice and the square octagon lattice. Namely, if we put a site
at the center of every triangular plaquette (where the MOs are
placed), we obtain the square octagon lattice (Fig. 5). In fact,
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FIG. 4. Schematics of the loop states. The loop is along (a) the x
direction and (b) the y direction. The numbers beside the sites denote
the values of the wave function (up to the normalization constant).
The wave function is zero on the sites without the number.

due to this duality, the Hamiltonian matrix of the NN hopping
model on a square octagon lattice, which we denote Hoct

k , is
written as

Hoct
k = t1�

′†
k � ′

k − 3t1I4. (20)

In fact, it follows from Eqs. (15) and (20) that the dispersion
relations of the square kagome model and that for the square
octagon model are the same up to the constant shift, because
the eigenvalues of �

′†
k � ′

k are the same as those for �k�
′†
k

besides the two zero modes for �k�
′†
k [50]. Therefore the

spin-1 Dirac cones which we will discuss in the next section
appear in the square octagon model as well [51]. The square
octagon lattice also attracts attention as a platform for exotic
phenomena [51–56], so we expect that this perspective of the
MO representation will be useful for further research.

C. Spin-1 Dirac cones

Another interesting feature of the square kagome fermion
model is the emergence of the triple band touchings composed

FIG. 5. Duality between the square kagome lattice and the square
octagon lattice. The sites on the square octagon lattice are depicted
as gray dots.

of two linearly dispersive bands and one quadratic band. For
t1 = t2, they appear at k = (0, 0) and k = (π, π ), whose en-
ergies are 0 and 2t1, respectively, while that at k = (π, π ) is
gapped out when t1 �= t2. Such band structures are referred to
as the spin-1 Dirac cone and carries the monopole of charge
2 [57]. In tight-binding models, it appears in various systems
such as a Lieb lattice [58] and related systems [30,59–61].
Note that the spin-1 Dirac cone does not necessarily appear
in a pairwise manner, i.e., it is an exception of the Nielsen-
Ninomiya theorem [62].

The low-energy effective Hamiltonian of the conventional
spin-1 Dirac cone is written as

HD
k = v(δk) · S, (21)

where v is the velocity of the Dirac fermion, δk is the momen-
tum measured from the Dirac point, and S = (Sx, Sy, Sz ) is the
spin operator of S = 1. In this form of the effective model, one
has the dispersion relation Ek = 0,±v|δk|, which contains
the completely flat band. However, looking at the band struc-
ture of the square kagome model more closely, we find unique
features of the spin-1 Dirac cones that cannot be described
by the effective model of Eq. (21): (i) The middle band is
not completely flat, but it is flat only in particular direc-
tions, namely, (kx, 0) and (0, ky) for the Dirac cone at (0,0)
and (kx, π ) and (π, ky) for that at (π, π ) [see pink lines in
Fig. 2(a)]. (ii) Away from the lines of kx = ±ky, two dispersive
bands do not have particle-hole symmetric dispersion with
respect to the Dirac point. Remarkably, these two features
are in sharp contrast to typical examples [58–61], due to the
following reason. In the typical models of the spin-1 Dirac
cones, such as the Lieb lattice model, the middle band is the
completely flat band and the entire spectrum is particle-hole
symmetric, since the model is chiral symmetric and the num-
ber of sublattices under the bipartition has an imbalance. On
the other hand, the square kagome model does not have the
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chiral symmetry, resulting in (i) and (ii). To reproduce these
features, one may have to incorporate symmetry-allowed cor-
rections in addition to Eq. (21). (The modern viewpoint of the
symmetry-based analysis on the multiple band crossing was
presented in, e.g., Ref. [63].)

For a deeper understanding of the spin-1 Dirac cones, we
employ the MO representation for a certain direction in the
momentum space. This argument has been applied to con-
struct the type-III Dirac cones [64], and here we demonstrate
that this is also useful to understand the spin-1 Dirac cones.
We emphasize that the MO representation discussed in the fol-
lowing is different from that in Sec. II A. Indeed, there is not
real-space representation of MOs as the MO representation is
applicable only in a part of the momentum space.

We first deal with the Dirac cone at k = (0, 0) with E = 0.
As we have seen, the dispersion of the middle band is flat on
the lines of kx = 0 and ky = 0. Here we focus on the line of
ky = 0. On this line, the Hamiltonian matrix H(kx,0) can be
written by the MO representation as

H(kx,0) = �(kx,0)h̄(kx,0)�
†
(kx,0), (22)

with

�(kx,0) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1 0 0
0 1 −1 0 0
0 1 1 0 0
1 0 −1 0 0
0 0 0 eikx 1
0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

(23)

and

h̄(kx,0) =

⎛
⎜⎜⎜⎝

t1
2

t1
2 0 t2 0

t1
2

t1
2 0 0 t2

0 0 − t1
2 0 0

t2 0 0 0 0
0 t2 0 0 0

⎞
⎟⎟⎟⎠. (24)

From Eq. (22) we find that the vector, u(kx,0) =
1
2 (1, 1,−1,−1, 0, 0)T, is the zero mode for H(kx,0) because
u(kx,0) satisfies �

†
(kx,0)u(kx,0) = 0. Further, at the Dirac point

(i.e., kx = 0), the fourth and the fifth columns of �(kx,0)

become identical. Hence, at this point H(0,0) can be written in
a further simplified form as

H(0,0) = �′
(0,0)h̄

′
(0,0)�

′†
(0,0), (25)

with

�′
(0,0) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1 0
0 1 −1 0
0 1 1 0
1 0 −1 0
0 0 0 1
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(26)

and

h̄′
(0,0) =

⎛
⎜⎜⎝

t1
2

t1
2 0 t2

t1
2

t1
2 0 t2

0 0 − t1
2 0

t2 t2 0 0

⎞
⎟⎟⎠. (27)

From Eq. (25), we find that there exists an additional zero
mode for H(0,0), that is, u′

(0,0) = 1√
2
(0, 0, 0, 0, 1,−1)T, be-

cause u′
(0,0) satisfies �

′†
(0,0)u

′
(0,0) = 0.

Furthermore, there exists one more zero mode of H(0,0),
which has a form

u′′
(0,0) = 1

N �′
(0,0)O′−1v(0,0)

= 1
2 (1,−1,−1, 1, 0, 0)T, (28)

where N is the normalization constant,

O′ = �
′†
(0,0)�

′
(0,0) = diag(2, 2, 4, 2), (29)

is so-called the overlap matrix [6,29], and v(0,0) =
(1,−1, 0, 0)T is the vector satisfying h̄′

(0,0)v(0,0) = 0. u′′
(0,0) is

the zero mode of H(0,0) since the following relation holds:

H(0,0)u′′
(0,0) = (�′

(0,0)h̄
′
(0,0)�

′†
(0,0))

(
1

N �′
(0,0)O′−1v(0,0)

)

= 1

N �′
(0,0)h̄

′
(0,0)O′O′−1v(0,0)

= 1

N �′
(0,0)h̄

′
(0,0)v(0,0) = 0. (30)

To summarize, there exists one zero mode on the line of ky =
0, and at k = (0, 0), the zero mode has threefold degeneracy,
which is nothing but the spin-1 Dirac cone; this holds for
arbitrary t1 and t2.

Next, we deal with the Dirac cone at k = (π, π ) with E =
2t2. As we have seen, the Dirac cone acquires a mass gap when
t1 �= t2; at the Dirac point, two out of three bands degenerate,
i.e., the quadratic band touching occurs, and one of them has
a flat dispersion along the line of kx = π and ky = π , only in
the case of t1 = t2, the quadratic band touching turns into the
spin-1 Dirac cone. For this Dirac cone we focus on the line of
ky = π . Then we can write the Hamiltonian in the form of the
MO representation as

H(kx,π ) = �(kx,π )h̃(kx,π )�
†
(kx,π ) + 2t2I6, (31)

with

�(kx,π ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 − 1
2

e−ikx

2

0 1 −1 − 1
2

1
2

0 1 1 1
2

1
2

1 0 −1 1
2

e−ikx

2

0 0 0 0 −1
0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(32)

and

h̃(kx,π ) =

⎛
⎜⎜⎜⎜⎝

t1−t2
2

t1+t2e−ikx

2 0 0 0
t1+t2eikx

2
t1−t2

2 0 0 0
0 0 − t1+t2

2 0 0
0 0 0 −2t2 0
0 0 0 0 −2t2

⎞
⎟⎟⎟⎟⎠.

(33)

From Eq. (31), we can find that there exists an
eigenmode with the eigenenergy 2t2, that is, ũ(kx,π ) =

1
2
√

2
(−1,−1, 1, 1, 0, 2)T. The vector ũ(kx,π ) satisfies

�
†
(kx,π )ũ(kx,π ) = 0.
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At kx = π , h̃(π,π ) becomes

h̃(π,π ) =

⎛
⎜⎜⎜⎜⎝

t1−t2
2

t1−t2
2 0 0 0

t1−t2
2

t1−t2
2 0 0 0

0 0 − t1+t2
2 0 0

0 0 0 −2t2 0
0 0 0 0 −2t2

⎞
⎟⎟⎟⎟⎠. (34)

Unlike the Dirac cone at k = (0, 0), we cannot write down
the Hamiltonian by using the 4 × 6 and 4 × 4 matrices.
However, we find that h̃(π,π ) has one zero mode, ṽ(π,π ) =
(1,−1, 0, 0, 0)T. Therefore H(π,π ) has one additional eigen-
mode with eigenenergy 2t2, that is,

ũ′
(π,π ) = 1

N ′ �(π,π )Õ−1ṽ(π,π ), (35)

where N ′ is the normalization constant and

Õ = �
†
(π,π )�(π,π ) =

⎛
⎜⎜⎜⎝

2 0 0 0 −1
0 2 0 0 1
0 0 4 0 0
0 0 0 2 0

−1 1 0 0 2

⎞
⎟⎟⎟⎠. (36)

This is the origin of the quadratic band touching. Further, only
in the case of t1 = t2, we have

h̃(π,π ) =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 −t1 0 0
0 0 0 −2t1 0
0 0 0 0 −2t1

⎞
⎟⎟⎟⎠, (37)

which indicates that there is an additional zero mode of h̃(π,π ),
that is, ṽ′

(π,π ) = (1, 1, 0, 0, 0)T. Therefore H(π,π ) also has one
additional eigenmode with eigenenergy 2t2, that is,

ũ′′
(π,π ) = 1

N ′′ �(π,π )Õ−1ṽ′
(π,π ), (38)

where N ′′ is the normalization constant. This is the origin of
the massless spin-1 Dirac cone at k = (π, π ) for t1 = t2.

III. HOFSTADTER PROBLEM

As is well known, topological gap opening of Dirac cones
in two dimensions leads to topological insulators with a fi-
nite Chern number [65,66]. Turning to the present model,
the emergence of the modified spin-1 Dirac cones poses a
question: How does the Chern number behave upon topo-
logical gap opening in the modified spin-1 Dirac cones? To
address this question, we consider the Hofstadter problem on
a square kagome lattice. For simplicity, we consider the case
of t1 = t2 = 1. We also deform the lattice with keeping the
connectivity of the bonds of the square kagome lattice, as
shown in Fig. 6, so that the flux penetrating each plaquette
(shaped in either a triangle or a square) becomes rational.

In Fig. 7(a), we draw the Hofstadter diagram obtained by
the numerical diagonalization on a finite system. The flux per
unit cell is set to be 4φ, where φ is given as φ = P

Qφ0. Here
Q is a prime number, P = 0, . . . 4Q, and φ0 is a flux quantum.
The system considered here contains Q unit cells in x direction
and Nmesh unit cells in y direction, so the total number of
unit cells is Nu.c. = QNmesh. We assign the periodic boundary

FIG. 6. Schematic of the flux distribution considered in this pa-
per. The gray shade denotes the area of the unit cell (in the absence
of the magnetic flux).

condition in both x and y directions. To obtain Fig. 7(a), we
set Q = 101 and Nmesh = 24. We see a complex pattern of
gap opening, which somewhat resembles that for other frus-
trated lattices such as checkerboard (Mielke) [37] and kagome
lattices [38].

To investigate the topological gap opening of the spin-1
Dirac cones, we focus on the low-field limit and calculate the
Chern number. To obtain the Chern number at a certain gap
from the diagram, we employ the Streda formula [67]:

ν = �(Nstate/Nu.c.)

4�(φ/φ0)
, (39)

where ν stands for the total Chern number at the gap below
which the states are occupied, and Nstate is the number of states
below the gap. In the denominator of Eq. (39), the interval
�(φ/φ0) is 1/Q, and the factor 4 reflects the fact that the flux
per unit cell is 4φ. The Chern numbers for the gaps are shown
in Figs. 7(b) and 7(c) for the Dirac cone at E = 0 and E = 2,
respectively. Here we use the data for φ/φ0 ∈ [ 1

101 , 6
101 ]. In

both of two cases, the Chern number changes as −1 → 0 →
1. Note that the change of the Chern number by 1, which
is the half of the monopole charge, originates from the fact
that in two dimensions the magnetic flux penetrating only
one of hemispheres around the Dirac point can contribute to
the Chern number [68,69]. This behavior coincides with the
case of the single massless spin-1 Dirac cone [70], although
the spectrum is highly particle-hole asymmetric. Note that
we do not see the field-insensitive energy modes, which are
characteristic of the conventional spin-1 Dirac systems [37].
This is attributed to the absence of the sublattice-imbalanced
chiral symmetry, as pointed out before.

IV. SUMMARY

We have investigated the band structures of the tight-
binding model on a square kagome lattice. In the NN hopping
model without external field, the flat band and the spin-1
Dirac cones appear. As for the flat band, we elucidate its
origin by using the MO representation. As for the spin-1
Dirac cones, they appear in (0,0) and (π, π ), each of which
has different energy. They also exhibit interesting features,
namely, the bending of the middle band and the particle-hole
asymmetry, which indicates the modification term to the con-
ventional Dirac Hamiltonian is necessary. We further find that,
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FIG. 7. (a) The Hofstadter diagram of the square kagome model. The zoom-up in the low field for (b) near E = 0 and (c) E = 2. The
numbers at the blanks are the Chern numbers.

in the presence of the external field, the topological band gap
appears at the modified spin-1 Dirac cones, and the Chern
number of several gaps around the cones behaves in the same
way as the conventional one.

To conclude, we hope that our work provides a renewed
view of the square kagome model as a playground for char-
acteristic band structures induced by geometrical frustration.
Also, studying the correlation effects will be an interesting
direction for the future study. In fact, we have already pointed
out that the CLSs associated with the flat band lead to the
quantum scar state at 1/6 filling [34]. Besides, the localized
spin model on this lattice is considered to be a candidate of
quantum spin liquid [13–26]. As the localized spin model
is obtained as a low-energy effective Hamiltonian of the

Hubbard model with the half-filled system of the spinful
fermions, and the spin-1 Dirac cone at k = (0, 0) is at the
Fermi energy in that case, the strongly correlated spin-1 Dirac
fermions are expected to play a crucial role in the (possible)
quantum spin liquid. We expect that a variety of exotic phases
will appear when we consider the various fillings or incor-
porate the spin degrees of freedom for the square kagome
fermion model. Studying the correlation effects on this model
will be an intriguing future problem.
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