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Development of an efficient impurity solver in dynamical mean field theory for multiband systems:
Iterative perturbation theory combined with parquet equations
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Although several impurity solvers in the dynamical mean field theory (DMFT) have been proposed, especially
in multiband systems, there are practical difficulties arising from a trade-off between numerical costs and
reliability. In this study, we reinterpret the iterative perturbation theory (IPT) as an approximation which captures
the strong correlation effects by mimicking the particular frequency structures of the exact full vertex, and extend
it such that it can have efficiency and reliability simultaneously by modifying IPT vertex using the parquet
equations. We apply this method to several models to evaluate their validity. We confirm that our method shows
good agreements with the numerically exact continuous-time quantum Monte Carlo method in the single-site
DMFT calculation.
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I. INTRODUCTION

Strongly correlated systems exhibit many exciting phe-
nomena such as high-temperature superconductivity, metal-
insulator transition, and so on. However, these mechanisms
cannot be understood in detail. These phenomena emerge in
the region where both the perturbation expansions from the
itinerant and localized pictures break down. In addition to
this nonperturbative nature, we need to consider multiorbital
or multisite degrees of freedom. Due to these complexities,
these phenomena are still unresolved problems even though
several decades have passed since their discovery. It is one of
the central issues in condensed matter physics to understand
the strong correlation effects.

Dynamical mean field theory (DMFT) [1] is one of the
most powerful methods to study the strongly correlated sys-
tems. DMFT is a method in which the lattice problem is
solved nonperturbatively by mapping it onto an impurity
problem. DMFT can treat the temporal fluctuation correctly
and can connect the itinerant and localized limits smoothly.
Although DMFT has these excellent features, it cannot de-
scribe the phenomena such as anisotropic superconductivity
or pseudogap since the spatial fluctuation is ignored. To re-
solve this problem, extensions which take into account the
spatial fluctuation in DMFT were developed [2,3]. Further,
formalisms to combine DMFT with ab initio methods were
established, and so DMFT is nowadays applied to various
realistic calculations.

As mentioned above, in DMFT, the lattice problem is
solved by mapping it onto an impurity problem. The most
widely used impurity solver is the continuous-time quantum
Monte Carlo method (CT-QMC) [4–10], which is numerically
exact. However, in multiband systems, it can suffer from a
serious sign problem and the numerical cost necessary to
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obtain results with sufficiently small statistical errors grows
rapidly with increasing the number of bands. In addition, the
numerical cost can also increase due to the exponential growth
of the Fock space of the multiband impurity problem in the
hybridization expansion of CT-QMC (CT-HYB) [4–6] and the
growth of the average perturbation order in the interaction
expansion (CT-INT) [8–10]. Another exact impurity solver
is the exact diagonalization method (ED) [11–15]. Although
the formalism of ED itself is exact, we need to discretize
the electron bath in actual calculations. When we apply it
to multiband systems, the discretization error can become
worse because of the trade-off relation between the numbers
of the impurity orbitals and bath levels. Since at least two
bath levels per impurity orbital are required to obtain reliable
results [13–15], the numerical cost grows exponentially with
increasing the number of bands. Moreover, the broadening
procedures to obtain the continuous spectrum from the result-
ing discrete spectrum have ambiguity. To avoid this practical
difficulty, it is often necessary to use a numerically low-cost
approximation method as an impurity solver. The iterative
perturbation theory (IPT) [16–20], which we bring up in this
paper, is one of these methods.

The original IPT was developed as a very simple approxi-
mation, in which the self-energy is calculated by the second-
order perturbation. This self-energy coincidently reproduces
the atomic (strong correlation) limit in the electron-hole sym-
metric case. Hence, in this condition, IPT is a highly useful
method which can connect the weakly and strongly correlated
regime even though it is a perturbation scheme. Later, the
modified-IPT, which is an extended version for an electron-
hole asymmetric case, was developed [21–23]. In this method,
the self-energy is parameterized so that it reproduces the
exact solutions in the high-frequency and the atomic limits.
By this improvement, IPT became able to be applied to the
electron-hole asymmetric systems. Further improvement for
multiorbital systems has been made [24–27]. Similarly to the
modified-IPT, the parameters are determined such that the
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self-energy reproduces the high-frequency limit. In multior-
bital systems, however, since the exact solution in the atomic
limit cannot be obtained in a simple form, the self-energy is
determined such that it reproduces the approximate solution in
the atomic limit. Hence the scopes of the application of these
methods are quite restricted.

As described above, IPT has been regarded as a method
which interpolates the weak and strong correlation limits. In
this study, we provide IPT with a new interpretation in which
IPT captures the strong correlation effects by mimicking the
particular frequency structures of the exact full vertex, and
extend the method such that it can be applied to multiband
systems. We validate this method by applying it to several
models and comparing with the numerically exact CT-QMC
method.

This paper is organized as follows. In Sec. II, we define the
models and outline the Green’s function method. We describe
in Sec. III the novel method developed in the present study.
Results are shown in Sec. IV. The discussion is presented in
Sec. V. The conclusion is given in Sec. VI.

II. MODEL AND GREEN FUNCTION

A. Definitions

We consider the Hubbard model for multiband systems
described by the following Hamiltonian:

H =
∑

i j

∑
αβ

ti j,αβc†
iαc jβ + 1

4

∑
i

∑
αβγλ

Uαβγλc†
iαc†

iλciγ ciβ,

(1)

where the subscripts with Roman letters indicate unit cells
and Greek letters the set of the degree of freedom of spin,
orbital, and site. ti j,αβ is the hopping integral and Uαβγλ is the
Coulomb repulsion. c(†)

iα is the annihilation (creation) operator.
The n-particle Green’s function is defined as

G(n)
i1,...,i2n,α1,...,α2n

(τ1, . . . , τ2n)

= (−1)n
〈
T

[
ci1α1 (τ1)c†

i2α2
(τ2)

· · · ci2n−1α2n−1 (τ2n−1)c†
i2nα2n

(τ2n)
]〉
, (2)

where c(†)(τ ) = eτH c(†)e−τH is the Heisenberg representation
of annihilation (creation) operators. 〈A〉 = Tr(e−βH A)/Z is
the statistical average of A and Z = Tr(e−βH ) is the partition
function.

In the presence of the time and lattice translational invari-
ance, the one-particle Green’s function [n = 1 in Eq. (2)] in
the momentum space can be written as

Gαβ (k, τ ) ≡ G(1)
αβ (k, τ ) = −〈T ckα (τ )c†

kβ
〉, (3)

where k denotes the momentum. The Fourier transformation
in terms of the imaginary time is expressed as

Gαβ (k, τ ) = 1

β

∑
n

Gαβ (k, iωn)e−iωnτ , (4)

Gαβ (k, iωn) =
∫

dτGαβ (k, τ )eiωnτ , (5)

where ωn = (2n + 1)πT with n ∈ Z is a fermionic Matsubara
frequency (νm = 2mπT introduced later is a bosonic Mat-

subara frequency). G(k, iωn) can be derived in the following
form:

Ĝ(k) = [(iωn + μ)Î − ε̂k − �̂(k)]−1, (6)

where μ is the chemical potential and k = (k, iωn) is the
generalized fermionic momentum [q = (q, iνm) introduced
later denotes the generalized bosonic momentum]. ε̂k =
N−2

k

∑
i j t̂i jei(Ri−R j )·k is the band dispersion and �̂(k) is the

self-energy. These quantities are matrices in terms of the band
index and Î is the unit matrix.

Similarly to the one-particle case, in the presence of
the time and lattice translational invariance, the two-particle
Green’s function [n = 2 in Eq. (2)] in the momentum space
can be written as

G(2)
αβγλ(k, k′, q, τ1, τ2, τ3)

= 〈T ckα (τ1)c†
k+qβ

(τ2)ck′+qλ(τ3)c†
k′γ 〉. (7)

Fourier transformation is given by

Ĝ(2)(k, k′, q, τ1, τ2, τ3)

= 1

β3

∑
nn′m

Ĝ(2)(k, k′, q, iωn, iωn′ , iνm)

× e−iωnτ1 ei(ωn+νm )τ2 e−i(ωn′ +νm )τ3 . (8)

The two-particle Green’s function can be divided into two
parts: disconnected and connected terms

G(2)
αβγλ(k, k′, q)

= Gαβ (k)Gλγ (k′)δq,0 − Gαγ (k)Gλβ (k + q)δkk′

+
∑

α′β ′γ ′λ′
Gαγ ′ (k)Gλ′β (k + q)Fγ ′λ′α′β ′

× (k, k′, q)Gα′γ (k′)Gλβ ′ (k′ + q), (9)

where F̂ is called the full vertex. Introducing the irreducible
susceptibility

χ0,αβγ λ(k, k′, q) = − Gαγ (k)Gλβ (k + q)δkk′ , (10)

we can define the generalized susceptibility as

χ̂G(k, k′, q) = χ̂0(k, k′, q) − χ̂0(k, q)F̂ (k, k′, q)χ̂0(k′, q).
(11)

Also we can write the self-energy by using full vertex as

�αβ (k) = �HF
αβ + 1

2

∑
γ λ

∑
k′,q

[F̂ (k, k′, q)χ̂0(k′, q)Û ]αγβλ

× Gγ λ(k + q), (12)

where �HF is the Hartree-Fock term.

B. Parquet formalism

To consider the diagrammatic structure of the full vertex F ,
we have to define the irreducible susceptibilities concerning
the following three channels (ph, ph, pp):

χ0,αβγ λ(k, k′, q) =

⎧⎪⎨
⎪⎩

−Gαγ (k)Gλβ (k + q)δkk′ (ph),

Gαβ (k)Gλγ (k′)δq0 (ph),

Gαγ (k)Gβλ(−k − q)δkk′ (pp),

(13)

035160-2



DEVELOPMENT OF AN EFFICIENT IMPURITY SOLVER … PHYSICAL REVIEW B 104, 035160 (2021)

Λ Φph Φph ΦppF =

all diagrams

+ + +

FIG. 1. The decomposition of the full vertex. The full vertex can be divided into four parts: the fully irreducible part (�) and the reducible
parts (�l , l = ph, ph pp).

The ph channel in Eq. (13) is the same as Eq. (10). The full
vertex F̂ can be divided into four parts:

F̂ = �̂ + �̂ph + �̂ph + �̂pp, (14)

where �̂l (l = ph, ph, pp) is the set of reducible diagrams in
channel l , and �̂ is the set of fully irreducible diagrams. The
diagrammatic representation is shown in Fig. 1. Since there is
no diagram which simultaneously satisfies reducibility in two
or more channels, we can write

F̂ = �̂l + �̂l , (15)

�̂l = �̂ + �̂l1 + �̂l2 (l �= l1 �= l2), (16)

�̂l = − �̂l χ̂0F̂ = −�̂l χ̂l �̂l , (17)

where �̂l is the set of diagrams irreducible in channel l and is
called the irreducible vertex in l . χ̂l are given by

χ̂l = χ̂0 − χ̂0�̂l χ̂l = χ̂0 − χ̂0F̂ χ̂0. (18)

From Eqs. (15) to (18), which are called the parquet equations
[28–31], we can calculate F̂ exactly if we know the exact
�̂. However, it is very difficult to obtain the exact �̂ and the
procedure to obtain �̂l is numerically very expensive. Thus,
some approximations or simplifications have been proposed
[32–34] (see Appendix D).

III. NOVEL IMPURITY SOLVER: IPT + PARQUET

In this section, we develop a novel impurity solver by rein-
terpreting and extending IPT. First, in Sec. III A, we introduce
our extension of IPT. After that in Sec. III B, we explain our
new interpretation of IPT, which is the basis of the extension.
Other theoretical details are in Sec. III C.

A. Extension of IPT

In IPT, the correlation part of the self-energy is approxi-
mated as

�̂IPT(ωn) = [Î − B̂�̂2nd(iωn)]−1Â�̂2nd(iωn), (19)

�2nd
αβ = T 2

∑
γ λ

∑
ωn′νm

[Û χ̂0(ωn′, νm)Û ]αγβλG0,γ λ(ωn + νm),

(20)

χ0,αβγ λ(ωn, νm) = −G0,αγ (ωn)G0,λβ (ωn + νm), (21)

Ĝ0(iωn) = [(iωn + μ0)Î − �̂(iωn) − �̂HF]−1, (22)

where μ0, �̂(iω), and �̂HF are the pseudochemical potential,
the hybridization function, and the Hartree-Fock term in the
self-energy, respectively. The parameters Â, B̂ are determined
such that one reproduces the exact solutions in the high fre-
quency and atomic limits:

Â = n(1 − n)

n0(1 − n0)
Î, B̂ = (1 − 2n)U + μ0 − μ

n0(1 − n0)U 2
Î, (23)

where n0 and n are the electron numbers evaluated from
Ĝ0(iωn) and Ĝ(iωn), respectively. Although this is the IPT
formalism for the single-band systems, we intentionally write
it in the matrix form for the extension below.

We extend the IPT as follows:

�̂CR
IPT+parquet (ωn) = [

Î − B̂�̂CR
0 (ωn)

]−1
Â�̂CR

0 (ωn), (24)

�CR
0,αβ (ωn) = T 2

∑
γ λ

∑
ω′

nνm

[F̂0(ωn, ωn′ , νm)χ̂0(ωn′ , νm)Û ]αγβλ

× G0,γ λ(ωn + νm), (25)

χ0,αβγ λ(ωn, νm) = −G0,αγ (ωn)G0,λβ (ωn + νm), (26)

Ĝ0(ωn) = [iωnÎ + μ̂0 − �̂(ωn) − �̂HF]−1, (27)

F̂0(ωn, ωn′ , νm) = Û + �̂ph(νm) + �̂ph(ωn − ωn′ )

+ �̂pp(ωn + ωn′ + νm), (28)

where F̂0 is an approximate full vertex. To obtain F̂0, we
employ the simplified parquet method developed in Ref. [32].
(We explain the reason why we employ the simplified parquet
method in Sec. III B). Hence, we call this “IPT + parquet
method.” Since the simplified parquet method in Ref. [32]
supports only the single-band calculations, we extend it for
the multiband calculations and its detailed procedure to obtain
F̂0 is shown in Appendix D. In practical calculation, how-
ever, we omit the contribution from pp channel �̂pp when
calculating the self-energy in Eq. (27) since �̂pp tends to
be overestimated. We add a band index to the pseudochem-
ical potential μ0 in Eq. (22), and so μ̂0 in Eq. (27) is a
diagonal matrix. The reason for this modification and the con-
ditions for the parameters Â, B̂, and μ̂0 are discussed later in
Sec. III C.

This extension is based on the interpretation in which
IPT captures the strong correlation effects by mimicking
the particular frequency structures of the exact full vertex.
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FIG. 2. The frequency dependence of the full vertex in the charge
channel obtained in QMC as an impurity solver. The bare interaction
U is subtracted. The calculations were performed for the Hubbard
model on a square lattice with nearest-neighbor hopping t at T/t =
0.4, U/t = 5.08. The intensity is given in units of 4t . This figure is
taken from Ref. [3].

We explain this new interpretation in detail in the next
section.

B. Reinterpretation of IPT

To present our new interpretation of IPT, we explain
the frequency structure of the exact full vertex [3,29,35].
Figure 2 shows the full vertex in the charge channel
F c(iωn, iωn′ , iνm) in the n-n′ plane calculated with the QMC
as the impurity solver [3,35]. As we can see from this figure,
F c(iωn, iωn′ , iνm) takes large values in the vicinity of the di-
agonal line in the n-n′ plane. ph and pp channels exhibit large
values in the vicinity of ωn − ωn′ = 0 and ωn + ωn′ + νm = 0,
respectively. These large values on the diagonal lines come
from these channels. The ph channel takes large values near
νm = 0 although it is not depicted in Fig. 2. This structure
coming from ph, ph, and pp channels is called the “diagonal
structure” [36–39]. We can also see that F c(iωn, iωn′ , iνm)
takes large values in the vicinity of ωn = 0 and ωn′ = 0 lines.
This cross-shaped structure is called the “cross structure”
[36–39]. There is one more characteristic structure which
F c(iωn, iωn′ , iνm) depends on ωn and ωn′ independently and
has large values near the center of the n-n′ plane. We call
this the “central structure.” The contribution from the cross
and central structures is important in the strongly correlated
regime since these two structures come from the higher-order
diagrams than that of the diagonal structure (see Appendix B
for details).

Given this, we move on to IPT. Comparing Eq. (19) with
the exact expression of the correlation part of the self-energy
�̂CR(iωn) using the full vertex

�CR
αβ (ωn) = T 2

∑
γ λ

∑
ωn′ νm

[F̂ (ωn, ωn′ , νm)χ̂0(ωn′ , νm)Û ]αγβλ

× Gγ λ(ωn + νm), (29)

χ0,αβγ λ(ωn, νm) = −Gαγ (ωn)Gλβ (ωn + νm), (30)

F0

C1

C2

C1

C1

C1

C2

C1

C1

U UF0

G0

G0

G0C2

(c)(a) (b)

FIG. 3. Diagrammatic representation of (a) the full vertex of IPT,
(b) the full vertex of IPT + parquet, and (c) the self-energy.

the full vertex in IPT can be written as

[FIPT(ωn, ωn′ , νm)]αβγλ

= C2,αα′ (ωn)C1,ββ ′ (ωn + νm)

× Uα′β ′γ ′λ′C1,γ ′γ (ωn′ )C1,λ′λ(ωn′ + νm), (31)

Ĉ1(ωn) = Ĝ0(ωn)Ĝ−1(ωn), (32)

Ĉ2(ωn) = [Î − B̂�̂(2)(ωn)]−1Â. (33)

The diagrammatic representation of F̂IPT is shown in Fig. 3(a).
Figures 4(a) and 4(b) show the the full vertex in the atomic
limit F̂atom [29] subtracted by the terms which give the diago-
nal structure (ph, ph, pp terms) and constant Û , and Figs. 4(c)
and 4(d) show F̂IPT in a single-band case. We can see that these
structures resemble each other and hence we can say that the
IPT is an approximation which captures the strong correlation
effects by the “pseudo”cross and central structures. On the
other hand, IPT fails to capture the diagonal structure as we

FIG. 4. The frequency dependence of the full vertex at νm = 0.
Upper panels: The frequency dependence of the full vertex in the
atomic limit subtracted by the bare interaction and the terms that
give the diagonal structure (ph, ph, pp term). Lower panels: The
frequency dependence of the full vertex in IPT. (a,c) correspond to
the charge channel, and (b,d) the spin channel.
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can see from Eq. (31), where the ωn − ωn′ and ωn + ωn′ + νm

dependencies are absent.
This is a new interpretation of IPT and is completely differ-

ent from the conventional one in which IPT is considered as
an interpolation method from the weak and strong correlation
limits. It should be noted that correctly reproducing the fre-
quency dependence of one-body quantities (e.g., self-energy)
does not necessarily imply reproducing that of two-body
quantities. Therefore, we believe it is more appropriate to
recognize that IPT correctly captures the strong correlation
effects because it mimics the cross and central structures of the
full vertex, not simply because it reproduces the exact solution
of the self energy in the strong correlation limit.

This reinterpretation naturally leads to the extension of IPT
in Sec. III A. As mentioned above, IPT fails to capture the
diagonal structure of the full vertex. This structure can be
captured by the following replacement:

[FIPT(ωn, ωn′ , νm)]αβγλ

= C2,αα′ (ωn)C1,ββ ′ (ωn + νm)

× Uα′β ′γ ′λ′C1,γ ′γ (ωn′ )C1,λ′λ(ωn′ + νm), (34)

↓
[FIPT+parquet (ωn, ωn′ , νm)]αβγλ

= C2,αα′ (ωn)C1,ββ ′ (ωn + νm)

× F0,α′β ′γ ′λ′ (ωn, ωn′ , νm)C1,γ ′γ (ωn′ )C1,λ′λ(ωn′ + νm),
(35)

where Ĉ2 in Eq. (33) is also replaced with

Ĉ2(ωn) = [
Î − B̂�̂CR

0 (ωn)
]−1

Â. (36)

The diagrammatic representation of the self-energy and full
vertices are shown in Fig. 3. Substituting the full vertex
in Eq. (35) into the exact expression of the self-energy in
Eq. (29), we obtain Eqs. (24) to (28). As mentioned in
Sec. III A, we employ the simplified parquet method devel-
oped in Ref. [32] to obtain F̂0. The approximate full vertex F̂0

needs to (i) have only diagonal and constant terms because the
cross and central terms are given by C1, and (ii) be obtained
with low numerical cost so as not to lose the advantage of
IPT. The simplified parquet method can meet these require-
ments because it can provide the diagonal and constant terms
with low numerical cost while ignoring the cross and central
structures (see Appendix D).

While we employ simplified parquet method here, F̂0 can
be evaluated by other methods as long as they estimate only
the diagonal and constant parts of the full vertex. Indeed, in
Sec. IV A, we show the result of “IPT + FLEX” in which
we obtain F̂0 in Eq. (28) by the fluctuation exchange (FLEX)
approximation [40] for comparison. On the other hand, for
example, the exact full vertex of the atomic limit F̂atom or the
full vertex obtained from the nonsimplified parquet method
are not suitable for F̂0 since they already have the cross and
central structures and hence yield double counting if adopted.

Finally, we should note that the ansatz in Eqs. (32), (33),
and (36) (more generally the choice of Ĉ1 �= Ĉ2) breaks the
crossing symmetry of the full vertex. In fact, in a separate
publication Ref. [41], we developed a method in which we

defined a different full vertex that reproduced the same self-
energy without breaking the crossing symmetry.

C. How to determine the parameters A, B, and μ0

The remaining problem here is how to deal with the pa-
rameters Â, B̂ in Eq. (24), and μ̂0 in Eq. (27) in the multiband
systems. In MO-IPT [26,27], the two or more particle effects
are added in the form of the static correlation functions when
the single-orbital IPT is extended to the multiorbital one. By
contrast, in our formalism, these effects are already considered
in the form of the diagonal terms of the dynamical full vertex
obtained by the parquet equations. Therefore, we simply ex-
tend the single-orbital representation of parameters Eq. (23)
to multiorbital forms, as follows:

Aαβ = δαβ, (37)

Bαβ = δαβ

N−1
orbital

∑
γ Uααγ γ (1 − 2nγ ) + μ0αα − μ∑

γ Uααγ γ n0γ (1 − n0γ )Uγ γαα

, (38)

where nα, n0α is the band filling evaluated from Ĝ, Ĝ0. In
addition, we add a degree of freedom to the pseudochemical
potential as μ0 → μ̂0 (i.e., not a scalar but a diagonal matrix)
to satisfy the condition nα = n0α , and so Â is fixed to unity.
This condition is needed for the following reason. According
to the interpretation introduced in Sec. III B, the correction
factor Ĉ1 = Ĝ0Ĝ−1 captures the strong correlation effects.
Hence, Ĉ1 needs to increase in the appropriate regions of
filling, namely, in the vicinity of half filling. In the multiband
case, if the pseudochemical potential is a single scalar param-
eter μ0 (i.e., independent of the band index α), n0α can be
different from nα in general even if

∑
α n0α = ∑

α nα is sat-
isfied. For example, it is possible that n0α is at half filling but
nα is away from it or vice versa. C1 is not appropriately given
under these circumstances. Therefore, we need to regard the
pseudochemical potential as a diagonal matrix μ̂0 by adding
the band index α to μ0 for the condition nα = n0α .

Also, we should note that the first term in the numerator in
Eq. (38) is divided by only the number of orbitals Norbital (i.e.,
not by the number of sites Nsite). This is because we assume
the interaction which does not have site-off-diagonal elements
but has the orbital-off-diagonal elements that is comparable
with the diagonal elements in magnitude. This interaction is
valid in many realistic systems. The parameter B̂ is related to
the electron-hole asymmetry (see Appendix E for details). If
we take the summation over orbital index without N−1

orbital, B̂ is
overestimated and then the electron-hole asymmetry is over-
estimated. On the other hand, if we divide the first term in the
numerator in Eq. (38) by Nsite, B̂ is underestimated since the
summation over the site-off-diagonal elements is zero. When
we consider the interaction which has the site-off-diagonal
elements or does not have the orbital-off-diagonal elements,
the expression of B̂ in Eq. (38) has to be modified.

IV. RESULTS

In this section, we show the results of IPT + parquet
method. We use the quasiparticle weight as a probe of the
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FIG. 5. Comparison of quasiparticle weight among methods. (a) The violet, blue, green, and yellow lines indicate Z at half-filling obtained
by IPT, IPT + FLEX, IPT + parquet, and CT-QMC, respectively. (b) The green, blue, and red lines indicate Z for U/t = 4, 8, 12, respectively.
The open square corresponds to modified-IPT, solid square IPT + parquet, and the circle CT-QMC. The temperature is T/t = 0.04 in both
figures.

correlation effects. The quasiparticle weight is defined as

Zα =
(

1 − Im�αα (ωn)

ωn

∣∣∣∣
ωn→0

)−1

. (39)

Zα is roughly proportional to the inverse of the effective mass,
and Zα = 0 corresponds to the insulating state. In this study,
however, we adopt the following definition instead of Eq. (39)
for calculational simplicity:

Zα =
(

1 − Im�αα (ωn)

ωn

∣∣∣∣
n=0

)−1

. (40)

Also, in this study, we adopt the definition of the band-filling
nα [=T

∑
n Gαα (iωn)e−iωn0] as the number of electrons per

site per spin.

A. Single-orbital model

We study the square lattice model as a benchmark in the
single-orbital systems. We set the temperature T/t = 0.04 and
we take 64 × 64 k-meshes and 4096 Matsubara frequencies,
where t is the nearest-neighbor hopping. Figure 5 shows the
quasiparticle weight calculated by several methods as a func-
tion of (a) the interaction U and (b) the band-filling n. IPT
+ FLEX is the method in which F0 in Sec. III A is obtained
by the fluctuation exchange (FLEX) approximation [40]. In
CT-QMC calculation, we use the CTHYB [4,6,42–45] code
based on the TRIQS library [46]. We find that the result of
IPT + parquet is the closest to that of the numerically exact
CT-QMC. On the other hand, Z is overestimated in IPT and
underestimated in IPT + FLEX since the two-particle fluc-
tuations are underestimated in IPT and overestimated in IPT
+ FLEX. This quantitative improvement from (conventional)
IPT is purely due to adding the diagonal terms estimated by
parquet equations since the modified parameters are the same
(A = 1, B = 0) in both IPT and IPT + parquet. In Fig. 5(b),
Z’s calculated by IPT, IPT + parquet, and CT-QMC are plot-
ted as functions of the band filling n for U/t = 4, 8, 12. In
the region away from half-filling, IPT + parquet tends to un-
derestimate Z (overestimate the correlation effect) compared
to IPT.

B. Two-orbital model

Here, we study the two-orbital (single-site) model. The one
body part of the Hamiltonian is expressed as

H0 =
∑

i j

∑
αβ

ti j,αβc†
iαc jβ − μ

∑
i

∑
α

niα. (41)

The interaction part of the Hamiltonian is expressed as

Hint =
∑

l

Unl↑nl↓ +
∑
l1 �=l2

∑
σ1σ2

U ′nl1σ1 nl2σ2

+
∑
l1l2

JSl1 · Sl2 +
∑
l1l2

J ′c†
l1↑c†

l2↓cl2↓cl2↑, (42)

where the degrees of freedom of orbital are expressed by l
and spin by σ . U (′) is the intraorbital (interorbital) interaction,
and J and J ′ represent the Hund’s coupling and pair hopping,
respectively. Then the interaction matrices in the charge and
spin channels are expressed as

(
U c

l1l2l3l4 ,U s
l1l2l3l4

) =

⎧⎪⎨
⎪⎩

(U,U ) (l1 = l2 = l3 = l4),
(2U ′ − J, J ) (l1 = l2 �= l3 = l4),
(2J − U ′,U ′) (l1 = l3 �= l2 = l4),
(J ′, J ′) (l1 = l4 �= l2 = l3).

(43)

Figure 6 shows the noninteracting density of states of the
models which we study here.

(a) two-orbital Bethe lattice (b) two-orbital square lattice 

Wn

Ww 8t

δ

orbital 1orbital 2

FIG. 6. The noninteracting density of states of the models. Left
and right panels show the density of states of two-orbital Bethe lattice
and two-orbital square lattice, respectively.
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(a) (b)

FIG. 7. Quasiparticle weight Z of the two-orbital Bethe lattice
as a function of the interaction U . The temperature is T/Wn = 0.02.
The result of IPT + parquet is shown in (a), and projective-QMC in
(b). (This figure is taken from Ref. [47]). Red and blue lines indicate
the narrow band and wide band, respectively.

1. Two-orbital Bethe lattice

We consider the two-orbital Bethe lattice model in which
two bands with different bandwidth exist. We set Ww/Wn = 2,
where Wn and Ww represent the half bandwidth of the narrow
and wide bands, respectively. We also set U ′ = U − 2J, J =
U/4, J ′ = 0, and the temperature T/Wn = 0.02. We take 2000
real-frequency meshes and 4096 Matsubara frequencies. The
quasiparticle weight against the interaction U for each orbital
is plotted in Fig. 7. Figure 7(a) is the result of IPT + par-
quet and Fig. 7(b) is that of the projective-QMC (PQMC)
in Ref. [47]. We can see a good agreement between the two
methods. The orbital selective Mott transition, in which the
energy gap opens in the narrow band whereas the wide band
is still metallic, occurs at U/Wn ∼ 2.7.

2. Two-orbital square lattice

We study the two-orbital square lattice model which
has only the intraorbital nearest-neighbor hopping. Here,
we compare three impurity solvers: IPT + parquet, CT-
QMC, and MO-IPT. In the CT-QMC calculation, we use
the CTHYB package [4,6,42–45] based on the TRIQS library
[46]. In the MO-IPT calculation, the spin-flip and the pair-
hopping processes are ignored since MO-IPT supports only
the density-density type interactions [27]. We set t1 = t2 = t ,
where tα = ti,i+1,αα is the nearest-neighbor hopping of orbital
α and t is the unit of energy. The on-site energy difference
δ = tii,11 − tii,22, and the interactions U ′ = U − 2J, J = J ′ =
U/4. We take 32 × 32 k-meshes and 4096 Matsubara fre-
quencies and we fix the temperature T/t = 0.2. Here, we
intentionally omitted the calculation result for half-filling,
which turns out to require special care due to spontaneous
symmetry breaking. This point will be studied in detail in a
separate publication.

We start with the δ = 0 case (orbital degenerate case).
Figure 8 shows the quasiparticle weight Z obtained by three
methods MO-IPT, IPT + parquet, and CT-QMC as a function
of the filling n for several interaction strength U at δ = 0.
Since the two orbitals are equivalent at δ = 0, we show only
the Z of orbital 1 and omit the orbital index. The MO-IPT
results significantly deviate from those of CT-QMC, which is
qualitatively consistent with the situation for the two-orbital
Bethe lattice model in Ref. [27]. By contrast, the Z of IPT +
parquet agrees well with that of CT-QMC.

Z

n

1

0

0.2

0.4

0.6

0.8

1 1.1 1.2 1.3 1.4

IPT+Parquet

CT-QMC
MO-IPT

FIG. 8. Quasiparticle weight Z of the two-orbital square lattice
as a function of the band filling n. The temperature is T/t = 0.2
and the on-site energy difference is δ/t = 0. Green, blue, and purple
lines indicate the results at U/t = 4, 6, and 10, respectively. Circle,
square, and triangle represent IPT + parquet, CT-QMC, and MO-
IPT, respectively.

We move on to the δ/t = 1.6 case (orbital nondegenerate
case). Figure 9 shows the quasiparticle weight Z at δ/t = 1.6.
The deviations of Z’s of MO-IPT from that of CT-QMC are
largely different between the two orbitals [48]. IPT + parquet
is found to improve the situation. This improvement comes
from adding the degree-of-freedom to the pseudochemical
potential μ0, which enables the IPT + parquet method to
capture the strong correlation effects more appropriately in
both orbitals as explained in Sec. III A. Figure 10(a) shows
the correlation part of the self-energy �CR(iωn) obtained by
these three methods. We can see that �CR(iωn) of IPT +
parquet shows better agreement with CT-QMC than MO-IPT,
not only in orbital 2 but also in orbital 1, and not only in the
imaginary part which contributes the quasiparticle weight Z
but also in the real part. Figures 10(b) and 10(c) show the
spectral function A(ω) obtained by performing the analytic
continuation with a Padé approximation in IPT + parquet
and MO-IPT, and with Maximum entropy method using the
� MAXENT code [49] in CT-QMC. Similarly to �CR(iωn),
A(ω) of IPT + parquet shows better agreement with that of
CT-QMC. Especially at n = 1.1, IPT + parquet shows an
improvement from MO-IPT.

C. Bilayer model

Here, we study the bilayer model on the square lattice as a
benchmark of systems with multiple sites (with one orbital
per site) in a unit cell. The Hamiltonian of this model is
expressed as

H =
∑
〈i j〉

∑
α

tc†
iαc jα +

∑
i

∑
α �=β

t⊥c†
iαciβ +

∑
i

∑
α

Uniαniα,

(44)
where t (t⊥) represents the intralayer (interlayer) hopping
and U the on-site interaction. The temperature is fixed as
T/t = 0.2, and the hopping ratio t⊥/t = 1.0. We take 32 × 32
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FIG. 9. Quasiparticle weight Z of the two-orbital square lattice as a function of the band filling n. The temperature is T/t = 0.2 and the
on-site energy difference is δ/t = 1.6. Green, blue, and purple lines indicate the results at U/t = 4, 6, and 10, respectively. Circle, square, and
triangle represent IPT + parquet, CT-QMC, and MO-IPT, respectively.

k-meshes and 4096 Matsubara frequencies. Since the two sites
are equivalent in this model, we show only the quantities of
site 1 and omit the site index. The quasiparticle weight Z
is plotted in Fig. 11. When U/t = 4, MO-IPT shows bet-
ter agreement with CT-QMC than IPT + parquet. When U
is increased, we can see the tendency that CT-QMC agrees
with IPT + parquet (MO-IPT) near (away from) half-filling,
similarly to the single-orbital case in Sec. IV A. Figure 12(a)
shows the correlation part of the self-energy �CR(iωn) with
U/t = 8. As we can also see from Z , IPT + parquet shows
better agreement with CT-QMC at n = 1.0. At n = 1.2, the
agreement between MO-IPT and CT-QMC is better in the
imaginary part whereas the agreement between IPT + parquet
and CT-QMC is better in the real part. In this model, the mod-
ified parameters μ0, A, B are the same between IPT + parquet
and MO-IPT since the two sites are equivalent and only the
on-site interaction is considered (the interaction matrix has
no off-diagonal part in terms of degree-of-freedom). So the
differences come from the two-particle fluctuation and the
off-diagonal part of self-energy, which are not considered in
MO-IPT. Figures 12(b) and 12(c) show the spectral function
A(ω) with U/t = 8. IPT + parquet shows better agreement
with CT-QMC at n = 1.0. At n = 1.2, CT-QMC and MO-IPT
show better agreement in terms of the width of the central
peak whereas CT-QMC and IPT + parquet show better agree-
ment in terms of the shape of A(ω). This reflects the fact
that the imaginary part of the Matsubara self-energy is mainly
related to the strength of renormalization [width of the central
peak of A(ω)] and the real part is related to the electron-hole
asymmetry.

V. DISCUSSION

A. Validity and advantage

Here, we discuss the validity and the advantage of the
IPT + parquet method. The full vertex in the IPT + parquet

method is represented by a simple product of functions as in
Eqs. (28) and (35). This simple product form of the full vertex
can be justified to some extent by considering the nature of the
two-particle functions, which are ingredients of the diagrams
that give contributions of the cross and central structures. We
can also find that the validity of this simple product form
of the full vertex becomes higher when the contributions of
diagrams which give the cross and central structures become
larger (see Appendix B for details). In the single-orbital case,
indeed, we can see this simple product form of the full vertex
in the atomic limit (see Appendix C).

Comparing with the existing IPT formalisms, the IPT +
parquet method has the following advantages. (i) In the IPT
+ parquet method, the dynamical effects of the two-particle
bosonic fluctuation in the full vertex, which give the di-
agonal structure and are more important in the multiband
systems, are taken into account, whereas these are not treated
in the IPT. (ii) It is easy to apply diagrammatic extensions
of DMFT for the nonlocal correlation. In the IPT + parquet
method, since the two-particle fluctuations in each channel
(ph, ph,pp) in the full vertex are estimated with a physically
reasonable method (the parquet formalism), we can calculate
the two-particle quantities necessary for diagrammatic exten-
sions from this full vertex (we show this point in a separate
publication. Ref. [41]). On the contrary, in IPT, since there
is no perspective on the two-particle fluctuations in the full
vertex, it is difficult to estimate the two-particle quantities.
Although a method to reconstruct the full vertex in IPT has
been suggested in single-band systems [50], it cannot be used
in multiband systems.

IPT + parquet has a great advantage over CT-QMC in
terms of the computational efficiency. We compare the cost
of IPT + parquet with that of CT-QMC, employing the “core
hours” [51] as an indicator of numerical costs. The order of
core hours of IPT + parquet is O(1) and CT-QMC O(102) in
two-band cases. The difference between the costs of the two
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FIG. 10. (a) The correlation part of the self-energy �CR(ω) of
the two-orbital square lattice. �CR(iωn) of orbital 1 is shown in upper
panel and orbital 2 in lower panel. Square and cross symbols indicate
the real and imaginary parts, respectively. Red, green, and blue
lines indicate �CR(iωn) obtained by IPT + parquet, CT-QMC, and
MO-IPT, respectively. (b,c) Spectral function A(ω) of the two-orbital
square lattice for several fillings. Interaction strength is U/t = 10.
The spectral function A(ω) of orbital 1 is shown in upper panel
and orbital 2 in lower panel. Purple lines indicate A(ω) obtained
by (b) IPT + parquet and (c) MO-IPT. Green lines indicate A(ω)
obtained by CT-QMC. The temperature is T/t = 0.2, and the on-site
energy difference is δ/t = 1.6.

Z

1

0.2

0.4

0.6

0.8

0

n
1 1.1 1.2 1.3 1.4

IPT+Parquet

CT-QMC
MO-IPT

FIG. 11. Quasiparticle weight Z of the bilayer model as a func-
tion of the interaction n. Green, blue, and red lines indicate the results
at U/t = 4, 6, 8, respectively. Circle, square, and triangle represent
IPT + parquet, CT-QMC, and MO-IPT, respectively.
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FIG. 12. (a) The correlation part of the self-energy �CR(ω) of
the bilayer model. Square and cross symbols indicate the real and
imaginary parts, respectively. Red, green, and blue lines indicate
�CR(iωn) obtained by IPT + parquet, CT-QMC, and MO-IPT, re-
spectively. (b,c) Spectral function A(ω) of the bilayer model for
several fillings. Purple lines indicate A(ω) obtained by (b) IPT +
parquet and (c) MO-IPT. Green lines indicate A(ω) obtained by CT-
QMC. Interaction strength is U/t = 8, the temperature T/t = 0.2,
and the ratio of hoppings t⊥/t = 1.0.
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methods may increase when we apply these to a system which
has the larger degrees of freedom or is more realistic. The CT-
QMC simulations can suffer from the sign problem in these
systems and need more and more samplings to obtain reliable
results while IPT + parquet does not have these difficulties.

B. Scopes of applications of MO-IPT and IPT + parquet

Here, we discuss the scopes of application of MO-IPT and
IPT + parquet from the results of this study and the previous
MO-IPT benchmark [27].

First, we discuss the orbital degenerate systems with the
interaction having only the intraorbital elements. The covalent
insulator model in Sec. 3.3 in Ref. [27] and the bilayer model
in Sec. IV C in this study correspond to these systems. In
these systems, both MO-IPT and IPT + parquet show good
agreements with the numerically exact CT-QMC. As shown
in Sec. IV C, IPT + parquet (MO-IPT) is better near (away
from) half-filling.

Next, we discuss the orbital degenerate systems with both
intra and interorbital interactions. The two-orbital Bethe lat-
tice model in Secs. 3.4.1 and 3.4.2 of Ref. [27] and the
two-orbital square lattice model in Sec. IV B 2 of our study
correspond to these systems. As shown in Ref. [27] and also
in Sec. IV B 2 of our study, the MO-IPT results significantly
deviate from that of the CT-QMC results at or near half fill-
ing. This may be due to the drawback of the approximation
in the modified parameter Bα in Eq. (A13). The calculation
results lose electron-hole symmetry even in situations where
the symmetry should be present since B = 0, which is the
condition required in electron-hole symmetric systems (see
Appendix E for details), is not satisfied. Another version of
MO-IPT [26], which was developed by Laad et al. and has
been applied to realistic systems [52–57], does not have this
drawback. Hence, systematic benchmarks of this version of
MO-IPT for simple models, which have not been performed
to our knowledge, are desired. If this version of MO-IPT turns
out to also give results that deviate from CT-QMC at or near
half-filling, it may imply the limitations of the correction to
modified parameters A, B by the static many-particle corre-
lation functions. On the other hand, the IPT + parquet, in
which the many-particle correlation effects are considered as
dynamical functions obtained by the parquet equations, agrees
well with CT-QMC at or near half-filling, as shown for the
orbital-degenerate cases of the two-orbital square lattice and
two-orbital Bethe lattice models in Secs. IV B 2 and IV B 1,
respectively.

Finally, we discuss the orbital nondegenerate systems
which correspond to the two-orbital square lattice model in
Sec. IV B 2 [58]. As mentioned in Sec. IV B 2, a remarkable
feature in this situation is that the deviations of MO-IPT
from CT-QMC are largely different between the two orbitals.
Namely, MO-IPT fails to appropriately describe the correla-
tion effects near half-filling that can depend on the orbitals
when the orbitals are nonequivalent. This can be understood
from the new interpretation introduced in Sec. III. As ex-
plained in Sec. III C, n0α = nα needs to be satisfied to estimate
the correlation effects appropriately in each orbital. However,
in MO-IPT, n0α and nα do not satisfy this condition. We
overcome this difficulty by adding a degree of freedom to the

pseudochemical potential μ0 in IPT + parquet. As a result,
the IPT + parquet agrees well with CT-QMC also in nonde-
generate systems.

VI. CONCLUSION

We have reinterpreted IPT as an approximation which cap-
tures the strong correlation effects by the mimicking the cross
and central structures of the exact full vertex and extended
it such that it can be applied to the multiband systems. We
have validated this method (IPT + parquet) by comparing
it with the numerically exact CT-QMC method. As a result,
we have confirmed that the results of IPT + parquet show
good agreement with that of CT-QMC not only in the single-
band systems but also in the multiband systems. In addition,
numerical costs are largely reduced: core hours of IPT +
parquet are at least 100 times smaller than that of CT-QMC.
We expect that IPT + parquet can be useful for analyzing
various multiband and strongly correlated systems.
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APPENDIX A: OUTLINE OF DMFT AND IPT SOLVER

1. DMFT

DMFT is based on the equivalency between two models
which is exact in the limit of the infinite spatial dimension
d → ∞. In the finite spatial dimension case, DMFT can be
considered as the approximation in which the temporal fluctu-
ation is treated correctly while ignoring the spatial fluctuation.

In DMFT, the lattice problem is solved by mapping it onto
an impurity problem. The lattice model (Hubbard model) is
given in Eq. (1). The Anderson impurity model for multiband
systems is described as

H =
∑

k

∑
αβ

εkαβb†
kα

bkβ +
∑

k

∑
αβ

(Vkαβb†
kα

fβ + H.c.)

+
∑
αβ

ε f αβ f †
α fβ + 1

4

∑
αβγλ

Uαβγλ f †
α f †

λ fγ fβ, (A1)

where b(†)
kα

is the annihilation (creation) operator for bath elec-
trons and f (†)

α for impurity electrons. εkαβ and ε f αβ are the
energy of bath and impurity electrons, respectively. Vkαβ is
the hybridization strength of the bath and impurity electrons
and Uαβγλ is the interaction in the impurity site. The Green’s
function in the Hubbard model can be written as

Ĝlat (k) = [(iωn + μ)Î − ε̂k − �̂(iωn)]−1, (A2)

where the spatial fluctuation (k dependence of the self-energy)
is ignored. Also, the Green’s function in the impurity model
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can be written as

Ĝimp(iωn) = [(iωn + μ)Î − ε̂ f − �̂(iωn) − �̂(iωn)]−1,

(A3)

where �(iωn) = N−1
k

∑
k Vk(iωn − εk)−1Vk is the hybridiza-

tion function. The self-consistent condition in DMFT is
given by

�̂(iωn) = (iωn + μ)Î − �̂(iωn) −
(∑

k

Ĝlat (k)

)−1

. (A4)

Although there are small differences depending on the im-
purity solvers, the actual calculation procedure in DMFT is
roughly as follows.

(1) Start from an initial guess for the self-energy �(iωn).
(2) Calculate the lattice Green’s function Glat (k) by

Eq. (A3).
(3) Calculate the hybridization function �(iωn) by

Eq. (A4).
(4) Solve the impurity problem using �(iωn) and obtain

the new self-energy.
(5) Go back to step 2 (iterate until convergence).
Various methods to solve the impurity problem (step 4)

have been proposed [4–6,8,9,11,12,16–27,59,60], and they are
called impurity solvers. We introduce two impurity solvers we
use in this study in the following section.

2. Iterative perturbation theory

In the iterative perturbation theory (IPT) [16–20], the
correlation part of the self-energy is approximated by the
second-order perturbation, i.e.,

�(iωn) = �HF + �CR(iωn), (A5)

�CR(iωn) ≈�2nd(iωn) = T
∑
νm

Uχ0(iνm)UG0(iωn + iνm),

(A6)

χ0(iνm) = − T
∑

n

G0(iωn)G0(iωn + iνm), (A7)

G0(iωn) = [iωn + μ0 − �(iωn) − �HF]−1, (A8)

where �HF is the Hartree-Fock term (mean-field term) and
�CR(iωn) the correlation term of the self-energy, �(iω) the
hybridization function, μ0 the pseudochemical potential. In
the electron-hole symmetric case, IPT provides a good result
in both weak and strong correlation regimes. Especially in the
strong correlation limit, the IPT self-energy reproduces the
exact solution even though it is a perturbation solution from
the weak coupling limit. In other cases, however, the results
are not so good. To overcome this weakness, modified-IPT
[21–23] was proposed as an extended version of IPT for
arbitrary filling. In the modified-IPT, the correlation part of
the self-energy is parametrized by

�CR(iωn) = A�2nd(iωn)

1 − B�2nd(iωn)
. (A9)

The constants A and B are determined such that one repro-
duces the exact solutions in the high frequency and atomic

limits:

A = n(1 − n)

n0(1 − n0)
, B = (1 − 2n)U + μ0 − μ

n0(1 − n0)U 2
, (A10)

where n0 and n are the electron numbers evaluated from
G0(iωn) and G(iωn), respectively. The chemical potential μ

is determined by fixing n at the input value, while the pseudo-
chemical potential μ0 is a free parameter. Various conditions
for determining μ0 have been suggested: Luttinger sum rule,
n = n0, and so on [21–23]. Hereafter, if we write IPT, it refers
to modified-IPT.

Furthermore, some extended versions of the modified-
IPT for multiorbital systems have been proposed [24–27].
Here, we summarize the outline of the MO-IPT developed in
Ref. [27], which is the latest version of these methods, with a
slight modification. In the MO-IPT, the orbital-diagonal parts
of the self-energy are parametrized as

�CR
αα (iωn) = Aα�2nd

αα (iωn)

1 − Bα�2nd
αα (iωn)

, (A11)

where α indicates the degrees of freedom of spin and orbital.
Here, off-diagonal parts are ignored. Similarly to the single-
orbital case, Aα is determined such that one reproduces the
exact solution in the high-frequency limit. On the other hand,
Bα is determined such that one reproduces the approximate
solution in the atomic limit since the exact solution can not be
written in a simple form in multiorbital systems. Namely,

Aα = 1

τα

∑
β �=α

Uαβ 〈nβ〉 (1 − 〈nβ〉)Uβα

+ 1

τα

∑
β �=α

∑
γ �=β �=α

Uαβ (〈nβnγ 〉 − 〈nβ〉 〈nγ 〉)Uγα, (A12)

Bα = 1

τα

(
μ0 − μ − 2

∑
β( �=α)

Uαβ 〈nβ〉
)

+ 1

τ 2
α Aα

∑
βγ η( �=α)

UαβUαγUαη(〈nβnγ nη〉 − 〈nβ〉 〈nγ nη〉),

(A13)

τα =
∑

β

Uαβ 〈n0β〉 (1 − 〈n0β〉)Uβα, (A14)

where Uαβ = Uααββ . The difference between Eq. (A13) and
Eq. (A.22) in Ref. [27] is due to the difference between
the notations of the zeroth-order Green’s function. Adopting
the Matsubara frequency formalism, we impose the condi-
tion n0total = ntotal to fix μ0, where n0total and ntotal are the
total electron density obtained from G0 and G, while the real
frequency is used in Ref. [27] and μ0 is determined such
that the Luttinger theorem is satisfied. We confirmed that the
results are nearly independent of the adopted frequency types
or conditions for μ0, by performing calculations for several
models studied in Ref. [27].

APPENDIX B: DIAGRAMMATIC ORIGINS OF CROSS AND
CENTRAL STRUCTURES

Here, we show the diagrammatic origins of the cross and
central structures. First, we explain the cross structure. The
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(a) A diagram independent of iωn′.

(b) A diagram dependent on iωn and iωn′ independently

FIG. 13. Examples of diagrams for each frequency structure. The
diagrams depicted in (a) and (b) give the cross and central structures,
respectively.

combination of some channels depicted in Fig. 13(a), which
extinguishes the ωn or ωn′ dependence of F c(iωn, iωn′ , iνm) as
follows:

T
∑

n′′
V1(ωn − ωn′′ )G(ωn′′ + νm)G(ωn′′ )V2(νm). (B1)

This contribution make F c(iωn, iωn′ , iνm) take large values in
the vicinity of ωn = 0 and ωn′ = 0 lines. Next, we explain the
central structure. The multiple combinations of some channels
depicted in Fig. 13(b) yields the contribution which depends
on ωn and ωn′ independently as

T 2
∑
n′′,n′′′

V1(ωn − ωn′′ )G(ωn′′ + νm)G(ωn′′ )

× V2(νm)G(ωn′′′ + νm)G(ωn′′′ )V3(ωn′′′ − ωn′ ). (B2)

This makes F c(iωn, iωn′ , iνm) take large values in the center
of n-n′ plane.

As we can see from its origin, the cross or central structures
come from the higher-order diagrams than that of the diagonal
structure. Therefore these contributions are important in the
strongly correlated regime.

Also, we can show that the simple product form of the
full vertex in Eqs. (28) and (35) is reasonable to some extent
by considering the nature of the two-particle functions which
transfer the bosonic frequencies νm. For example, Vi(νm) in
Eq. (B1) or Eq. (B2) has a large value in the vicinity of νm = 0
and becomes similar to the δ function when the two-particle
fluctuation becomes large. As an extreme case, if we approx-

imate V1 and V3 by the δ function in Eq. (B1) or Eq. (B2),
we obtain the frequency dependence of ph part in Eqs. (28)
and (35).

APPENDIX C: FULL VERTEX IN THE ATOMIC LIMIT

In the case of single-band systems, we can write down the
full vertex in the atomic limit as follows [29]:

F c,s
atom = F↑↑

atom ± F↑↓
atom, (C1)

F↑↑
atom = −β

U 2

4

(
δωnωn′ − δνm0

)
− β

U 4

16
(δωnωn′ − δνm0)

(
1

ω2
n

+ 1

(ωn′ + νm)2

)

− β
U 6

64

δωnωn′ − δνm0

ω2
n

(
ωn′ + νm

)2 , (C2)

F↑↓
atom = U + β

U 2

4

[
2δωn(−ωn′−νm ) + δνm0

1 + eβU/2
− 2δωnωn′ + δνm0

1 + e−βU/2

]

+ U 3

8

ω2
n + (ωn + νm)2 + (ωn′ + νm)2 + ω2

n′

ωn(ωn + νm)(ωn′ + νm)ωn′

+ β
U 4

16

[
2δωn(−ωn′−νm ) + δνm0

1 + eβU/2

×
(

1

(ωn + νm)2
+ 1

(ωn′ + νm)2

)

− 2δωnωn′ + δνm0

1 + e−βU/2

(
1

ω2
n

+ 1

(ωn′ + νm)2

)]

+ 3U 5

16

1

ωn(ωn + νm)(ωn′ + νm)ωn′

+ β
U 6

64

[
2δωn(−ωn′−νm ) + δνm0

1 + eβU/2

1

(ωn + νm)2(ωn′ + νm)2

− 2δωnωn′ + δνm0

1 + e−βU/2

1

ω2
n(ωn′ + νm)2

]
. (C3)

The structure of each order is as follows.
(1) U 1 → constant .
(2) U 2 → diagonal structure.
(3) U 3 → cross structure.
(4) U 4 → diagonal × cross structure.
(5) U 5,U 6 → diagonal × central structure.
We can indeed see that the diagonal structure is dominant

in the small U regime and the cross and central structures
develop as U increases.

APPENDIX D: SIMPLIFIED PARQUET METHOD

In this section, we introduce the simplified parquet method
developed in Ref. [32], in which the numerical cost is much
lower than that of the nonsimplified parquet method since
we should practically consider just one of the three variables
(k, k′, q). Since the simplified parquet method in Ref. [32]
has not been extended for multiband systems, we extend it
for our purpose. We show here this multiband version of
the simplified parquet method. There are differences between
coefficients in Ref. [32] and in our notation. These come from
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the difference in treatments of 1/2 factor which is needed
to avoid the double counting of diagrams in the pp channel.
This factor emerges in the definitions of the vertices in our
notation while it emerges in the Bethe-Salpeter equation in
Ref. [32]. Before we start introducing the simplified parquet
method, we define the following notation which indicates
the set of the degrees of freedom, the frequencies, and wave
vectors:

D = (α, β, γ , λ), (k, k′, q), (D1)

C = (α, γ , β, λ), (k, k + q, k′ − k), (D2)

P = (α, λ, γ , β ), (k, k′,−q − k − k′), (D3)

X = (α, γ , λ, β ), (k,−k − q, k′ − k). (D4)

In the presence of SU(2) symmetry in spin space, the
full vertex can be divided into four channels c (charge),
s (spin), e (even), and o (odd) in terms of the parity of
spin

Fr (D) = �r (D) + �ph,r (D) + �ph,r (D)

+ �pp,r (D) (r = c, s, e, o). (D5)

We can rewrite Eq. (D5) as follows by replacements of vari-
ables and indices:

Fc(D) = �c(D) + �ph,c(D) − 1
2 [�ph,c + 3�ph,s](C)

+ [�pp,e − 3�pp,o](P), (D6)

Fs(D) = �s(D) + �ph,s(D) − 1
2 [�ph,c − �ph,s](C)

− [�pp,e − �pp,o](P), (D7)

Fe(D) = �e(D) + �pp,e(D) + 1
4 [�ph,c − 3�ph,s](X )

+ 1
4 [�ph,c − 3�ph,s](P), (D8)

Fo(D) = �o(D) + �pp,o(D) + 1
4 [�ph,c + �ph,s](X )

− 1
4 [�ph,c + �ph,s](P). (D9)

As we can see from Eqs. (D6) to (D9), since c, s is always
together with ph, e, o with pp, we omit the subscripts ph or pp
hereafter. And we write the third and fourth term as γ (1)

r and
γ (2)

r , respectively. To say,

γ (1)
c (D) = − 1

2 [�c + 3�s](D), (D10)

γ (1)
s (D) = − 1

2 [�c − �s](D), (D11)

γ (1)
e (D) = 1

4 [�c − 3�s](D), (D12)

γ (1)
o (D) = 1

4 [�c + �s](D), (D13)

γ (2)
c (D) = [�e − 3�o](D), (D14)

γ (2)
s (D) = − [�e − �o](D), (D15)

γ (2)
e (D) = 1

4 [�c − 3�s](D), (D16)

γ (2)
o (D) = − 1

4 [�c + �s](D). (D17)

We can also write the Bethe-Salpeter equation by using the
four channels

F̂r = �̂r + �̂r (r = c, s, e, o), (D18)

�̂r = −�̂rχ̂0F̂r = −�̂rχ̂r�̂r, (D19)

and the susceptibilities

χ̂r = χ̂0 − χ̂0�̂rχ̂r = χ̂0 − χ̂0F̂rχ̂0. (D20)

With this preliminary, we will explain the details of the
approximation in the simplified parquet method. First, we use
the bare vertices Ur as the fully irreducible vertices �r :

�c(D) = (Uσσσσ + Uσσ σ̄ σ̄ )(D) = Uc(D), (D21)

�s(D) = (Uσσσσ − Uσσ σ̄ σ̄ )(D) = −Us(D), (D22)

�e(D) = 1
2

(
U pp

σ σ̄σ σ̄ − U pp
σ σ̄ σ̄σ

)
(D) = 1

4 (Uc + 3Us )(P),
(D23)

�o(D) = 1
2

(
U pp

σ σ̄σ σ̄ + U pp
σ σ̄ σ̄σ

)
(D) = − 1

4 (Uc − Us)(P).
(D24)

We calculate susceptibilities by using the random phase ap-
proximation (RPA) type formula

χ̂r (q) = χ̂0(q)[Î + ˆ̃�rχ̂0(q)]−1, (D25)

where

ˆ̃�r = zr�̂r, (D26)

and zr is the constant renormalization factor. With these, the
irreducible vertices can be calculated as

�̂r = − ˆ̃�rχ̂r
ˆ̃�r . (D27)

By this approximation, the generalized momentum depen-
dences in Eqs. (D1) to (D4) are replaced as

D : (k, k′, q) → q, (D28)

C : (k, k + q, k′ − k) → k′ − k, (D29)

P : (k, k′,−q − k − k′) → −q − k − k′, (D30)

X : (k,−k − q, k′ − k) → k′ − k. (D31)

If we consider the local case, Eqs. (D28) to (D31) mean that
the full vertex has only the diagonal structure.

From the comparison between susceptibilities from the
RPA type Eq. (D25) and the parquet type Eq. (D20), we can
obtain the renormalization factor zr as

zr = 1+Tr
[
χ̂0(k, q)

(
γ̂ (1)

r (k − k′)+γ̂ (2)
r (k+k′+q)

)
χ̂0(k′, q)

]
Tr[χ̂0(q)�̂rχ̂0(q)]

,

(D32)

where TrA = ∑
k,k′,q

∑
α Aαααα (k, k′, q). Although the sum-

mation in the numerator of Eq. (D32) is taken over k, k′, q, we
can rewrite it as a summation over q by a variable conversion.

035160-13



MIZUNO, OCHI, AND KUROKI PHYSICAL REVIEW B 104, 035160 (2021)

Hence, we treat only q practically. The calculation procedure
of the simplified parquet method is as follows.

(1) Calculate the bare vertices �r by Eqs. (D21) to (D24).
(2) Calculate the renormalized vertices �̃r by Eq. (D26).
The initial values are (zc, zs, ze, zo) = (1, 0.1, 1, 1).
(3) Calculate the susceptibilities χr by Eq. (D25).
(4) Calculate the reducible vertices �r by Eq. (D27).
(5) Calculate the vertices γ (1)

r and γ (2)
r by Eqs. (D10) to

(D17).
(6) Update the renormalization factor zr by Eq. (D32).
(7) Go back to step 2 (until convergence).
After convergence, we already obtained the vertices �r , Fr ,

and the susceptibilities χr .
If we obtain the full vertex by the above procedure, we can

obtain the self-energy as follows:

�αβ (k) = 1

4

∑
γ λ

∑
q

[F̂c(q)χ̂0(q)Ûc + 3F̂s(q)χ̂0(q)Ûs]αγβλ

× Gγ λ(k + q). (D33)

In practical calculation, however, we omit the contribution
from the pp channel in self-energy since it tends to be overes-
timated.

APPENDIX E: CONDITIONS OF THE MODIFIED
PARAMETERS IN THE ELECTRON-HOLE SYMMETRIC

CASE

Here, we show the conditions which the modified pa-
rameters A, B need to satisfy in the electron-hole sym-

metric case. For simplicity, we consider the single-orbital
case.

The spectral representation of the Matsubara self-energy is
expressed as

�(ωn) = 1

π

∫ ∞

−∞
dω

[−Im�(ω)]

iωn − ω
. (E1)

Hence, the real part of the Matsubara self-energy is

Re�(iωn) = 1

π

∫ ∞

−∞
dω

ω

ω2
n + ω2

Im�(ω). (E2)

In the presence of the electron-hole symmetry, Im�(ω) is an
even function, so Re�(iωn) = 0.

On the other hand, the ansatz of the modified-IPT self-
energy is

A�2nd(iωn)

1 − B�2nd(iωn)
, (E3)

where �2nd(iωn) is the second-order self-energy. In the pres-
ence of the electron-hole symmetry, the condition which A and
B need to satisfy is

A, iB ∈ R (E4)

since �2nd(iωn) is a pure imaginary function. When B is a real
number, B needs to be zero.
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