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Real-space Green’s function approach for x-ray spectra at high temperature
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There has been considerable interest in properties of condensed matter at high temperature, including nonequi-
librium behavior and extreme conditions up to the warm dense matter regime. Such behavior is encountered,
e.g., in experimental time-resolved x-ray absorption spectroscopy in the presence of intense laser fields. In an
effort to simulate such behavior, we present an approach for calculations of high-temperature x-ray absorption
spectra in arbitrary materials, using a generalization of the real-space Green’s function formalism. The method
is incorporated as an option in the core-level x-ray spectroscopy code FEFF10. To illustrate the approach, we
present calculations for several materials together with comparisons to experiment and with other methods.
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I. INTRODUCTION

X-ray absorption spectroscopy (XAS) has become an
important tool for studies of materials in fields ranging
from materials science and chemistry to geophysics and as-
trophysics [1–6]. XAS is used extensively to probe both
local electronic and structural properties simultaneously at
synchrotron facilities worldwide. With the development of
x-ray free electron lasers (XFELs), XAS experiments have
been extended to treat ultrashort femtosecond to picosecond
timescales and nonequilibrium conditions, with temperatures
T up to many thousands of K. These capabilities are impor-
tant, e.g., for studies of matter in extreme conditions as well as
nonequilibrium and dynamic response due to electron-phonon
energy transfer, spin relaxation, reactions, and in shocked
matter. The extreme conditions include the warm dense matter
(WDM) regime, where T ∼ TF , the Fermi temperature, which
is typically a few ×104 K, and the density is within an order
of magnitude or so of normal conditions.

Modern theories of optical and x-ray spectra start from the
many-body Fermi’s golden rule, but are usually cast at zero
temperature. In order to make the calculations computation-
ally tractable, a single-particle or quasiparticle approximation
for the photoelectron is often used [7,8]. Although many
density functional based codes have the capability to per-
form calculations at finite temperatures, there is an inherent
limitation to relatively low temperatures, due to the high
computational cost of calculating states at high energies, well
above the chemical potential. At very high temperatures,
i.e., in the warm dense matter (WDM) regime, the multiple
scattering (MS) or Korringa-Kohn-Rostoker (KKR) methods
have an advantage over other approaches due to the efficient
calculation of high-energy states. Recent developments in the
past few years have shown great promise in predicting high-
temperature electronic structure and equations of state, for
example [9–11]. In this paper, we describe developments to
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the real-space multiple-scattering code FEFF to include a va-
riety of high-temperature effects, with a focus on calculations
of both excited-state electronic structure and x-ray spectra.

The quasiparticle approximation is the basis of the real-
space Green’s function (RSGF) approach used in the FEFF
codes [12], which are applicable to systems throughout the pe-
riodic table. However, heretofore the code neglects FT effects
other than thermal vibrations and is limited to relatively low
temperatures (LT), defined here as the regime with tempera-
ture T below a few times the Debye temperature TD, which
is of order a few hundred K. Our main aim in this work is to
extend the RSGF approach for SCF electronic structure and
XAS to high temperature (HT), defined here as the range from
a few TD up to the WDM regime where T ∼ TF . Second, we
aim to explore both HT and nonequilibrium behavior of x-ray
spectra in a few systems that can be measured experimentally.
The generalization of the RSGF approach to HT requires a
number of extensions since many ingredients, e.g., the chem-
ical potential, exchange-correlation potential, quasiparticle
self-energy, and mean-free path exhibit significant tempera-
ture dependence at HT. Vibrational effects also require special
treatment at HT. In nonequilibrium conditions it may be
necessary to treat both electronic temperature Te and lattice
temperature TL separately. While FT theories have been devel-
oped previously for some of these effects, e.g., self-consistent
field (SCF) electronic structure [13,14], many other FT devel-
opments [15–17] are intended for LT applications, where T
is at most few hundred K. In contrast, our approach here is
intended to provide an integrated treatment of all important
FT behavior, both LT and HT in both electronic structure
and x-ray spectra, within a generalized RSGF workflow. For
Te � TF , the exchange-correlation potential and self-energy
are weakly temperature dependent, so that a zero-electronic-
temperature approximation may be adequate for electronic
components. However, in the WDM regime where T ∼ TF ,
an explicit account of electronic-temperature dependence is
necessary since the exchange-correlation potential in WDM
varies from exchange- to correlation-dominated behavior
with increasing temperature [18]. As for T = 0, an efficient
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approximation for the XAS cross section can be obtained
at any T using the RSGF formalism [9,10], which is the
real-space analog of the KKR band structure approach [19].
This approach is based on the one-particle electron Green’s
function, which can be calculated either by matrix inversion or
by a well-converged multiple-scattering path expansion. Our
current FT implementation builds upon the theory and algo-
rithms used in the FEFF9 code [12], and has been incorporated
in a new version FEFF10 [20]. This theory is illustrated here
with a number of examples. While the theory is generally
applicable to systems throughout the periodic table, we focus
on applications at normal pressures and densities, where the
theory can be tested against recent experiments.

The remainder of the paper is organized as follows: In
Sec. II. we briefly review the XAS theory and the RSGF
formalism. Section III. enumerates the HT effects, and Sec.
IV. presents a number of examples. Finally, Sec. V. contains
a brief summary and conclusions.

II. XAS THEORY AT T = 0

A. Fermi golden rule

In this section, we briefly summarize the theory of x-ray
absorption spectra based on the RSGF approach at T = 0.
Theories of the XAS cross section typically start from the
many-body Fermi golden rule

σ (ω) = 4π2 ω

c

∑
F

|〈I|D̂|F 〉|2δ(ω + EI − EF ), (1)

where |I〉 is the many-body ground state of the system with
total energy EI , |F 〉 ranges over the many-body final states
with energy EF , and D̂ is the many-body transition operator
due to the x-ray field, which here is taken to be a dipole
interaction D = �i, f di j ĉ

†
f ĉi where di j are the dipole matrix

elements, and ci and c†
i are electron annihilation and creation

operators, respectively. Here and throughout this paper we use
atomic units e = h̄ = m = 1, and temperatures in eV (1 eV
= 11 604 K), unless noted otherwise. In order to reduce the
calculation to a single-particle framework, we make a sudden
approximation as in the �SCF approximation, with the final-
state rule [21]. Since a core electron leaves behind a hole after
being excited into the photoelectron state the final photoelec-
tron state |φ f 〉 must take into account the interaction with the
core hole potential, while a given core level |φi〉 is calculated
with the initial state configuration. Next, the many-particle
initial and final states are factored such that |I〉 = |φi〉|	N−1

0 〉
and |F 〉 = |φ f 〉|	̃N−1

n 〉, where |	̃N−1
n 〉 is the nth excited state

of the N − 1 electron system with a core hole in level i, and
|φ f 〉 is the photoelectron state calculated in the presence of the
core hole. If one ignores the energy dependence of excitations
of the N − 1 electron system, Eq. (1) yields an effective zero-
temperature single-particle cross section σ1(ω):

σ1(ω) = 4π2 ω

c

occ∑
i

∑
f

|〈i|d̂| f 〉|2δ
 (ω + εi − ε f ). (2)

Here εi and ε f are the eigenenergies of the quasiparticle
initial |i〉 (deep-core) and final | f 〉 (photoexcited) states, and
δ
 (ω) denotes a Lorentzian of width 
, where 
 includes

the core-hole lifetime broadening. More generally this ap-
proximation can be corrected to include shakeup effects by
a convolution of the single-particle XAS with the core spec-
tral function, defined as Ac(ω) = �nS2

nδ(ω − ωn) where S2
n =

|〈	N−1
0 |	̃N−1

n 〉|2 is the many-body amplitude overlap integral
between initial and final states. This convolution modifies the
cross section by an additional, energy-dependent broadening
factor [22] of unit weight which damps the fine structure by a
constant factor historically denoted by S2

0 [23].

B. Real-space Green’s function approach

A significant advantage of the RSGF formalism is that
it implicitly builds in the summation over final states f ,
which is a computational bottleneck in wave-function ap-
proaches at high energies [12]. In addition, it builds in the
coupling between the photoelectron and the solid, in terms of
an energy-dependent photoelectron self-energy �(ε), where
ε = ω + εi is the photoelectron energy. Formally the retarded
single-electron Green’s function G(ε) in a basis of local site-
angular momentum states |L j〉 [23] can be defined by the
spectral sum

GL j,L′ j′ (ε) = 〈L j|G(ε)|L′, j′〉

=
∑

f

〈L j| f 〉〈 f |L′ j′〉
ε − ε f + iη

, (3)

where j is the index for a given site R j and L = (l, m) are
the angular momentum quantum numbers. Here ε f is the
eigenvalue of the final-state quasiparticle Hamiltonian H =
p2/2 + v f + �(ε), v f the SCF Hartree potential of the final
state in the presence of a core hole, and �(ε) is the dy-
namically screened self-energy that replaces the one-particle
eigenstates with quasiparticle levels denoted by a subscript
qp. The basis states |L, j〉 = jl (kr)YL(r̂) where jl (kr) is a
spherical Bessel function, YL(r̂) a spherical harmonic, and
k = [2(ε − εF )]1/2 is the photoelectron wave number relative
to the Fermi energy threshold εF . The key ingredients in the
RSGF calculation of G are matrix elements of the free Green’s
function G0

L j,L′ j′ = G0
L,L′ (R j − R j′ ) and the full scattering T

matrix TL j,L′ j′ = tl jδ j, j′δL,L′ , where tl j = exp(iδl j ) sin δl j . The
partial-wave phase shifts δl j due to the spherical scattering
potential v(r j ) at a given site j, where r j = |r − Rj|, are
obtained by matching the outgoing part of the radial solution
of the Dirac equation Rl (r) = R+

l (r) + cc at that site to outgo-
ing free spherical Hankel functions h(1)

l (kr) at the muffin-tin
radius R+

l (r) = h(1)
l (kr) exp(iδl ). Multiple scattering of the

photoelectron by its environment is naturally built into the
RSGF formalism [24]. Contributions from the central absorb-
ing atom j = 0 and the neighboring scatterers are separated
by defining G = Gc + Gsc. The scattering contributions in Gsc

are obtained from the matrix inverse solution to the Dyson
equation [21,24], which builds in multiple scattering to all
orders:

Gsc
L0,L′0 = eiδl0 [(1 − Ḡ0T )−1Ḡ0]L0,L′0eiδl′0 . (4)

Here Ḡ0
L j,L′ j′ = (1 − δ j, j′ )G0

L j,L′ j′ and for simplicity we have
dropped the subscripts L j, L′ j′ on matrix elements of Ḡ0

and T and the site index j on the phase shifts δl j except
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where needed for clarity. The absorbing atom part Gc is ob-
tained from the regular RL(r) and outgoing R+

L (r) solutions
of the Dirac equation at the absorbing atom j = 0, and satis-
fies Im Gc

L0,L′0 = −πδL,L′ . For extended x-ray absorption fine
structure (EXAFS) energies (typically above about 20–30 eV
of an absorption edge), the matrix inverse in Eq. (4) can be
expanded in a rapidly converging series of scattering paths
typically with less than four legs. However, for x-ray absorp-
tion near-edge structure (XANES), full multiple scattering
(FMS) is usually needed and can be carried out by a fast
matrix inversion algorithm since the basis of relevant angular
momenta and sites is small due to the short mean-free path
and small lmax < 4. By inserting the spectral representation of
G(ε) into Eq. (2) together with Fermi-Dirac occupation num-
bers, the final states are implicitly summed in the calculation
of the cross section σ 0

qp(ω) [24],

σ 0
qp(ω) = − 4π

ω

c
Im

occ∑
i

∑
LL′

〈i|d̂ GL0,L′0(ω + εi ) d̂†|i〉

× θ (ω + εi − εF ), (5)

where εF is the Fermi energy and θ the unit step function.
Core-hole lifetime broadening is added at the end of the
calculation by convolution with a Lorentzian function δ
 (ω),
yielding a net XAS

σqp(ω) = δ
 (ω) ∗ σ 0
qp(ω). (6)

III. FINITE-TEMPERATURE SCF AND XAS

A number of effects come into play in the theory of SCF
electronic structure and XAS at finite temperature. While
some of these can be neglected in the LT regime, all can be
important at HT. First, the RSGF expression for the XAS
must take into account the Fermi occupation numbers of
the core and unoccupied states. Second are effects of elec-
tronic temperature due to the temperature dependence of
the electron density and chemical potential. Third there are
FT effects on exchange and correlation, both through the
exchange-correlation potential vxc and the quasiparticle self-
energy �(ε), which become important only when T is of order
the Fermi temperature TF . Finally, there are the FT effects of
lattice vibrations that strongly damp the XAS fine structure at
all temperatures. These effects are summarized in more detail
below:

(1) First, much of the electronic-temperature dependence
in the spectra is due to that in the occupation num-
bers of the initial and final states. To account for this
effect, the RSGF expression for the XAS must be gen-
eralized to include the Fermi-factor occupation numbers
fT and 1 − fT for the occupied and unoccupied levels,
respectively,

σ 0
qp(ω, T ) = − 4π

ω

c
Im

∑
iLL′

〈i|d̂ GL0,L′0(ω + εi ) d̂†|i〉

× fT (εi )[1 − fT (ω + εi )], (7)

where fT (ε) = 1/{exp[(ε − μ)/kBT ] + 1}, μ(T ) is the chem-
ical potential of the system, and site 0 is taken to be the
absorbing atom. A consequence is that the x-ray “edge”

Re(ε)

Im(ε)

iω−2

iω−1

iω1

iω2

iω3

iω4

μEB

C

A

FIG. 1. Energy contour for electron density calculation at finite
temperature: ω j = π (2 j − 1)kBT denotes the imaginary part of the
Matsubara poles of the Fermi function fT (ε). The integration starts
from some core-valence separation level EB above the core states but
below the valence states. Contour A (blue) represents the original
integration path just above the real axis, while contour C (red) repre-
sents the integration path in the complex plane.

of the cross section is modified by a Fermi-function cut-
off which broadens by an amount of order kBT with
increasing T .

(2) FT SCF: As for T = 0 in order to construct the FT elec-
tron density and (scattering) potentials v(r), we implement
a generalization of the self-consistent field (SCF) method to
calculate the Coulomb potentials, electron densities, and a
temperature-dependent chemical potential. In the RSGF ap-
proach in FEFF, the SCF procedure starts with the overlapped
atomic electron densities obtained by solving the relativistic
Dirac-Fock equations for each atom in the system. From this
initial guess of the electron density, a Green’s function is
calculated, which provides a new density and chemical po-
tential. This procedure is then repeated until self-consistency
(ρi = ρi−1) is reached to high accuracy, typically in about 20
iterations or so. Assuming a frozen core, the valence electron
contribution to density of electrons is given in terms of an
integral over energy of the imaginary part of the Green’s
function,

ρ(r) = − 2

π

∫ ∞

EB

dε Im G(r, r, ε) fT (ε), (8)

where EB is the core-valence separation energy (typically
set to −40 eV in FEFF), and the factor of 2 accounts for
spin degeneracy. For computational efficiency at both zero
and finite temperatures, the above integral is carried out
in the complex plane where the Green’s function becomes
smooth, similar to the approach of Zeller [13]. We integrate
along a contour C (shown in Fig. 1), where the first leg
traverses from EB to EB + i2πnkBT , then to +∞ + i2πnkBT ,
where i2πnkBT is halfway between the Matsubara poles.
For a given chemical potential, the valence density is then
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given by

ρ(r) = − 2

π
Im

[ ∫
C

dε G(r, r, ε) fT (ε),

− i2πkBT
n∑

j=1

G(r, r, z j )

]
, (9)

where z j = μ ± iπ (2 j − 1)kBT are the Matsubara poles, and
n is the number of poles between the contour C and the
real axis. Equation (9) also has implicit dependence on the
chemical potential through the Fermi function. In turn, the
chemical potential is found by enforcing charge neutrality

Ne =
∫

d3r ρ(r; μ(T )), (10)

where Ne is the number of valence electrons in the system,
again treating the core electrons as frozen. Equations (5)
and (7) for the cross section contain similar integrals of the
Green’s function multiplied by the Fermi function in order to
include the core-hole broadening. These integrals are dealt
with in a similar manner, although the contour is slightly
different, in principle extending from −∞ + i2πnkBT to
+∞ + i2πnkBT . There is also an additional pole arising from
the Lorentzian lifetime broadening function δ
 (ω) which has
poles at ±i
.

(3) FT exchange-correlation potentials: Additional temper-
ature dependence comes from that in the exchange-correlation
potentials (which affect the initial state densities and po-
tentials) which is most significant at HT. An approach for
calculating these exchange-correlation potentials from first
principles with a FT cumulant Green’s function approach
has been discussed by Kas et al. [18], which shows that the
potentials cross over from exchange to correlation dominated
with increasing T . Here, the behavior is treated by an effi-
cient parametrized extension of DFT fit to quantum Monte
Carlo calculations (QMC) by Karasiev, Sjostrom, Dufty, and
Trickey (KSDT) [25], which agrees well with the FT cumulant
results of Kas et al. [18].

(4) FT self-energy effects: The temperature dependence of
the dynamical quasiparticle self-energy also becomes signif-
icant at HT in calculations of the quasiparticle photoelectron
states, and hence the transition matrix elements at energies
above an edge. In the HT regime, the self-energy is smoothly
varying with energy and roughly approximated by a constant
that adds additional broadening to the spectra. Since full
calculations of the FT self-energy [26] are computationally
demanding, we have developed a more efficient FT COHSEX
approximation to the GW self-energy for this purpose [27].

(5) Lattice vibrations: At any temperature, lattice vibra-
tions exponentially damp electron scattering with increas-
ing energy. Approximate calculations in the LT regime
can be done by including appropriate Debye-Waller fac-
tors exp(−2σ 2k2) for each multiple scattering path in the
multiple-scattering path expansion, or in the bare Green’s
function propagator G0 for for full-multiple-scattering (FMS)
calculations. This can be done using the path-dependent cor-
related Debye model with mean-square radial displacements
σ 2(T ) ∝ T/TD, where TD is the Debye temperature. For FMS,
this approximation with the near neighbor σ 2(T ) agrees with

FIG. 2. Chemical potential shift for fcc aluminum μ(Te) − μ(0)
versus electronic temperature Te at normal density rs = 2.07 using
the ground-state von Barth–Hedin [29] (blue) and finite-T KSDT
[25] (red) exchange-correlation potentials. For comparison, a DFT
calculation of the chemical potential using the Sommerfeld expan-
sion that ignores self-energy effects [30] (orange) is also shown up
to Te = 4 eV. The result with the Sommerfeld expansion (green) is
shown for the KSDT exchange-correlation potential. The inset shows
the chemical potential shift up to Te = 1 eV.

that for the dominant, single-scattering term. Further details
are given in Ref. [28]. However, this approach may be in-
applicable in the near-edge regime where symmetry breaking
occurs, and at HT T 
 TD, where the quasiharmonic approx-
imation breaks down.

For these HT cases a configurational average over an en-
semble of distorted structures at a given temperature is called
for. For example, in the HT regime one can use auxiliary
finite-T quantum molecular dynamics (QMD) to obtain a
temperature-dependent configurational average of the spec-
trum. Closer to zero temperature, zero-point motion can also
be included via quantum Monte Carlo (QMC) sampling.

IV. EXAMPLE CALCULATIONS

A. Simple metal: Al

Aluminum (fcc Al) is a prototypical nearly free-electron
system for testing electronic-structure calculations. The elec-
tronic density of states (DOS) for Al in the conduction band
is similar to that for a free-electron model, with a square-root-
like dispersion at the bottom of the band, a density parameter
rs = 2.07 and Fermi temperature 13.7 × 104 K = 11.7 eV at
normal conditions. We highlight the effect of FT exchange-
correlation potentials on the chemical potential shift for Al in
Fig. 2. We computed the chemical potential shift using the
ground-state von Barth–Hedin (vVBH

xc ) exchange-correlation
potential [29] and the FT approximation vKSDT

xc of KSDT [25]
for electronic temperatures Te up to Te = 10 eV or about 105 K.

Our calculation of the chemical potential with vVBH
xc agrees

well with that of Lin et al. [30] up to Te = 4 eV, and is
reasonably accurate up to about 10 eV, consistent with the
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FIG. 3. K-edge XAS for fcc Al vs electronic temperature Te at
normal density (rs = 2.07) including the FT SCF, Fermi occupation
factors, and the finite-T KSDT exchange-correlation potential, but
ignoring vibrational effects (see text). The effect of the FT self-
energy is found to give an additional 0.5 eV broadening at Te =
3.0 eV (green dashed). Note that the edge broadens considerably with
increasing Te, mostly due to the smearing of the Fermi function.

T 2
e behavior of the Sommerfeld expansion. Remarkably the

Sommerfeld expansion remains a good approximation even at
very high Te of order several eV.

Next, we investigate the electronic-temperature depen-
dence of the K-edge XAS of Al at normal density up to
WDM temperatures while fixing the atomic configuration. In
our calculation, we account for the FT SCF, FT exchange-
correlation potential, Fermi function smearing in the cross
section, and finite lattice temperature. We show the calculated
K-edge XAS for electronic temperatures Te = 0.025, 0.5, 1.4,
and 3.0 eV in Fig. 3, ignoring lattice temperature effects.
The behavior at the edge is consistent with broadening of
the Fermi distribution and the nearly free-electron density of
states of Al. The “pre-edge” behavior of the XAS is due to the
increasing contribution from previously occupied states below
the Te = 0 Fermi level. The FT correction to the chemical
potential from vKSDT

xc is a secondary effect compared to the
smearing of occupation at the Fermi level. The imaginary part
of the self-energy, responsible for broadening in the spectrum,
increases with temperature, while its variation in both the real
and imaginary parts decreases [26]. The entire self-energy
becomes structureless at very high temperatures. However, FT
effects in the self-energy turn on slowly, and are appreciable
compared to the other effects considered only at extreme
temperatures T ∼ TF , well above those considered in this
paper. To illustrate this, we show the XAS with and without
the corresponding finite-temperature broadening of 0.5 eV at
Te = 3.0 eV in Fig. 3.

In addition to the two FT effects previously mentioned,
we account for thermal vibrations in this example using the
correlated Debye model (TD = 430 K). We also contrast our
FT RSGF calculation with the DFT-based XAS calculated

FIG. 4. Calculated K-edge XAS for equilibrium Al (Te = TL) at
normal density (rs = 2.07) vs experimental XAS at T = 0.27 and
1.76 eV. From bottom to top, QMD-DFT [31] are simulated at T =
0.43 and 2.6 eV while FEFF simulations are done at T = 0.27 and
3.0 eV. Note the substantial broadening of the edge with increased T ,
roughly consistent with experiment, and that lattice vibration effects
completely damp the fine structure at HT. The fluctuations in the
experimental XAS reflect experimental noise.

using quantum molecular dynamics (QMD) structures aver-
aged over several runs [31].

Investigations of the Al K edge under isochoric heat-
ing (Te = TL) at normal density (rs = 2.07) were also done
[31], with measurements at temperatures Te = TL = 0.27 and
1.76 eV, as in Fig. 4.

Our calculation with the correlated Debye model agrees
fairly well with these results. The slope of the absorption
edge is mainly due to the smearing of the Fermi function
as illustrated in Fig. 3. The lattice vibration effect, which is
included in the calculations shown in Fig. 4, attenuates the
fine structure above the edge.

In principle, the correlated Debye model breaks down at
high temperatures (TL > 0.27 eV) when anharmonicity be-
comes large, but this is not a serious problem, as the fine
structure in the XAS is largely suppressed at these high tem-
peratures.

B. Warm dense Cu

Being a noble transition metal, fcc Cu has substantially
different excited-state properties compared to simple nearly
free-electron metals like aluminum. This is due to the highly
localized d band just below the Fermi level. Hence, at elevated
temperatures, the XAS also differs. Several works [4,32–34]
studied these changes in the L2,3 edge of Cu XAS in WDM
using a more computationally expensive ab initio molecular
dynamics (AIMD) simulation. Here we investigate the XAS
of Cu using our FT SCF RSGF approach and the correlated
Debye model. The electronic-temperature effects (FT SCF, FT
vxc, and Fermi function in the cross section), and the lattice
vibration effect on the L2.3 edge are illustrated in Fig. 5. The
simulated XANES spectra are computed at normal density
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FIG. 5. Effect of electronic and lattice temperatures Te and TL on
the L3-edge XAS of fcc Cu at normal density (rs = 2.67): (Top) Te =
0.026 eV = 300 K up to 0.776 eV = 9000 K at TL = 300 K. (Bottom)
TL = 0.026 eV = 300 K up to 0.431 eV = 5000 K at Te = 300 K.
The DFT calculation [35] is shown for Te = 300 K (light blue) and
for T = 0.5 eV = 5800 K (green).

(rs = 2.67) for various temperatures. Our calculation is broad-
ened with a Lorentzian to match that in the the DFT-based
calculation [35]. As expected, the pre-edge structure in the
XAS can be attributed to the increasing contribution from the
d states below the T = 0 Fermi energy, as the Fermi distri-
bution broadens significantly with increasing Te [4,32–34].
Conversely, states just above the Fermi level have a reduced
contribution leading to a smaller peak just above the edge.
The changes in XAS due to electronic temperature are mainly
localized in the near edge, whereas that due to the lattice

FIG. 6. (Top) Shift in the L3 edge of fcc Cu at normal density
(rs = 2.67) as a function of electronic temperature (red); the sudden
shift at about 7000 K is due to the onset of the d-band edge. (Bottom)
Change in pre-edge area as a function of electronic temperature. The
DFT calculation (green dashes) [35] was computed using ABINITat
lattice temperature TL = 300 K. Note that in contrast to the edge
shift, the pre-edge area varies smoothly with temperature for Cu.

temperature affects the region above the edge, especially the
fine structure.

The edge shift and the pre-edge area are both possible
candidates for assessing the internal temperature of a sys-
tem. In order to extract the edge shift and pre-edge area, the
edge position is defined to be the first local maximum of
the first derivative in the XANES spectrum. The electronic-
temperature dependence of the edge shift and pre-edge area
are shown in Fig. 6. Note that the pre-edge area is mono-
tonically increasing with the electronic temperature and it
becomes linearly correlated to Te above 6000 K, consis-
tent with previous results [35]. In contrast, the edge shift is
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FIG. 7. Dynamics of electronic temperature Te (blue) and lattice
temperature TL (red) of laser-pumped Cu based on two-temperature
model calculation. The absorption power is calculated using the
Beer-Lambert law with a Gaussian profile 400-nm laser source for
a 70-nm-thick copper film.

highly nonlinear, exhibiting an abrupt shift at about 7000 K.
Therefore, for Cu and probably for other transition metals as
well, the pre-edge area is a better proxy for an electronic-
temperature thermometer, compared to the edge shift.

Next, we compare our finite-temperature calculation to
time-resolved, WDM experiments [4] in the context of
nonequilibrium systems. The system being explored is a 70-
nm copper foil heated optically by a 400-nm laser at a fluence
of 0.33 J/cm2. As a consequence, the electrons are optically
excited, leading to an initial huge pre-edge peak below the L3

edge. The electronic and the lattice subsystems are out of equi-
librium. In order to model the temperature evolution, we use a
two-temperature (2T ) model [4] with the same parameters for
the electron heat capacity and electron-phonon coupling factor
as in Zhibin et al. [30]. The temperature evolution is shown in
Fig. 7. Note that the lattice temperature raises quickly above
the melting temperature ∼1358 K in under 1 ps due to the
strong electron-phonon coupling in copper.

Our RSGF simulations use XAS from 20 atomic con-
figurations taken from QMD calculations using the VASP

code [36,37] with generalized gradient approximation (GGA)
exchange-correlation potentials [38]. We also used the projec-
tor augmented wave (PAW) potentials with an energy cutoff
of 590 eV. The system with a 2 × 2 × 2 supercell constructed
from a conventional unit cell of eight atoms is propagated with
a time step of 1 fs to reach equilibration, and the sampling
of configurations is performed by randomly sampling from
a 2-ps-long trajectory with a time step of 1 fs. We compare
our simulation at temperatures Te = 300, 10 200, and 6000 K
for the time delays t < 0 ps, t = 2 ps, and t = 9 ps, respec-
tively, with those from DFT-based calculations [4] in Fig 8.
Note that our calculation underestimates the Fermi level for

FIG. 8. Time-resolved XANES for 70 nm copper at different
delay-times t = 2 ps and 9 ps. The experimental measurement (red)
is averaged over 150 snapshots. The ambient condition measurement
(t = 300 K) is averaged over 70 ps. Our calculations (blue) for
delay-times t = 2 ps and 9 ps are computed at Te = 10 200 K and
6000 K, respectively, based on the two-T model results. The DFT
results [4] (green) are calculated using the QUANTUM ESPRESSO code
at the same temperatures.

Te = 10 200 K (t = 2 ps) by a few eV, leading to the observed
shift in the XANES.

C. Transition metals: Ti and Au

As examples of other finite electronic-temperature L3-edge
XAS calculations, we present FT calculations for an early
transition metal (hcp titanium), where the d bands are partially
filled, and for a late transition metal (fcc gold) where the d
bands are full, both at normal density. Figure 9 shows the
electronic-temperature dependence of the L edges of these
materials due to the FT SCF, FT exchange-correlation po-
tential, vKSDT

xc , and the Fermi function smearing in the cross
section. The XANES of Ti is blueshifted with increasing elec-
tronic temperature because the chemical potential is located
in the middle of the d band and the density of states above the
chemical potential is higher. Also, the Fermi-Dirac distribu-
tion in the cross section broadens with increasing temperature
leading to the broader structure above the edge as more d
states are included in the transition.

In contrast, the XANES of gold (Au) is redshifted, as
shown in bottom plot of Fig. 9. This opposing behavior in
Ti and Au is due to the higher density of states below the
chemical potential. Again, the onset of the pre-edge structure
is due to the broadening of the Fermi-Dirac distribution and
shift of the chemical potential. Unlike Ti, the broadening of
the Fermi-Dirac distribution does not alter the XANES above
the edge because the localized d band is well below the Fermi
level.
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FIG. 9. L3-edge absorption for hcp titanium (top) where the XAS
reflects that of the unfilled d bands, and gold (bottom) where the d
bands are nearly filled. The difference �XAS between the XAS at
finite Te and zero temperature is also shown.

D. MgO

As a final example, we present results for the Mg K-
edge XANES of MgO at normal density with FT lattice
behavior calculated using the quasiharmonic approxima-
tion. While our calculation accounts for most of the FT
effects discussed in Sec. III (excluding the temperature de-
pendence of the self-energy), the important effects for the
temperature range considered here are the FT SCF, the
Fermi function in the cross section, and vibrational effects.

FIG. 10. Mg K-edge spectra for MgO at temperature T = 300 K
(blue) and 870 K (red). The top plot shows the experimental spectra
[39], the DFT spectra [39], and the FEFF quasiharmonic spectra. The
bottom plot shows the spectra difference with respect to T = 300 K
for the experiment (solid black), FEFF (solid blue), and DFT (dashed
red) are shown.

Figure 10 shows the average XAS for 30 randomly sam-
pled configurations at equilibrium temperatures Te = TL =
300 and 870 K. The configurations are obtained by sam-
pling the normal modes calculated from dynamical matrices
at the experimental lattice constants and the given temper-
atures using QUANTUM ESPRESSO code [40–42], with GGA
functional [43] for a 16-atom 2 × 2 × 2 supercell constructed
from a two-atom primitive cell. The electronic density of
state is computed with a 6 × 6 × 6 k-point grid with an en-
ergy cutoff of 58 Ry. Next, we use the density-functional
perturbation theory to compute the dynamical matrix cal-
culation at the 
 point. The long-range electric fields are
accounted for from the calculation of the Born effective
charge.

FEFF calculations have been found to overestimate the
screening effect of light element oxides [44]. Instead of
using the ad hoc Z + 1 approach to overcome the strong
screening effect of the final state rule, we used the random-
phase approximation (RPA) for the core-hole screening in
FEFF. The RPA is more accurate in this case, being sim-
ilar to a Bethe-Salpeter equation [45,46]. Finally, we add
an additional energy shift of 2.6 eV to the chemical po-
tential. As a comparison, we show the experiment and
DFT calculation by Nemausat emphet al. using the stochas-
tic self-consistent harmonic approximation [39] in Fig. 10.
The decrease in the absorption amplitude is due to the lat-
tice vibration similar to the examples previously shown.
Our model underestimates the excitations between the en-
ergy range 1310 and 1315 eV. This can be attributed to
the spherical muffin-tin potential approximation used in our
calculations.
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V. SUMMARY AND CONCLUSIONS

We have extended the real-space Green’s function theory
of XAS [23] to high temperatures (HT) from about TD up to
the warm dense matter regime T ≈ TF . This generalization
takes into account both electronic-temperature and lattice-
temperature effects, which are particularly important at HT.
Briefly, a finite-temperature (FT) SCF procedure is carried out
in the complex energy plane in terms of the FT one-electron
Green’s function. This leads to a decrease in the chemical
potential with increasing temperature, i.e., “continuum lower-
ing,” uncovering contributions to the pre-edge spectra below
the T = 0 Fermi level. This SCF procedure includes the FT
exchange-correlation potential, which is approximated here
using the KSDT parametrization. An important difference
from the T = 0 theory of XAS is the smearing of the ab-
sorption edge and the presence of peaks below the T = 0
Fermi energy in the spectra due to FT occupation numbers.
The finite-temperature exchange-correlation potential has a
small effect on XAS when T � TF compared to the Fermi
smearing. The self-energy is also important for XAS, ac-
counting for shifts and final-state broadening; at HT the
effect adds a small but non-negligible increase in broaden-
ing that is only weakly energy dependent. While dynamic
exchange effects can also be included, due to the difficulty
of their calculation, a more efficient COHSEX approximation
can be used. At low T vibrational effects can be included
in terms of a correlated Debye model, but need to be re-
placed by a configurational average at high T for XANES.

The FT and HT generalizations introduced here are imple-
mented as an extension of the FEFF codes in a new version
FEFF10 [20].

Our approach for HT XAS has been tested against various
experiments, and typically yields good overall agreement. We
find that the most important effects on the spectrum are due
to (1) the smearing of the Fermi function in the calculation of
the cross section; (2) the shift in the chemical potential due
to the finite-temperature SCF; and (3) the damping of fine
structure due to lattice vibrations. The relative importance of
these effects changes, depending on the system, energy range,
and state of equilibrium in question. We believe these devel-
opments may be useful in interpretation of many experiments,
e.g., for studies of nonequilibrium behavior, extreme condi-
tions, and shocked conditions. The approach can also be used
to differentiate between lattice- and electronic-temperature
effects.
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