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Ground-state properties of electron-electron biwire systems
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The correlation between electrons in different quantum wires is expected to affect the electronic properties
of quantum electron-electron biwire systems. Here, we use the variational Monte Carlo method to study the
ground-state properties of parallel, infinitely thin electron-electron biwires for several electron densities (rs) and
interwire separations (d). Specifically, the ground-state energy, the correlation energy, the interaction energy, the
pair-correlation function (PCF), the static structure factor (SSF), and the momentum distribution (MD) function
are calculated. We find that the interaction energy increases as ln(d ) for d → 0 and it decreases as d−2 when
d → ∞. The PCF shows oscillatory behavior at all densities considered here. As two parallel wires approach
each other, interwire correlations increase while intrawire correlations decrease as evidenced by the behavior of
the PCF, SSF, and MD. The system evolves from two monowires of density parameter rs to a single monowire
of density parameter rs/2 as d is reduced from infinity to zero. The MD reveals Tomonaga-Luttinger (TL) liquid
behavior with a power-law nature near kF even in the presence of an extra interwire interaction between the
electrons in biwire systems. It is observed that when d is reduced the MD decreases for k < kF and increases for
k > kF, similar to its behavior with increasing rs. The TL liquid exponent is extracted by fitting the MD data near
kF, from which the TL liquid interaction parameter Kρ is calculated. The value of the TL parameter is found to
be in agreement with that of a single wire for large separation between the two wires.
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I. INTRODUCTION

One-dimensional (1D) systems of interacting fermions
have gained considerable interest in both experimental [1–4]
and theoretical [5–9] fields due to their wide range of interest-
ing quantum properties and potential applications in various
areas of electronics, sensors, and medicine. The simplest the-
oretical model of interacting electrons is the homogeneous
electron gas, in which electrons are neutralized by a uniform,
positively charged background. Fermi liquid theory, which
works very well for interacting fermions in two- and three-
dimensional systems, breaks down in 1D systems of fermions.
The Tomonaga-Luttinger (TL) liquid is a standard model for
describing the physical properties of 1D electron systems
[10–13]. There have been extensive theoretical and compu-
tational studies of electron correlation effects in isolated 1D
interacting systems using various techniques such as the ran-
dom phase approximation (RPA) [14–17], Singwi, Tosi, Land,
and Sjölander (STLS) [18–21], and quantum Monte Carlo
(QMC) methods [22–25].

Two-dimensional systems of coupled, parallel quantum
layers (electron-electron or electron-hole bilayers) show many
unique phenomena [26–32]. Similarly, in 1D systems the
additional interaction between charge carriers residing in
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different wires yields quantum properties such as non-Abelian
topological phases (edge properties) [33–37], Coulomb drag
between wires [38–40], nonadditive dispersion [41–44], en-
hancement in the onset of Wigner crystallization [45], and
formation of biexcitons [46–48]. Because of these interesting
properties, coupled parallel quantum wires have gained sig-
nificant attention in the research community.

The majority of theoretical work on 1D biwire systems
is based on the RPA [49] and STLS [45,50–54] methods.
Although these methods have been used to perform elaborate
calculations of various ground-state properties of biwire sys-
tems, their findings have remained unverified until recently
due to the unavailability of simulation data and experimental
results. Drummond and Needs [42] used QMC methods to
obtain the binding energy of coupled metallic wires. However,
there are further interesting properties to be studied.

In this paper we use the variational Monte Carlo (VMC)
method to investigate inter- and intrawire correlation effects
on the ground-state properties of electron-electron biwire
(EEBW) systems. Simulation results obtained with QMC
methods such as VMC and the more accurate diffusion Monte
Carlo (DMC) method can be treated as benchmarks in the
absence of experimental results. In fact, for benchmarking
theory, QMC may be even better suited than experiments, in
that it provides an essentially exact solution to a well-defined
model without effects such as disorder and vibrations that
inevitably complicate the interpretation of experimental data.
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FIG. 1. Cartoon representation of the EEBW model. Both wires
are identical in all aspects except the spin of the electrons. The mean
distance between the electrons in each wire is 2rs.

In 1D, fixed-node DMC is an exact fermion ground-state
method because the nodal surface is known exactly. However,
DMC is much more computationally costly than VMC. Since
VMC is able to extract most of the correlation energy of
1D electron systems [24], it is sufficiently accurate in this
case. We report VMC results for the momentum distribution
(MD) functions, energies, pair-correlation functions (PCFs),
and static structure factors (SSFs) of infinitely thin quantum
biwires at a variety of densities and interwire separations.
The PCF and SSF provide useful information about electronic
correlations and are useful quantities for assessing the nature
of the ground state, while the MD is used to extract parameters
relating to the TL liquid properties of the system. One of
the motivations of the present paper is to see the effects of
interwire interactions on the TL parameters. The results for
the MD in particular show the non-Fermi-liquid character of
the system. The total-energy data that we provide may be
regarded as benchmarks for future theoretical work.

The paper is structured as follows: We describe the EEBW
model in Sec. II. In Sec. III we outline the VMC method and
provide the details of our approach. In Sec. IV we report the
ground-state energy, PCF, SSF, and MD of an infinitely thin
EEBW system. We discuss the effects of finite system sizes
on the various observables mentioned above in Appendix B.
Finally, the conclusions are in Sec. V.

II. BIWIRE MODEL

We consider an EEBW system consisting of two parallel,
infinitely thin quantum wires that are separated by a distance
d as shown in Fig. 1. The top wire contains only spin-up
electrons while the bottom wire contains only spin-down elec-
trons. We assume that the electrons in each wire are embedded
in a uniform, positive background to maintain charge neu-
trality. Most of the experimental studies of biwire systems
[55–57] have used identical wires; therefore we focus on iden-
tical EEBWs. The electron masses and the electron densities
are chosen to be the same in the two wires. The electron
density n in each wire is determined by the dimensionless
density parameter rs = 1/(2naB), where aB = ε/(e2me) is the
Bohr radius, ε is the background dielectric constant, and me

is the electron effective mass. We use effective Hartree atomic
units (h̄ = |e| = me = 4πε = 1) throughout the remainder of
this paper.

The interaction potential between an isolated pair of elec-
trons in the same wire is 1/|x|, and the potential between
isolated electrons in opposite wires is 1/

√
x2 + d2, where x

is the component of electron separation in the direction of the
wires. We write the Hamiltonian of the infinite EEBW system

with N electrons per wire as

Ĥ = − 1

2

N∑
i=1

(
∂2

∂x2
i,1

+ ∂2

∂x2
i,2

)

+
∑
i< j

[V (|xi,1 − x j,1|, 0) + V (|xi,2 − x j,2|, 0)]

+
∑
i, j

V (|xi,1 − x j,2|, d ) + NVMad, (1)

where xi,m is the position of electron i in wire m, V (x, z)
is the 1D Ewald interaction between electrons with in-wire
separation x and out-of-wire separation z, and VMad is the
Madelung constant [58]. It is known that the ground-state
many-body wave function of a system of fermions interacting
via the Coulomb interaction in an infinitely thin 1D wire has
nodes at all coalescence points, irrespective of the orientation
of the spins [24]. Therefore, the paramagnetic and ferromag-
netic states are degenerate and the Lieb-Mattis theorem [59]
does not apply. As a result, the ground-state energy only
depends on the density rather than on the spin polarization.
For computational convenience, we consider both wires to be
fully spin-polarized in our EEBW model.

III. METHOD

In this section, we present our VMC method and the
parameters associated with it. We describe the trial wave
functions and the form of the single-particle orbitals used to
calculate the ground-state energy of the EEBW system. We
have used the CASINO [60] code to perform VMC calculations.

A. Variational Monte Carlo

In the VMC technique, the expectation value of the Hamil-
tonian Ĥ with respect to a trial wave function �T is calculated
using importance-sampled Monte Carlo integration [61]. The
trial wave function contains a number of variable parameters
whose values are optimized by the use of variational princi-
ples. VMC provides an upper bound on the exact ground-state
energy. The variational energy expectation value of Ĥ with
trial wave function �T is given by

〈ET〉 =
∫

�∗
T(X)Ĥ�T(X) dX∫

�∗
T(X)�T(X) dX

=
∫ |�T(X′)|2∫ |�T(X′)|2 dX′ EL(X) dX, (2)

where X is a vector of all electron x coordinates and EL(X) =
�−1

T (X)Ĥ�T(X) is the local energy.

B. Trial wave functions

Our many-body trial wave function is of Slater-Jastrow-
backflow type and consists of Slater determinants of plane-
wave orbitals multiplied by a Jastrow correlation factor. The
Jastrow factor contains polynomial and plane-wave expan-
sions in electron-electron separation. We consider electrons
in different wires to be distinguishable; therefore the trial
wave function for a biwire consists of a product of two Slater
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determinants. The Slater-Jastrow trial wave function is

�T = D(φ↑(x))D(φ↓(x))eJ (X), (3)

where φ↑ represents orbitals for spin-up electron, D is the
Slater determinant, and eJ (X) is a Jastrow factor, which de-
scribes the correlations between the charge carriers within the
wire and between the wires. Plane-wave orbitals

φ(x) = exp(ikx) (4)

with wave numbers up to kF = π/(2rs) were used in the Slater
determinants. We look at systems with time-reversal symme-
try, so that the wave function �T(x) is real.

We use a backflow transformation [62]. In this technique,
coordinates of electrons in the Slater determinants are re-
placed by “quasiparticle coordinates” related to the actual
electron positions by backflow functions consisting of poly-
nomial expansions in the electron x separation up to 8th order
[62]. We use separate terms for intra- and interwire electron
pairs. Normally, backflow functions are used to improve the
nodal surfaces of Slater determinants in VMC trial wave
functions. For infinitely thin wires, Lee and Drummond [24]
concluded that the divergence in the interaction potential at
coalescence points at which the wave function does not vanish
cannot be canceled by a divergence in the kinetic energy, and
hence the trial wave function must possess nodes at all of the
coalescence points. Therefore, for this system the backflow
transformation does not change the nodal surface, which is
already exact, although it provides a compact parametrization
of three-body correlations [24].

We use CASINO’s Jastrow factor [63], with a two-body
polynomial u term and a plane-wave term p. The u term
consists of an expansion in powers of electron-electron x
separation up to 8th order. The p term is a Fourier expansion
with 20 independent reciprocal-lattice points. These functions
in the Jastrow factor and backflow function contain the free
parameters, which are optimized within the VMC method. We
use nonreweighted variance minimization [64,65] followed
by energy minimization [66] to optimize the free parame-
ters of the trial wave function. To optimize these parameters,
we use 5 × 106 statistically independent steps and 1024
configurations.

The VMC method is capable of giving highly accurate
results for 1D systems. For example, Lee and Drummond
[24] showed that a two-body Jastrow factor with backflow
transformations can retrieve 99.9989(9)% of the correlation
energy within the VMC method for an infinitely thin wire
at rs = 15 and N = 15. For some representative cases we
have checked that our VMC calculations agree with DMC
results (see Appendix C). However, the ground-state energy
and other observables are subject to finite-size effects due to
the limited size of the simulation cell. Lee and Drummond
have demonstrated that twist averaging [67], which has been
shown to greatly reduce single-particle finite-size effects in
two and three dimensions, is of limited use in 1D systems
because momentum-quantization errors are systematic rather
than quasirandom in 1D. In this paper, ground-state energies
are extrapolated to the thermodynamic limit to eliminate the
finite-size bias. Finite-size effects appear to be negligibly
small in the PCF, SSF, and MD for the largest system size
considered in this paper (see Appendix B).
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FIG. 2. EEBW VMC energies (a.u./electron) offset by the ex-
trapolated E∞ vs reciprocal of the square of the system size at
interwire separation d = 1 a.u. Equation (5) is linearly fitted to the
VMC energy data for different system sizes N to obtain the asymp-
totic value of the ground-state energy per electron E∞. Error bars are
smaller than the size of the symbols.

IV. RESULTS AND DISCUSSION

For our VMC calculations of the energy, PCF, SSF, and
MD, we consider an EEBW in a simulation cell of length L =
2Nrs subject to periodic boundary conditions, where N is the
number of electrons per wire. N = 61 was the largest system
considered, for which the biwire system has 122 electrons. To
extrapolate the VMC energy to the thermodynamic limit, we
also performed calculations with N = 21 and 41.

A. Energies

For the EEBW system we have calculated the VMC
ground-state energy per electron for rs = 0.1, 0.2, 0.4, 0.8, 1,
2, 5, 10, 15, and 20, and have reduced the interwire separation
d from 1 to 0.1 a.u. at an interval of 0.2 a.u. for each rs. It has
been shown [24,41] that the total energy per electron for the
1D homogeneous electron gas scales with system size as

E (N ) = E∞ + B

N2
, (5)

where E∞ and B are fitting parameters for any given d . There-
fore, we have extrapolated the VMC energy per electron of
the EEBW system to the thermodynamic limit using Eq. (5).
Figure 2 shows that Eq. (5) fits our energy data well. These
energies, calculated at various values of rs and d for an EEBW,
are tabulated in Table II of Appendix A. In Appendix D we in-
vestigate finite size extrapolation using the formula proposed
in Ref. [68]. However, the resulting ground-state energies are
almost the same.

We have calculated the correlation energy per electron Ec

and interaction energy per electron �E from the extrapolated
ground-state energy (E∞), which are also included in Table II.
The total energy per electron of a biwire system is given by

Ebi(d ) = [2emono + �e(d )]/(2N ) = Emono + �E (d ). (6)

Here, each lowercase e represents a total energy and each
uppercase E represents an energy per electron. Note that the
biwire system has a total of 2N electrons (N on each wire).
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for rs � 1. Open symbols with dashed lines represent �E and closed
symbols with solid lines are for Ec. �E and Ec are calculated using
E∞ for the wire and biwire systems.

The interaction energy per electron is then given by

�E (d ) = Ebi(d ) − Emono, (7)

and the correlation energy per electron as

Ec(d ) = Ebi(d ) − EHF. (8)

Here, Emono, Ebi, and EHF are the ground-state energy per
electron of a single wire, a biwire, and the Hartree-Fock (HF)
energy per electron, respectively. Misquitta et al. [41] reported
that the interaction energies at a given d decay more slowly
with system size. They extrapolated �E to the thermody-
namic limit using equation

�E (N ) = �E∞ + B′

N
. (9)

We fitted our data with both Eqs. (5) and (9), and found that
our interaction energy data are better described by Eq. (5). The
reason for the better fitting is argued by Drummond and Needs
[42] that when the difference of energies is taken out, most
of the bias is canceled. The interaction energy and correlation
energies shown in Table II were calculated from the E∞ values
obtained using Eq. (5).

Figure 3 shows �E and Ec as functions of separation
between two wires for high electron densities. The correlation
energy per electron of the biwire Ec(d ) is the sum of the
correlation energy per electron of the isolated single wire
Emono

c and the interaction energy per electron �E (d ), i.e.,
Ec(d ) = Emono

c + �E (d ). Therefore, the dependence of cor-
relation energy Ec(d ) on the wire separation d is similar to
�E (d ). The interaction energy of the positive backgrounds of
the two wires is ln(d2)/(4rs) [58]. This suggests that at a given
rs, the interaction energy of a biwire may be represented by

�E (d ) = Emono(rs/2) − Emono(rs) + ln(d2)/(4rs) + Ad2

1 + Bd2 + Cd4
,

(10)
where A, B, and C are fitting parameters and Emono(rs) is the
monowire ground-state energy per electron at density param-
eter rs. The Emono(rs) values are taken from Refs. [24,25] for

-0.3

-0.2

-0.1

 0

 0.2  0.4  0.6  0.8  1

�
E

(a
.u

./
el

ec
tr

o
n
)

d (a.u.)

rs = 0.2
rs = 0.4
rs = 0.8
rs = 2.0

rs = 10.0
rs = 20.0

FIG. 4. Interwire interaction energy �E vs d . Symbols represent
our calculated data and solid lines show data obtained by fitting
Eq. (10).

low and high density, respectively. It can be seen from Eq. (10)
that for d → 0,

�E → Emono(rs/2) − Emono(rs) + ln(d2)/(4rs), (11)

and for d → ∞

�E → A

Cd2
. (12)

Fitted curves using Eq. (10) are shown in Fig. 4 for various
values of rs. The quality of fitting is visible in the curve. The
fitted parameters are shown in Table I. We have fitted Eq. (10)
to our simulation data using two different methods [69]; both
yield almost identical results.

B. Pair-correlation functions

The intrawire (parallel-spin) PCF is defined as

g11(x) = 1

Ln2
1

〈∑
i �= j

δ(xi,1 − x j,1 − x)

〉
, (13)

where nm is the average density of electrons in wire m and
L is the simulation-cell length. The angular brackets denote
an average over the configurations generated by the VMC
algorithms. Since both wires are symmetric with respect to the
charge and mass of the mobile carriers, g11 and g22 are equal.

TABLE I. Values of A, B, and C in Eq. (10) are obtained at
various rs from fitting �E data for values of d from 0.1 to 1 a.u.

rs A B C

0.2 −2.1301 ×1017 −8.4178 ×1017 1.2827 ×1021

0.4 −1.3487 ×1017 6.1654 ×1016 2.1521 ×1020

0.8 −4.2687 ×104 3.8129 ×104 1.8522 ×107

2.0 −1.8201 ×102 4.2517 ×102 1.7076 ×104

10.0 −1.7446 ×10−1 1.3828 1.5523
20.0 −5.7147 ×10−3 7.1897 ×10−2 3.9272 ×10−2
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FIG. 5. Inter- and intrawire PCFs at different wire separations d for rs = 0.1 and 1. Solid lines are used for rs = 0.1 and dashed lines are
for rs = 1.0. The inset shows a magnified view of the first peak of the PCF.

The interwire (antiparallel-spin) PCF may be written as

g12(x) = 1

Ln1n2

〈∑
i, j

δ(xi,1 − x j,2 − x)

〉
. (14)

In Figs. 5(a) and 5(b), intra- (same-spin) and interwire
(opposite-spin) PCFs, respectively, are shown for densities
rs = 0.1 and rs = 1.0. The intrawire PCF g11 shows oscil-
latory behavior for all the values of interwire separation d
that we have considered here. Therefore a significant amount
of intrawire electronic correlation is present in the EEBW
even at very high densities. Oscillations in g12 increase as
d is reduced, while oscillations in g11 decrease. This reveals
that the correlations between electrons in different wires are
reinforced and intrawire correlations are suppressed as two
wires approach. The first peaks in g11 and g12 are situated near
r = 2rs and r = rs, respectively. Both g11 and g12 oscillate
with a period 2rs. As d is reduced, the first peak of g12 rises
and shifts towards the origin, while for g11 it shrinks and shifts
away from origin (see the inset of Fig. 5), except for rs = 0.1,
where the influence of d is negligibly small. Also note that the
value of g12(r) at r = 0 shifts towards zero as d is reduced,
because with decreasing d , electrons in different wires repel
each other and consequently g12(0) becomes smaller. The
value of g12(0) should go to zero as d → 0 at low densities
as show in the Fig. 7.

The low-density behavior of intra- and interwire PCFs is
shown in Figs. 6 and 7. For rs = 2 the behavior of g11 and g12

presented in Fig. 6(a) is similar to that for rs = 1. However, as
noticed for rs = 5 in Fig. 6(b) a small peak begins to develop
in g11 at r = rs when the interwire distance is reduced to
0.6 a.u., which keeps rising with further reduction in d . At a
distance d = 0.4 a.u., g11 oscillates with a period of rs rather
than with r = 2rs as shown in Fig. 6(b). Similar to g11, also g12

begins to oscillate at period r = rs for d � 0.4 a.u., which can
be seen in the inset of Fig. 6(b). This suggests that when d is
large the biwire system is two isolated monowires of number
density N/L; when d → 0 the biwire system is like a single
monowire of number density 2N/L. The PCFs in Fig. 7 show

strong electronic correlation effects in the low-density regime,
where it is seen that at rs = 10 the oscillations in both inter-
and intrawire PCFs are enhanced further. Here, the interwire
correlations are comparatively stronger than the intrawire cor-
relations as the considered range of d is significantly smaller
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(a) g11(r) and g12(r) are plotted for the density parameter rs = 2.
(b) g11(r) and g12(r) are plotted for the density parameter rs = 5.
Symbols represent data for a single wire.
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than rs. From Fig. 7 it can be seen that PCFs have two kinds of
oscillations; the first has a period of rs and is enveloped by the
second kind of oscillation. This effect arises due to interplay
between intra- and interwire correlations.

C. Static structure factors

The SSF is a quantity that can be measured by experiments
[70] and contains important information about the structure of
the system. For our EEBW system it can be defined as

S(k) = 1 + 2N

L

∫
[g(x) − 1]e−ikx dx. (15)

Equation (15) involves the density-weighted PCF,

g(x) =
∑

a

∑
b

nanb

n2
gab, (16)

where na = Na/L is the number density of electrons in wire
a and gab comprises g11, g12, g21, or g22. The intrawire S11(k)
and interwire S12(k) SSFs are given in Eq. (15) by using g11(r)
and g12(r), respectively. We have obtained S11(k) and S12(k)
for all combinations of rs and d considered in this paper.
S11(k) and S12(k) are shown in the top and bottom panels
of Fig. 8, respectively, for rs = 2 at various values of d . The
interwire SSF S12(k) is negative in the range of small k values
and has a strong peak at 2kF. The S12(k) becomes positive just
before 4kF and a second peak begins to builds up at 4kF for
d = 0.4 a.u. whose height increases as d is reduced further.
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FIG. 8. Top panel: Intrawire SSF S11. Bottom panel: Interwire
SSF S12 for various values of d at rs = 2. The inset shows a zoomed-
in view of the peaks in the SSF.

It is known that the height of the peak in the SSF at 2kF does
not scale as N , and hence as L, but it appears to be sublinear
[24,25]. We have also tested the effect of finite size on the
peaks in the SSF, which agrees with previous findings [24,25].
The results are discussed in Appendix B below.

Figure 9 shows the SSF calculated by summing over
spin pairs, i.e., S(k) = S11(k) + S12(k) + S21(k) + S22(k) us-
ing Eqs. (15) and (16) at rs = 0.4, 1, 2, 5, 10, and 20 for
d � 1 a.u. The SSF of an isolated single wire is also computed
for comparison with the SSF of an EEBW, which is shown
in Fig. 9 by open circles. For high densities (rs � 1) the
SSF shows a small peak at 2kF whose height decreases as
d becomes smaller, and hence the slope in S(k) decreases
for small k, as shown in Figs. 9(a) and 9(b). Also note that
the effect of interwire correlation is more pronounced when
d < rs. The lowering of the height of this peak as two wires
approach indicates that the interwire correlation has a strong
effect and modifies the overall short-range interactions such
that the intrawire correlation is suppressed. Figure 8 reflects
this fact, where one can observe the behavior of the first peak
in S11(k) and S12(k) as d changes. For high densities, we
can say that S11(k) resembles somewhat the noninteracting
structure factor given by the Hartree-Fock approximation.

As the density is lowered (i.e., rs is increased), correlation
effects become more important, as depicted in Fig. 9(c). There
one sees that for rs = 2 a second peak in S(k) begins to appear
at 4kF when d is reduced to 0.2 a.u., and is enhanced further at
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FIG. 9. SSFs of EEBWs for various values of rs and d are shown with lines. Open circles are used for single-wire SSFs.

d = 0.1 a.u. No such peak is observed in the single, isolated
wire at rs = 2 [24]. Lee and Drummond [24] found that this
peak develops at 4kF for rs = 15 a.u. in infinitely thin wires
using the DMC method. Also notice in Fig. 9(c) that the first
peak at 2kF shrinks as d is reduced and completely disappears
at d = 0.1 a.u. For higher values of rs, the 4kF peak keeps
rising while there is no 2kF peak for values of d from 1 to 0.1
a.u., but it is observed in the single wire and shown by open
circles in Fig. 9. Figure 9(f) shows that at rs = 20 the peak at
2kF reappears in the EEBW when d is increased. It is inter-
esting to note that, despite the use of an infinitely thin model,
we find a 2kF → 4kF crossover. This crossover could be due
to the presence of the second wire, which provides an extra
spin degree of freedom for the strongly-correlated dilute limit
rs � d . The peak at 4kF signals the evolution of the system
from two isolated one-component monowires with density
parameter rs = 2 to a single two-component monowire with
effective density parameter rs = 1, which was also reflected
in the PCF (see Sec. IV B).

D. Momentum densities

The MD is calculated from a trial wave function �T as

n(k) = 1

2π

〈∫
�T(r)

�T(x1)
eik(x1−r) dr

〉
, (17)

where �T(r) is evaluated at (r, x2, . . . , xN ). The angu-
lar brackets denote the VMC expectation value, obtained
as the mean over electron coordinates (x1, . . . , xN ) dis-
tributed as |�T|2. This is an intrawire MD and it
will be the same for both wires, although it depends
on both the interwire as well as intrawire Coulomb
interactions.

The MD defined through Eq. (17) is the Fourier transform
of the one-particle density matrix. It is an important quan-
tity from which the TL liquid parameter can be calculated.
The MD n(k) gives the occupation of fermionic states with
momentum k. For a free electron system all the states are
completely occupied up to the Fermi energy EF at absolute
zero temperature, so that n(k) has a discontinuity Z = 1 at
the Fermi momentum kF. In interacting fermionic systems of
dimension higher than one, n(k) still has a discontinuity at
the Fermi surface, but its magnitude Z is less than 1. Inter-
acting electrons are now nearly free quasiparticles dressed by
density fluctuations [13], each of which can move through
the Fermi sea by pushing away its neighbors. In contrast, an
individual electron in a 1D interacting system cannot move
without pushing all the electrons. This results in collective
excitations rather than single-particle ones. Thus n(k) has no
discontinuity at kF. TL liquid theory [11,71] suggests that
n(k) has a power-law behavior close to kF, which takes the
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FIG. 10. MD of the EEBW at various values of rs and d for
N = 61. Open circles are for an infinitely thin single wire.

form

n(k) = n(kF) + A[sign(k − kF)]|k − kF|α, (18)

where n(kF), A, and α are constants. We have fitted Eq. (18)
to our MD data to find the value of the exponent α.

Figure 10 shows the MD of an EEBW at various values of
rs and d for N = 61, including the MD of a single wire (open
circles). The effect of interwire correlations is clearly visible
for d ≈ rs. As two wires approach from d = 1 to 0.1 a.u., the
value of n(k = 0) reduces from 1 as seen in Figs. 10(b)–10(d).
At fixed d the value of n(k = 0) also reduces with rs as seen
in Fig. 10. At very low densities [see Figs. 10(e) and 10(f)]
the value of n(k = 0) falls close to 0.5 for all the values of
d we have considered here, as the change in d is very small
compared to rs. However, when d approaches rs we can see a
change in n(k). At d = 30 a.u., n(k) for the biwire resembles
the single wire.

The exponent α in Eq. (18) is found by fitting n(k) within
the range |k − kF| < εkF. The smaller ε is, the narrower the
range of k around kF. Ideally, ε should be zero, as Eq. (18) is
valid for only k → kF. The value of ε is reduced from 0.2 to
0.05, and at each ε we fit n(k) using Eq. (18) to find α(ε).
These α(ε)s are then extrapolated to ε = 0 by a linear fit,
which is shown in Fig. 11 at d = 1 a.u. for various values
of rs. Figure 11 reveals that in the high-density limit α tends
to zero, whereas in the low-density limit α tends to 1. This
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FIG. 11. Exponent α calculated by fitting Eq. (18) to the MD
against the range of data described by |k − kF| < εkF. The symbols
are the fitted exponents and the solid lines are linear fits to the
exponents in the region ε > 0.05. Here the data are shown for d = 1
and various values of rs.

trend of exponent α is similar to what has been observed for
single wires by Lee and Drummond [24] and Ashokan et al.
[25] for low and high densities, respectively. Figure 12 shows
the exponent α against the interwire distance d for various
values of rs. It is observed here that α slowly increases as d
decreases.

For an isolated, infinitely thin wire the exponent α is rea-
sonably well approximated by the function [24]

α = tanh
( rs

8

)
. (19)

This function is plotted in Fig. 13 vs rs with a solid line, to
compare with our VMC data (symbols). It is found that α

obtained using Eq. (19) passes close to the VMC data for
d = 1 for small rs. Smaller separations d give larger values
of the exponent α.

Within the TL liquid theory the exponent α is related to the
interaction parameter [72] Kρ by

α = 1

4

(
Kρ + 1

Kρ

− 2

)
. (20)
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FIG. 12. Extrapolated values of the exponent α vs d at various rs

as symbols. Solid lines are just to guide the eyes.
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FIG. 13. VMC exponents α (symbols) plotted against rs at vari-
ous values of d . The solid line shows α plotted using Eq. (19) for the
infinitely thin single wire, which is close to the VMC EEBW data for
d = 1 a.u.

By rearranging the above Eq. (20), the Luttinger parameter Kρ

can be written in terms of α as

Kρ = 1 + 2α − 2
√

α + α2. (21)

Note that Kρ = 1 for noninteracting particles, Kρ > 1 for
attractive interactions, and 0 < Kρ < 1 for repulsive interac-
tions. For strong repulsive interactions Kρ � 1. Therefore,
Kρ gives a quantitative value of the correlation strength. We
calculated Kρ in Eq. (21) by using values of the extrapolated
exponent α obtained at various values of rs and d . The results
are plotted in Fig. 14 against rs for various values of d indi-
cated by symbols. The inset shows the same data for small rs.
Further, Kρ can be written in terms of rs by using Eq. (19) in
Eq. (21) as

Kρ = 1 + 2 tanh
( rs

8

)
− 2

√
tanh

( rs

8

)
+ tanh2

( rs

8

)
. (22)

Using Eq. (22), Kρ is plotted by a solid line in Fig. 14. Note
that Eq. (22) is valid for an isolated single wire; similar Kρ

values are obtained for the d = 1 a.u. EEBW.
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FIG. 14. TL interaction parameter Kρ plotted against rs for var-
ious wire separations d for EEBWs computed using Eq. (21). The
solid line shows the theoretical result for an isolated, infinitely thin
single wire obtained using Eq. (22), which passes close to larger-d
EEBW data.
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FIG. 15. Intra- and interwire PCFs as functions of system size N
for rs = 2 a.u. and d = 1 a.u. The main plot shows the intrawire pair
correlation function and the inset shows the interwire pair correlation
function. The plot for N = 41 overlaps on N = 21 and the one for
N = 61 overlaps on N = 41.

V. CONCLUSIONS

In this paper we report the ground-state properties of an
infinitely thin quantum EEBW system for various electron
densities (rs) and interwire separations (d). We use the VMC
method to calculate the ground-state energy, PCF, SSF, and
MD at three different system sizes. VMC ground-state en-
ergies are extrapolated to the thermodynamic limit. The 4kF

peak of the SSF has a significant finite-size scaling, although
sublinear. For the other observables we find a negligible
finite-size effect; hence they are presented as obtained at the
largest system size studied. Using the extrapolated ground-
state energy, we have computed the correlation energy and
the interaction energy per electron for the EEBW system in
the thermodynamic limit. We find that the interaction energy
increases logarithmically for d � rs and decreases as a power
law with an exponent of −2 for d � rs. The correlation en-
ergy follows the same trend with d as the interaction energy
because the correlation energy of a biwire is the sum of the
correlation energy of a single wire and the interaction energy
of the biwire. Both inter- and intrawire PCFs show oscilla-
tory behavior at all densities considered here. As two wires
approach each other at a given density parameter rs, the oscil-
lations in the interwire PCF are enhanced while oscillations
in the intrawire PCF are suppressed for d < rs. This suggests
that the interwire correlation increases and intrawire correla-
tion decreases as the wire separation is decreased. At high
densities rs � 2, both PCFs oscillate with a period of 2rs at all
wire separations d considered in this study. However, when d
is reduced to 0.4 a.u. at rs = 5, both PCFs begin to oscillate
with a period of rs instead of 2rs. Their amplitudes increase
as d is reduced further. This indicates that the system evolves
into a single monowire with double the electron density from
two isolated monowires as d is reduced from infinity to 0.
This result is also confirmed by our SSF data, which shows
a sharp peak at 4kF that corresponds to a distance rs in real
space [i.e. r = 2π/(4kF) = rs, where kF = π/2rs]. At lower
rs the SSF shows a peak at 2kF only. The height of this peak
decreases as d is reduced. A second peak starts to appear at
4kF when d = 0.2 a.u. and rs = 2. For higher rs, the first peak
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FIG. 16. SSFs at different system sizes at d = 1 a.u. for rs = 2
(top panel) and 5 (bottom panel). The inset in the top panel shows a
zoomed-in view of the same data near 2kF.

completely disappears and the height of the second peak keeps
increasing with d and rs.

The MD n(k) shows TL liquid behavior, as n(k) follows a
power law in |k − kF| near kF. The value of n(k = 0) reduces
and reaches 0.5 as d decreases and as the density decreases,
which is compensated by an increase in n(k) beyond kF. We
have obtained the TL liquid exponent α by fitting the MD
data near kF. The values of the exponent α shift towards
1 as the density is lowered and towards 0 if the density is
increased. At fixed rs, the exponent α increases slowly as d
is decreased. Using the exponent α we have calculated the TL
liquid interaction parameter Kρ . We find that at a fixed density,
the value of Kρ reduces as the interwire distance decreases.
At fixed d , the value of Kρ reduces as the electron density
decreases. As one of the most important conclusions from the
EEBW system, we consider that the MD data clearly indicate
TL liquid behavior, in spite of the extra interwire interaction
between the electrons.
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APPENDIX A: TABLE OF ENERGY DATA

Table II shows the VMC energies calculated for different
system sizes and various values of rs and d . E∞ gives the
ground-state energy, extrapolated to the thermodynamic limit,
obtained by fitting Eq. (5). �E and Ec are the interaction
energy per electron and the correlation energy per electron
obtained from E∞.

APPENDIX B: FINITE-SIZE EFFECTS

In this section we investigate the effects of finite system
sizes on the PCF, SSF, and MD. Figure 15 shows the intrawire
PCF as a function of system size at d = 1 a.u. and rs = 2. We
find that the finite-size effect is negligibly small, because it is
observed that the PCFs for N = 21, 41, and 61 overlap.

Figure 16 shows the SSF as a function of system size at
d = 1 a.u. for rs = 2 in the top panel and rs = 5 in the bottom.
The inset in the top panel shows a zoomed-in view near 2kF,
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TABLE II. VMC ground-state energy in a.u. per electron [E (N )] for N = 21, 41, and 61 at various value of rs and d for an EEBW
system. The E∞ gives the ground-state energy per electron extrapolated to thermodynamic limit. �E and Ec are the interaction energy and the
correlation energy per electron, respectively.

(rs, d) E (21) E (41) E (61) E∞ �E Ec

(0.1, 0.1) 50.146954(5) 50.222000(4) 50.236785(6) 50.24879(9) −0.00477(9) −0.03147(9)
(0.1, 0.2) 50.150400(1) 50.225487(1) 50.240269(1) 50.25229(8) −0.00127(8) −0.02798(8)
(0.1, 0.4) 50.151177(1) 50.226309(1) 50.2410973(9) 50.25312(8) −0.00044(8) −0.02714(8)
(0.1, 0.6) 50.151300(1) 50.226452(1) 50.2412409(9) 50.25327(8) −0.00029(8) −0.02700(8)
(0.1, 0.8) 50.151331(2) 50.226495(1) 50.241293(1) 50.25332(8) −0.00024(8) −0.02694(8)
(0.1, 1.0) 50.151344(1) 50.226515(1) 50.241313(1) 50.25335(8) −0.00021(8) −0.02692(8)
(0.2, 0.1) 13.055245(8) 13.075366(7) 13.07960(1) 13.0827(2) −0.0178(2) −0.0437(2)
(0.2, 0.2) 13.068909(3) 13.089063(1) 13.093080(3) 13.09629(5) −0.00422(5) −0.03014(5)
(0.2, 0.4) 13.0720588(6) 13.0922567(4) 13.0962576(8) 13.09948(4) −0.00103(4) −0.02695(4)
(0.2, 0.6) 13.0725809(6) 13.0928003(4) 13.096814(2) 13.10004(4) −0.00047(4) −0.02639(4)
(0.2, 0.8) 13.0727477(6) 13.0929807(4) 13.0969900(8) 13.10022(4) −0.00029(4) −0.02621(4)
(0.2, 1.0) 13.0728195(6) 13.0930607(4) 13.0970708(8) 13.10030(4) −0.00021(4) −0.02613(4)
(0.4, 0.1) 3.03311(1) 3.03911(1) 3.04044(1) 3.04136(9) −0.06066(9) −0.08521(9)
(0.4, 0.2) 3.078375(5) 3.084075(5) 3.085226(5) 3.08613(2) −0.01588(2) −0.04044(2)
(0.4, 0.4) 3.090797(1) 3.0964498(8) 3.097585(1) 3.09848(2) −0.00353(2) −0.02809(2)
(0.4, 0.6) 3.0928412(4) 3.0985146(4) 3.0996452(3) 3.10055(1) −0.00146(1) −0.02602(1)
(0.4, 0.8) 3.0934943(3) 3.0991783(2) 3.1003123(2) 3.10122(1) −0.00079(2) −0.02535(1)
(0.4, 1.0) 3.0937761(3) 3.0994693(3) 3.1006048(2) 3.10151(1) −0.00050(2) −0.02506(1)
(0.8, 0.1) 0.30509(1) 0.30651(1) 0.307126(7) 0.3072(2) −0.1579(2) −0.1803(2)
(0.8, 0.2) 0.407929(7) 0.409603(9) 0.409936(4) 0.410203(4) −0.054952(4) −0.077313(4)
(0.8, 0.4) 0.449477(2) 0.451173(4) 0.451454(1) 0.45174(3) −0.01341(3) −0.03577(3)
(0.8, 0.6) 0.457647(1) 0.459312(2) 0.4596454(6) 0.459910(5) −0.005245(5) −0.027606(5)
(0.8, 0.8) 0.4602188(6) 0.4618881(6) 0.4622234(3) 0.462488(6) −0.002667(6) −0.025028(6)
(0.8, 1.0) 0.4612897(3) 0.4629669(4) 0.4633028(2) 0.463569(5) −0.001586(5) −0.023947(5)
(1.0, 0.1) −0.04392(2) −0.043930(7) −0.043771(6) −0.04382(9) −0.19801(9) −0.21945(9)
(1.0, 0.2) 0.075728(7) 0.077025(8) 0.077256(4) 0.07747(1) −0.07672(1) −0.09816(1)
(1.0, 0.4) 0.132008(3) 0.133128(3) 0.133363(2) 0.133538(9) −0.020651(9) −0.042095(9)
(1.0, 0.6) 0.144508(1) 0.145626(2) 0.1458558(9) 0.146032(7) −0.008157(7) −0.029601(7)
(1.0, 0.8) 0.1485781(8) 0.1497088(8) 0.1499387(4) 0.150117(5) −0.004071(6) −0.025515(5)
(1.0, 1.0) 0.1502710(5) 0.1514101(5) 0.1516395(2) 0.151820(4) −0.002368(4) −0.023812(4)
(2.0, 0.1) −0.499396(5) −0.498767(4) −0.498530(4) −0.49846(7) −0.29226(7) −0.31019(7)
(2.0, 0.2) −0.367626(4) −0.367240(4) −0.367101(3) −0.36706(4) −0.16086(4) −0.17878(4)
(2.0, 0.4) −0.271756(3) −0.271209(4) −0.271211(2) −0.27109(6) −0.06489(6) −0.08281(6)
(2.0, 0.6) −0.237874(2) −0.237468(3) −0.237412(1) −0.23734(1) −0.03114(1) −0.04906(1)
(2.0, 0.8) −0.223321(1) −0.222964(2) −0.2228821(9) −0.222829(7) −0.016628(7) −0.034550(7)
(2.0, 1.0) −0.216339(1) −0.215983(1) −0.2159077(6) −0.215852(3) −0.009651(3) −0.027573(3)
(5.0, 0.1) −0.460006(1) −0.459622(1) −0.459032(2) −0.4591(3) −0.2552(3) −0.2675(3)
(5.0, 0.2) −0.392209(1) −0.391788(1) −0.3913920(9) −0.3914(2) −0.1875(2) −0.1998(2)
(5.0, 0.4) −0.326161(1) −0.3259513(9) −0.3257966(8) −0.32580(7) −0.12187(7) −0.13418(7)
(5.0, 0.6) −0.289991(1) −0.2898839(9) −0.2898403(8) −0.28983(1) −0.08590(1) −0.09822(1)
(5.0, 0.8) −0.266561(1) −0.266459(2) −0.2663790(8) −0.26638(3) −0.06245(3) −0.07477(3)
(5.0, 1.0) −0.250357(1) −0.250224(1) −0.2501940(8) −0.250174(3) −0.046242(3) −0.058560(3)
(10.0, 0.1) −0.3189958(9) −0.318522(7) −0.3184203(6) −0.318347(5) −0.175478(5) −0.183770(5)
(10.0, 0.2) −0.2844301(8) −0.2842379(5) −0.2840481(5) −0.28407(9) −0.14120(9) −0.14949(9)
(10.0, 0.4) −0.2500071(4) −0.2498683(4) −0.2494844(5) −0.2496(2) −0.1067(2) −0.1150(2)
(10.0, 0.6) −0.2300087(3) −0.2298816(3) −0.2292813(4) −0.2294(3) −0.0866(3) −0.0949(3)
(10.0, 0.8) −0.2161269(3) −0.2158759(3) −0.2152083(6) −0.2154(4) −0.0725(4) −0.0808(4)
(10.0, 1.0) −0.2054852(3) −0.2052825(3) −0.2043781(5) −0.2046(5) −0.0617(5) −0.0700(5)
(15.0, 0.1) −0.2450628(7) −0.2450197(4) −0.2450174(2) −0.245009(3) −0.134542(3) −0.140861(3)
(15.0, 0.2) −0.2219246(3) −0.2219153(2) −0.2219253(1) −0.221920(7) −0.111453(7) −0.117773(7)
(15.0, 0.4) −0.1988801(2) −0.1988425(2) −0.19883510(9) −0.19882906(1) −0.08836229(2) −0.09468170(1)
(15.0, 0.6) −0.1854460(2) −0.1853468(2) −0.18533123(9) −0.185314(2) −0.074847(2) −0.081167(2)
(15.0, 0.8) −0.1759240(2) −0.1757860(2) −0.17575917(9) −0.17573698(3) −0.06527022(3) −0.07158963(3)
(15.0, 1.0) −0.1685954(2) −0.1683892(2) −0.1683339(1) −0.168305(9) −0.057839(9) −0.064158(9)
(20.0, 0.1) −0.2004362(6) −0.2004050(2) −0.2003922(2) −0.200389(4) −0.109612(4) −0.114744(4)
(20.0, 0.2) −0.1831133(1) −0.1830750(2) −0.1830678(1) −0.1830616(2) −0.0922838(2) −0.0974163(2)
(20.0, 0.4) −0.1658005(1) −0.1657685(1) −0.16576161(8) −0.1657567(4) −0.0749789(4) −0.0801114(4)
(20.0, 0.6) −0.1556847(2) −0.15564145(7) −0.1556384(1) −0.155630(3) −0.064852(3) −0.069984(3)
(20.0, 0.8) −0.1485275(1) −0.1484434(1) −0.1484347(1) −0.148419(4) −0.057641(4) −0.062773(4)
(20.0, 1.0) −0.1429959(1) −0.1429221(1) −0.14289739(8) −0.142889(6) −0.052111(6) −0.057244(6)
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TABLE III. Ground-state energy of the EEBW computed using
VMC and DMC for N = 21 and d = 1 a.u. for various rs. Percentage
(%) of correlation energy Ec, i.e., (EVMC − EHF)/(EDMC − EHF) is
calculated.

rs VMC DMC EHF % of EC

0.1 50.151344(1) 50.151343(2) 50.280268 99.999224(3)
1.0 0.1502710(5) 0.150255(4) 0.1756327 99.936953(4)
20.0 −0.1429959(1) −0.143006(3) −0.0856453 99.982392(3)

where one can see that the heights of the peaks corresponding
to N = 41 and 61 are almost the same. However, the height of
the peak at k = 4kF (see bottom panel) is found to be relatively
more sensitive to N ; it increases sublinearly with N . Figure 17
shows the height of peaks at 2kF (main plot) and 4kF (inset) as
a function of system size at d = 1 a.u. for rs = 5, 15, and 20.

Figure 18 shows the MD as a function of system size at d =
1 a.u. for rs = 2. The inset graph shows a zoomed-in view for
small k, where one can see that the value of n(k = 0) slowly
decreases with N . The finite-size effect on n(k) is small.

APPENDIX C: COMPARISON OF VMC AND DMC

In this section we present DMC calculations performed to
verify that VMC is sufficiently accurate in studies of EEBW
systems. We choose a system size with N = 21 and d = 1 a.u.
at a few rs values for our DMC calculations. Table III shows
the ground-state energy values computed using the VMC and
DMC methods at rs = 0.1, 1, and 20. One can see that the
VMC retries 99.98% of correlation energy Ec. Comparisons
of PCFs, SSFs, and MDs are shown in Fig. 19. It is ob-
served that the VMC and DMC values of these observables
overlap, indicating that VMC is accurate enough for EEBW
systems.

APPENDIX D: EXTRAPOLATION OF GROUND-STATE
ENERGIES TO THE THERMODYNAMIC LIMIT

The energy data shown in Fig. 2 were extrapolated to
infinite system size by fitting a model of the finite-size
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FIG. 19. Comparison of VMC and DMC PCFs, SSFs, and MDs
at d = 1 a.u. for some values of rs.

dependence to the data. We report here the reduced χ2 for
various values of rs at d = 1 a.u. for the formulas E (N ) =
E∞ + B/N2 [Eq. (5)], E (N ) = E∞ + C

√
ln(N )/N2, and

E (N ) = E∞ + C
√

ln(N )/N2 + B/N2 [68]. Note that our sim-
ulation data for the ground-state energy are only available for
N = 21, 41, and 61; thus we do not expect the logarithmic
term to make a significant difference, and we cannot assess the
quality of the fit of the three-parameter model. From Table IV
it is observed that the 1/N2 fit gives smaller reduced χ2 values
than the

√
ln(N )/N2 fit for rs � 1. For larger rs the reduced

TABLE IV. Extrapolated infinite-system energy per particle and reduced χ2 value obtained by fitting Eq. (5), E (N ) = E∞ + C ln(N )/N2,
and E (N ) = E∞ + C ln(N )/N2 + B/N2 to VMC energy data at d = 1 a.u. for various values of rs. The VMC energy data are available at
N = 21, 41, and 61.

Extrapolated energy E∞ (a.u./electron) Reduced χ 2 value

rs Eq. (5) E∞ + C
√

ln(N )/N2 E∞ + C
√

ln(N )/N2 + B/N2 Eq. (5) E∞ + C
√

ln(N )/N2

0.1 50.25337(7) 50.2561(7) 50.2536345116 5.100 ×103 4.220 ×105

0.2 13.10028(3) 13.1012(2) 13.1004336765 4.286 ×103 1.089 ×105

0.4 3.10151(1) 3.10173(5) 3.1015638274 4.398 ×103 4.587 ×104

0.8 0.463572(3) 0.463627(9) 0.4635877112 3.054 ×102 1.997 ×103

1.0 0.151823(3) 0.151860(6) 0.1518353048 1.260 ×102 4.754 ×102

2.0 −0.215851(2) −0.2158385(6) −0.2158409201 1.163 ×101 7.300 ×10−1

5.0 −0.250173(2) −0.250168(1) −0.2501646650 6.479 1.275
10.0 −0.2048(5) −0.2048(5) −0.2028376433 1.686 ×106 1.648 ×106

15.0 −0.168301(7) −0.168294(5) −0.1682743481 4.259 ×103 2.264 ×103

20.0 −0.142888(6) −0.142885(5) −0.1428675352 4.981 ×103 3.625 ×103
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χ2 values are similar. In all cases the extrapolated energies
E∞ are almost the same. The reduced χ2 values were cal-
culated using the VMC error bars, and they are significantly
larger than 1, indicating that there are other sources of un-
certainty in the VMC energy data E (N ). These other sources

of randomness in the data include the independent stochas-
tic optimizations of the wave functions at different system
sizes and quasi-random finite-size effects due to PCF oscil-
lations being forced to be commensurate with the simulation
cell.
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