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Tracing non-Abelian anyons via impurity particles
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Non-Abelian excitations are an interesting feature of many fractional quantum Hall phases, including those
phases described by the Moore-Read (or Pfaffian) wave function. However, the detection of the non-Abelian
quasiparticles is challenging. Here, we consider a system described by the Moore-Read wave function and as-
sume that impurity particles bind to its quasiholes. Then, the angular momentum of the impurities, reflected also
by the impurity density, provides a useful witness of the physics of the non-Abelian excitations. By demanding
that the impurities are constrained to the lowest Landau level, we are able to write down the corresponding
many-body wave function describing both the Moore-Read liquid and the impurities. Through Monte Carlo
sampling, we determine the impurity angular momentum, and we show that it suggests a quantum-statistical
parameter α = aν − b + P/2 for the quasiholes, where α ranges from 0 for bosons to 1 for fermions. A
reasonable agreement with the Monte Carlo results is obtained for a = 1/4, b = 1/8, and P = 0, 1 depending
on the parity of the particle number in the Moore-Read liquid. This parity dependence of the angular momentum
serves as an unambiguous demonstration of the non-Abelian nature of the excitations. In addition to the studies
of excitations in the Moore-Read liquid, we also apply our scheme to Laughlin liquids, for which we focus on
interacting bosonic impurities. With this, the impurities themselves form Laughlin states, which allows for a
study of hierarchical fractional quantum Hall states.

DOI: 10.1103/PhysRevB.104.035133

I. INTRODUCTION

The most emblematic feature of fractional quantum Hall
(FQH) systems are their quasiparticle excitations. Unlike any
particle in three dimensions, these quasiparticles are neither
bosons nor fermions, but so-called anyons, characterized by
intermediate quantum statistics. Importantly, the quasiparti-
cles and their properties also serve for classifying topological
phases. In this respect, an important distinction is made be-
tween topological phases with Abelian anyons, and the more
complex phases, which support non-Abelian anyons.

In the context of FQH effect, the most prominent Abelian
phase occurs at filling factors ν = 1/m [with m > 1 an odd
(for fermions) integer]. This phase is well described by the
Laughlin wave functions [1]. Other Abelian FQH phases,
occurring at different odd-denominator fillings, can be de-
rived from the Laughlin phase via the so-called hierarchy
construction [2,3]. However, there are also FQH phases at
even-denominator filling [4,5]. A prominent wave function
to describe a FQH phase in a half-filled Landau level is
the Moore-Read wave function, also known as Pfaffian wave
function [6]. A crucial property of the Moore-Read phase
is that it supports non-Abelian excitations, that is, a Moore-
Read liquid with n quasiparticles exhibits 2n−1 degenerate
states, and braiding of the quasiparticles is equivalent to a
rotation within this degenerate manifold [7]. Due to the non-

commuting nature of different rotations, these excitations are
termed “non-Abelian.” This property, together with the man-
ifold’s robustness against local noise, has motivated the use
of non-Abelian phases for quantum-information processing
purposes [8].

While it is possible to write down models (often called
parent Hamiltonians) for which the different FQH wave func-
tions are the exact ground states, it may be hard to determine
whether such a phase is indeed realized in a given FQH
system. However, at least for the most prominent Abelian
phases (such as the 1/3 Laughlin state), there is no doubt
that they are realized in conventional quantum Hall settings
(like GaAs quantum wells in strong magnetic fields). In the
case of the Laughlin phase, the nature of the FQH phase is
well established through theoretical considerations (especially
exact numerical studies for small system sizes), but also ex-
perimentally, e.g., via transport measurements. Nevertheless,
even in this case, a direct experimental evidence for maybe
their most important feature, the anyonic excitations, is ex-
tremely difficult to obtain. One anyon signature, its fractional
charge, has experimentally been determined relatively early
via shot noise measurements [9], but attempts to detect also
fractional statistics were less successful [10,11], until recent
breakthroughs [12,13].

For the non-Abelian phases, the situation is more con-
troversial. Even from the point of view of exact numerical
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results, the situation in a half-filled Lan dau level is much
more subtle than at filling 1/3. There is a competition of
various different Abelian and non-Abelian phases, and this
competition is decided in favor of one or another state by
small details in the Hamiltonian [14], such as, for instance,
the amount of Landau level mixing. Notwithstanding, a very
promising candidate for the half-filled (second) Landau level,
i.e. at filling ν = 5/2, is the non-Abelian Moore-Read phase
[6,15,16]. Indeed, also several experimental findings point
towards a Pfaffian or anti-Pfaffian phase, including spin polar-
ization [17], e/4 quasiparticle charge [18,19], or half-integer
thermal conductance [20]. Nevertheles, one must admit also
that some experiments suggest an Abelian phase [21]. Inter-
ferometric measurements to determine the non-Abelian nature
of the quasiparticles have not been conclusive [22].

From this perspective, ways to modify or manipulate
FQH systems seem desirable, and this goal can be achieved
by switching to novel materials or even synthetic quan-
tum systems. For instance, bilayer graphene at half-filled
Landau level has shown behavior compatible with the
Pfaffian phase [23,24]. For single-layer graphene, it has been
shown that optical driving can induce non-Abelian topo-
logical phases [25,26]. An entirely different approach are
quantum simulators, which prepare FQH states in highly
controlled experimental atomic and/or photonic settings.
Advances towards the simulation of FQH physics include
the generation of artificial magnetic fields and detection of
topological properties, such as chiral edge states [27,28],
topological quantum numbers [29–33], topological transport
[34,35]. Through light-matter coupling, even a Laughlin-like
state of two photons has been achieved recently [36], whereas
the experimental demonstration of atomic Laughlin states has
not yet been conclusive [37]. In the context of non-Abelian
phase engineering, one feature of quantum simulators seems
particularly promising: They can operate also with bosonic
species, for which often a simple two-body contact poten-
tial appears to be sufficient to produce non-Abelian ground
states [38–40].

In addition to phase engineering, synthetic quantum Hall
systems also provide new detection opportunities: light-matter
interactions can be used to create, trap, and braid quasiparti-
cles [41–45]. The total angular momentum of a FQH system,
which for atoms can be measured by time-of-flight imaging,
carries signatures of fractional statistics [46]. Spectroscopic
signatures have been described for atomic systems [47],
graphene [48], or magnetic materials [49]. Several papers
have suggested to bind impurities to fractional quasiparti-
cles [50–56], which can then be used to trace or manipulate
the anyons.

In the present manuscript, we elaborate on the idea of
Ref. [55] where the angular momentum of impurities is used
to reflect the fractional quantum statistics of Abelian anyons.
In the present work, we study whether a similar connection
holds for non-Abelian anyons. In this context, Ref. [55] has
already shown that the angular momentum of a single im-
purity in a Moore-Read liquid provides a signature of the
anyon charge (or the equivalent of charge in atomic systems),
and thereby distinguishes between Laughlin-type quasiholes
(e/m charge) and the true Pfaffian-type elementary excitations
(e/2m charge). In the present paper, we show that also the

quantum-statistical behavior of the quasiholes is reflected by
the impurity angular momentum, and their non-Abelian nature
is evidenced by a dependence on the parity of the system
size. Specifically, through Monte Carlo sampling of trial wave
functions for a Moore-Read liquid with impurities, we obtain
for the general form of the quasiholes’ quantum-statistical
parameter a functional form α = aν − b + P/2. For the pa-
rameters a and b, reasonable numerical agreement is obtained
with the values expected for the Moore-Read state (a = 1/4
and b = 1/8), and P = 0, 1 depends on the parity of the num-
ber of particles of the liquid.

In addition to the study of non-Abelian anyons and their
detection via impurity particles, the present paper also gen-
eralizes the approach of Ref. [55] in another respect: we
demonstrate that noninteracting bosons are not suited as tracer
particles, because they form a condensate. However, for repul-
sively interacting impurities an interesting situation can arise,
when the impurities themselves form FQH states. In this case,
the impurities can also be bosons, and the scenario allows for
exploring the hierarchical construction of FQH states.

Our paper is organized in the following way. In Sec. II, we
provide a description of the system and a discussion of the
Moore-Read state. In Sec. III, we first give a brief description
of the impurity scheme from Ref. [55], and then present our
results for impurities in the Moore-Read liquid. In Sec. IV, we
discuss the differences between bosonic and fermionic impu-
rities, and the case of Laughlin-like anticorrelations between
the impurities themselves. Finally, in Sec. V, we summarize
our main findings and discuss possible continuations of the
present work.

II. MODEL SYSTEM AND MOORE-READ STATE

A. System

We consider two different species of particles confined
in the x − y plane by harmonic potentials: (a) majority and
(b) minority particles. Under a sufficiently strong transverse
magnetic field both species are brought in the lowest Landau
level, whose basis can be expressed in the symmetric gauge
A = (B/2)(−y, x, 0) by Fock-Darwin wave functions

φm(z) = (2πm!2m)−1/2zme−|z|2/4, (1)

where m represents the angular momentum of the state. Here
the complex coordinate z = (x + iy)/lB is expressed in terms
of the magnetic length lB that can be set equal for both species.

In presence of repulsive interactions the a particles can
form a FQH liquid: we discussed in Ref. [55] the possibil-
ity of a Laughlin liquid, that describes bosonic (fermionic)
states at filling ν = 1/m for m even (odd). In the following
we will instead consider quantum liquids of spin-polarized
electrons well described by the paradigmatic Moore-Read
state [6]. Differently than in the Laughlin case, the Moore-
Read state describes bosons (fermions) for m odd (even). In
particular, for m = 2 this wave function has been proposed
to describe the ν = 5/2 FQH state for fully spin-polarized
electrons [15,16], when the first Landau level is filled.
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B. Moore-Read states

The wave function describing the Moore-Read (MR) state
for filling 1/m is

ψMR(z) = Pf

(
1

zi − z j

)∏
i< j

(zi − z j )
me− ∑

i |z|2/4, (2)

where Pf denotes the Pfaffian. The total angular momentum
of the state can be read from the polynomial part of the wave
function, being equal to the degree of the polynomial in zi.
It is given by L = m

2 Na(Na − 1) − Na
2 for Na particles. The

contribution Na/2 is due to the Pfaffian which removes Na/2
zeros from the wave function. For m = 1, the wave function
vanishes when three particles are brought in the same point.
It is then possible to construct the MR state as the exact
ground state of a three-body contact interaction Hamiltonian
[57]. Generalizations of this picture are valid for different
fillings [58].

The simplest zero-energy excitation that this state can host
is a quasihole that can be described as in the Laughlin state by
multiplying ψMR by a polynomial term. Explicitly, the wave
function reads

ψLQH(z,w) =
∏

k

(zk − w)Pf

(
1

zi − z j

) ∏
i< j

(zi − z j )
m, (3)

where w is the position of the quasihole, and we have omitted
the exponential factor. The addition of the prefactor implies
that the total angular momentum is L = m

2 Na(Na − 1) + Na
2 .

This quasihole, as in the Laughlin case, has fractional charge
e/m and Abelian statistical parameter α = 1/m [59].

More interesting is the fact that in this system each quasi-
hole can “split in two,” resulting in a state with the same
angular momentum L, but with two “half” quasiholes (HQH),
described by a wave function

ψHQH(z,w1,w2) = Pf(W )
∏
i< j

(zi − z j )
m. (4)

Here W is a matrix that depends on the parity P of the number
of particles Na. If Na is even, we have

W = (zi − w1)(zi − w2) + (i ↔ j)

zi − z j
. (5)

If Na is odd, this definition would lead to an odd-dimensional
matrix, for which the Pfaffian is not defined. Therefore, to
obtain W for Na odd, we have to construct a Na + 1 × Na + 1
matrix by adding to the previously defined matrix W a row
(column) of 1 (−1), and 0 in the lower right corner [60].

Similar to the Laughlin case, half quasiholes are charac-
terized by fractional charge e/2m and fractional statistics.
Crucially, the statistical parameter of the two quasiholes de-
pends on the parity of Na. In particular, we have that [60,61]

α = 1

4m
− 1

8
+ P

2
, (6)

where P = 0, 1 for an even (odd) number of particles.
This expression should be contrasted to the case of a quasi-

hole in the Laughlin liquid. Notably, the statistical parameter
α for Pfaffian quasiholes exhibits filling-independent terms,
and the P dependence serves as a proof of the non-Abelian

statistics of the QHs [62]. Specifically, the P dependence
reflects the existence of two different fusion channels for the
anyons, which, by invoking a conformal field theory descrip-
tion, can be related to the parity of the particle number [61].
Alternatively, the P dependence can also be explained by the
theory of p-wave superconductors [63]. From this viewpoint,
the two parity sectors correspond to two degenerate ground
states of a p-wave superconductor with two half-vortices.
The analogy between Pfaffian FQH states and p-wave su-
perconductors becomes evident in the composite fermions
framework for the state at ν = 1/2: in this picture the compos-
ite fermions are subjected to a zero effective magnetic field,
the state then represents a Fermi liquid that undergoes a BCS
instability to a p-wave superconducting state.

An even richer picture appears in the presence of 2n HQHs,
with n > 1. The state can still be described by Eq. (4), if we
replace W by

(zi − w1) . . . (zi − wn)(z j − wn+1) . . . (z j − w2n) + (i ↔ j)

zi − z j
.

(7)

It can be seen from Eq. (7) that there is an arbitrary choice
involved when the 2n quasiholes are split in two groups, each
of n elements. This means that it is possible to write more
than one such states with 2n HQHs. There are 1

2
(2n)!
n!n! possible

ways to group 2n elements in two groups, but these states are
not orthogonal. Instead, it can be shown that the dimension of
the Hilbert space spanned by these degenerate ground states is
2n−1. Strikingly, an exchange of two quasiholes can mix one
state with one of the others, which is probably the most direct
manifestation of the non-Abelian statistics of the HQHs [7].

We also mention the possibility to construct a state that
contains a single half quasihole by setting

W = (zi − w1) + (z j − w1)

zi − z j
. (8)

The angular momentum of this wave function is L =
m
2 Na(Na − 1). In presence of an impurity this state can be
retrieved by exact diagonalization of the three-body con-
tact Hamiltonian and a repulsive majority-impurity contact
potential [59].

III. IMPURITIES IN THE MOORE-READ LIQUID

A. Mean-field results

Before starting the numerical study of the properties of
impurities bound to HQHs in the framework of the MR wave
function, we can ask what is the effect of the FQH liquid on
the single impurity wave function. As we will show here, the
binding to the FQH liquid leads to impurity levels character-
ized through specific average angular momentum values. This
observation will later allow us to relate also the anyonic prop-
erties of multiple impurities to their total angular momentum.

To describe the effective single-impurity levels, we rely
on the assumptions that the impurity is affected by the
FQH bath just by a renormalization of the external magnetic
field B. In particular, from the form of the quasihole wave
functions, Eqs. (3) and (4), it follows that the liquid particle
appear as fluxes �0 in the case of Laughlin quasiholes, or
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half-fluxes �0/2 in the case of Pfaffian HQHs. Therefore the
net magnetic field becomes B → B(1 − ϕ) [50], where ϕ =
N�0
AB = ν for Laughlin-like quasiholes, or ϕ = N�0

2AB = ν/2 for
HQHs, with A being the size of the liquid. As an immediate
consequence of the field renormalization, we also get a renor-
malized length scale lb → lb/

√
1 − ϕ.

Therefore an effective wave function for the impurity is
given by

φ̃m(w) =
√

(1 − ϕ)m+1

2πm!2m
wme−(1−ϕ)|w|2/4. (9)

By expanding the (squared) amplitude of this wave function in
terms of the original wave function amplitudes |φm(z)|2, with
m being the angular momentum eigenvalue, we can determine
the angular momentum of an impurity in the state φ̃m. It is
given by

Lm = m + ϕ

1 − ϕ
. (10)

For multiple impurities, one might expect to obtain the to-
tal angular momentum by filling the available states, so that
we obtain L f = ∑Nb−1

m=0
m+ϕ

1−ϕ
= 1

1−ϕ
[Nb(Nb − 1)/2 + Nbϕ] for

fermionic impurities, or Lb = Nbϕ/(1 − ϕ) for bosonic impu-
rities. However, as we have shown in Ref. [55], impurities
bound to quasiholes in Laughlin liquids become anyonic, and
the angular momentum interpolates between L f and Lb:

Limp = (1 − α)L f + αLb. (11)

Strikingly, the interpolation parameter α is given by the any-
onic statistical parameter associated with the exchange of
the two quasiholes. Therefore by computing L f and Lb from
the effective single-impurity levels, and computing Limp from
the many-body wave function, we can determine the statistical
parameter of the quasiholes:

α = L f − Limp

L f − Lb
. (12)

We note that, since Limp reflects the angular momentum of
fermionic impurities bound to quasiholes, a fermionic behav-
ior of these bound states, i.e., Limp = L f , yields a bosonic
statistical parameter α = 0 for the bare quasiholes, whereas
bosonic behavior, Limp = Lb, corresponds to fermionic quasi-
holes, α = 1.

In the following, we will discuss the validity of this relation
for Moore-Read states, where the statistical parameter α of the
quasiholes is given by (6). With this, our work will provide a
possible extension of the detection scheme from Ref. [55] to
non-Abelian exchange statistics.

B. Numerical results

If impurities in the lowest Landau level bind to the HQHs
of the FQH liquid, the many-body system can still be de-
scribed by the HQH wave function, Eq. (4), but the quasihole
parameters wi now become dynamical quantities. In addi-
tion, the wave function also has to be multiplied by a factor

e− ∑
i

|wi |2
4 for the confinement of the impurities to the lowest

Landau level. In the case of multiple fermionic impurities
the state also has to be multiplied by a Vandermonde factor∏

i< j (wi − w j ) that enforces the Pauli principle. Here, we will

FIG. 1. Angular momentum of a single impurity bound to a HQH
for states at different fillings (dots), compared to equation (10) for
ϕ = ν/2 (solid line). Values obtained by Monte Carlo simulations
for 30 majority particles.

restrict ourselves on fermionic impurities. The case of bosonic
impurities will be discussed in Sec. IV.

The resulting wave function is then

ψ (z,w) = Pf(W )
∏

k<l,i< j

(wk − wl )(zi − z j )e
− 1

4

∑
i, j |wi|2+|z j |2 ,

(13)
with W chosen appropriately depending on the number of
impurities.

We have used this wave function as a probability distri-
bution for Monte Carlo calculations to compute the expected
value of both the impurity angular momentum and, as a cross-
check, the total system angular momenta. Note that while (13)
is not normalized, choosing a Metropolis update rule for the
algorithm makes the normalization superfluous.

First, we have studied the single impurity angular momen-
tum by setting W as in (8) for Na = 30 with a total angular
momentum L = 435/ν. The results match well with Eq. (10)
for m = 0 for a wide range of fillings, as shown in Fig. 1.

Second, we considered the case of two impurity particles,
to show that the impurities angular momentum can be used
to track the two different parity sectors. Specifically, we com-
puted Limp for Na from 30 to 49. The expected values of Limp

are 3.75 for Na even and 2.75 for Na odd. We show in Fig. 2
that for filling ν = 1 the jump in the angular momentum for
even and odd parity is compatible with Eq. (11), except for a
correction that can be explained by finite size effects, as we
will show below.

In order to quantify the statistical parameter α of the
anyons, we also studied a larger (even) number of impurities
for different filling factors. From each of the numerically com-
puted impurity angular momentum values Limp we extracted
the corresponding α, via Eq. (12). The results for Na = 30
for fillings from 1 to 1/6 are shown in Fig. 3, plotting α as a
function of filling ν. From the slope of this curve, we see that
the filling-dependent part of α perfectly agrees with the ex-
pectation, i.e. α ∝ ν/4. However, the constant contribution is
not exactly −1/8, as one would expect, but it has a correction
of order 10−2. We account this deviation to the overlapping
size of the impurity wave functions. For lower fillings, the
prediction (11) breaks down, and the impurities bound to
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FIG. 2. Impurities angular momenta for even/odd number of
majority particles at filling ν = 1. The jump can be explained consid-
ering the different statistical parameter α for the two parity sectors,
as described in Eq. (6). The solid lines represent the value of Lb

predicted in Eq. (11) for P = 0, 1.

quasiholes behave effectively as free fermions, and the sta-
tistical parameter α of the quasiholes goes to the bosonic
limit (zero).

We also note that the computation of Limp does not lead
to any different behavior for the different 2n−1 degenerate
ground states. Thus the behavior of the HQHs under braiding
cannot be extracted from this impurity angular momentum.

Our data of Limp for multiple impurities at different ν is
also illustrated in Fig. 4, plotting Limp versus the number of
impurities in the system at a given ν. We compare this curve
with L f and Lb, i.e., with the expectation for fermionic or
bosonic particles. At all ν � 1/2, the impurity behave very
similar to fermions.

C. Analysis of fluctuations of the Berry phase

Equation (6) holds in a regime where the quasiholes
are sufficiently far apart to be considered effectively

FIG. 3. Statistical parameter α of HQHs as a function of filling
ν, obtained for different numbers of impurities. For lower fillings
(below 1/5) the HQHs becomes bosonic, and the prediction (11) does
not hold, i.e., see the two points at filling 1/20. Solid line is a fit
α = ν/4 − 1/8 + 0.09.

FIG. 4. Impurities angular momentum as a function of number
of impurities, compared to Eq. (11) (solid line), value for pure
bosonic (dotted line), or fermionic (dashed line) impurities. For low
fillings, the impurities behave as free fermions and prediction (11)
breaks down.

noninteracting. This in turn influences the validity of Eq. (11).
For finite distances, the quasiholes will hybridize and lead to
a fluctuation of the exchange statistical phase. These depen-
dence of the statistical parameter on the quasihole distance
has been evaluated for MR states in a spherical geometry in
Refs. [64,65].

In order to estimate this effect in our system, we first need
to determine the impurity distance. In our case, this becomes a
dynamical variable which we can estimate from the combined
wave function. For two fermionic impurities with coordinates
w1,w2, the combined wave function in terms of renormalized
Fock-Darwin wave functions is

φ(w1,w2) = φ̃0(w1)φ̃1(w2) − φ̃0(w2)φ̃1(w2)√
2

(14)

that can be re-expressed in terms of center of mass and relative
coordinates R = (w1 + w2)/2, r = w1 − w2 as

φ̃(r, R) = −
√

1 − ν
2 (ν − 2)

8π
re

(ν−2)
16 (|r|2+4R2 ). (15)

This function is peaked at r ∼ 3. Monte Carlo computations
for the average distance between two impurities in the state
(13) recover roughly the same values for different fillings.

It is then interesting to evaluate directly the statistical phase
for two fixed quasiholes and its dependence on the relative dis-
tance. To do so, we considered a configuration with two HQH,
one at the center of the system and the other at a fixed radius R
from the center. We then compute the Berry phase associated
with the state Eq. (13) under a rotation of the second hole
around the first. To retrieve the statistical phase, we have to
subtract the Aharonov-Bohm phase that the state accumulates
because of the background magnetic field. We compute this
phase by performing the same calculations removing the hole
placed at the center, describing the system for a single HQH
via the state Eq. (8). Details of the computation can be found
in Appendix A.

As an example, we show the results for the most rele-
vant filling fraction ν = 1/2 in Fig. 5. At this filling, one
would expect fermionic quasiholes, i.e., impurities with α =
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FIG. 5. Statistical parameter α computed by explicitly evaluating
the Berry phase of a braiding of two quasiholes in a MR state with
ν = 1/2. For distances of order r ∼ 3, the finite size deviation from
the expected value α = 0 is of order 0.05, compatible with what ob-
tained in Fig. 3. The fluctuations for large distances can be axplained
by finite size effects: for Na = 20, the radius of the MR state is ∼8.9.

0. However, at (small) distances, the statistical phase oscillates
around zero, with an amplitude on the order of 0.05. This
order of magnitude for fluctuations is compatible with the
results of Sec. III B.

IV. ANTICORRELATIONS OF IMPURITIES

All cases we have discussed so far, impurities in Laughlin
liquids studied in Ref. [55] or impurities in Pfaffian liquids
studied in the present work, had one common feature: the im-
purity particles were always taken as noninteracting fermions,
no matter what type of quantum statistics or interparticle
interaction governed the liquid of majority particles. In all
cases, what accounts for the fermionic nature of the impuri-
ties is a Vandermonde factor

∏
i< j (wi − w j ) which multiplies

the quasihole wave function, cf. Eq. (13). The Vandermonde
factor produces the minimum anticorrelations required for
fermionic impurities by the Pauli principle, but one may ask
what would happen if these anticorrelations were lacking in
the total wave function—a scenario which would be valid for
noninteracting bosonic impurities? Or, contrarily, one could
also imagine systems, with either fermionic or bosonic im-
purities, in which interactions between the impurity particles
give rise to stronger anticorrelations beyond the one from
the Vandermonde determinant. In the present section, we will
study these cases, and we will show how anticorrelations
between the impurities reflect in the total impurity angular
momentum. For the sake of simplicity, we will restrict our
considerations in this section to the case of impurities in an
Abelian Laughlin liquid.

A. Noninteracting bosonic impurities

Let us consider a Laughlin liquid at filling ν = 1/q, de-
scribed by a wave function 	q. Quasiholes in this liquid, at
positions wi, are described by the wave function 	({wi}) =∏

i, j (wi − z j )	q, where i runs over all quasiholes and j over
all liquid particles. Multiplying this wave function by the
Vandermonde term

∏
i< j (wi − w j ), accounts for the binding

TABLE I. For different filling ν = 1/q of a Laughlin liquid with
N particles, we numerically obtain the average angular momentum
Lb

imp (L f
imp) of Nimp bosonic (fermionic) noninteracting impurities. We

also show the values for fermionic impurities computed by means of
Eq. (11) for reference.

q Nimp N Lb
imp L f

imp L f
imp(th.)

3 2 10 0.70 2.03 2
3 3 10 0.73 4.55 4.5
3 4 10 0.72 8.11 8

5 2 7 0.33 1.47 1.5
5 3 7 0.32 3.65 3.75

2 2 7 1.39 3.11 3
2 3 7 1.43 6.31 6

of quasiholes to noninteracting fermions, and these fermions
carry an average angular momentum, Limp, which interpolates
between the values for free fermions and free bosons, cf.
Eq. (11). This implies that Limp scales extensively with the
number of impurities.

In contrast, the appropriate wave function for noninteract-
ing bosonic impurities bound to quasiholes is simply given by
	({wi}) = ∏

i, j (wi − z j )	q, without the Vandermonde deter-
minant. The values for Limp, found by Monte Carlo sampling
of this wave function, are given in Table I for some values of
q, N (number of particles in the liquid), and Nimp (number of
impurities), and contrasted to the analog values obtained in
the case of fermionic impurities. Interestingly, for a given q,
the value obtained for the bosonic impurities is approximately
constant, i.e., it depends neither on the number of particles
in the liquid (which is true also in the case of fermionic
impurities), nor on the number of impurities (in stark con-
trast to the case of fermionic impurities). The value of total
angular momentum for the bosonic impurities appears to be
proportional to the average angular momentum of a single
impurity in its ground state, L0 = 1

q−1 , as given by Eq. (10).
In fact, for all cases shown in Table I, we approximately have
Limp ≈ 1.4L0.

An explanation for this curious behavior could be the fol-
lowing. The bosonic impurities form a condensate (in which
the individual impurities fluctuate around the condensate cen-
ter of mass), and all quasiholes bind to this condensate, just
as if there was only a single quasihole and a single impurity.
In this picture, the (small) difference between Limp and L0

would then be due to the fluctuations of impurities within the
impurity condensate, although the picture does not necessarily
imply that Limp is independent from Nimp.

What appears to be clear, though, is the fact that noninter-
acting bosons as impurity particles are not suited for probing
the anyonic properties of quasiholes. In the following section,
we are going to investigate whether and how the situation
changes if the bosonic impurities are interacting.

B. Interacting impurities

We restrict our study of interacting impurities to the
simplest and most relevant case of bosonic impurities with
repulsive contact interaction. With the impurities being sub-
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ject to Landau quantization, this implies that the zero-energy
ground state of the impurities itself is a bosonic Laughlin state,
∼ ∏

i< j (wi − w j )2. Therefore, in this case, the Vandermonde
determinant in the wave function of fermionic impurities, has
to be replaced by these bosonic Laughlin-like anticorrelations.
Evaluating again the average impurity angular momentum
value numerically, we find that it matches very well with the
following pattern:

Limp(Nimp, q) = Nimp + 2q−1
2 Nimp(Nimp − 1)

q − 1
. (16)

This observation immediately leads to the question how this
expression connects to the effective single-impurity levels
Lm, given by Eq. (10). A simple guess would be that each
impurity pairs enters a state in which their relative angular
momentum is given by L2, as the impurities are forming a
q = 2 Laughlin state. This guess, though, does not match with
the observed pattern. However, two more things should be
considered. (i) Apart from the relative angular momentum of
pairs, the Laughlin liquid also has a center-of-mass angular
momentum Lcom which comes from Nimp particles condens-
ing into L0. Thus Lcom = Nimp/(q − 1). (ii) For the relative
angular momentum, one has to consider screening effects,
because in the vicinity of one impurity/quasihole the majority
density is lowered. Following the arguments of Ref. [50], we
first note that a wave function of a pair at relative angular
momentum M has an amplitude peak at radial distance RM =
(2M )1/2lB in the absence of any screening. The screening
due to the majority liquid effectively leads to a redefinition
of the magnetic length, lB → l∗

B = lB/
√

1 − ν. The screening
which one impurity experiences due to the presence of the
other impurity is captured by M → M∗ = M − ν. Thus, for a
pair at M = 2, the effective size of the wave function is given
by R∗ = [2(M − ν)]1/2l∗

B = [ 2(M−ν)
1−ν

]1/2lB. The corresponding
effective relative angular momentum is L∗ = 1

2 (R∗/lB)2 =
M−ν
1−ν

= Mq−1
q−1 . Thus, for Nimp(Nimp − 1)/2 pairs at M = 2, the

relative angular momentum becomes in total:

Lrel = 1

2
Nimp(Nimp − 1)

2q − 1

q − 1
. (17)

With this, the sum, Lrel + Lcom exactly matches the pattern in
Eq. (16) found numerically.

Another way of understanding Eq. (16) is in the light
of hierarchy states [2,3]. This construction builds upon the
Laughlin states at filling 1/q (or their hole-conjugate at fill-
ing 1 − 1/q). It then argues that fractional quantum Hall
states at other (odd-denominator) filling factors can appear
when quasiholes or quasiparticles in the parent liquid them-
selves form a Laughlin-like state. Noting the relation between
filling factor ν, angular momentum L, and particle number
N , ν = limN→∞ N2

2L [66], we find that the angular momen-
tum of Eq. (16) corresponds to a fractional quantum Hall
state at ν = q−1

2q−1 , which matches the filling factor of the
first state in the hierarchical construction. This observation
suggests a feasible way of exploring hierarchical fractional
quantum Hall states using bosonic impurities with repulsive
contact interactions.

V. SUMMARY AND OUTLOOK

In this work, we study the angular momentum of nonin-
teracting fermionic impurities, bound to quasiholes in FQH
states constrained to lowest Landau levels, and represented by
Moore-Read wave functions, to determine the non-Abelian
statistics of fractional quasiparticle excitations. Such FQH
states can host Laughlin like quasiholes as zero energy excita-
tions, with fractional charge and Abelian statistics. However,
interestingly the Laughlin like quasiholes can also split into
states that can host HQHs with non-Abelian statistics, de-
scribed by Pfaffian wave functions.

When dynamical impurities bind to such HQHs, we
show that the quantum-statistical behavior of these objects
can be directly read from the impurity angular momentum.
The impurity particles see a renormalized magnetic field in
the presence of majority particles, which in turn depends on
the charge of the HQH. It should be possible to determine
the angular momentum of many impurities by taking into
account the renormalization of the magnetic field for a single
impurity, and by filling the single impurity angular momentum
levels, assuming them to be either fermions or bosons. Re-
markably, we see here (and in our Ref. [55]), via Monte Carlo
sampling of the many-body wave function, that the angular
momentum of many impurities does not quench either of the
limits, bosonic or fermionic, but actually interpolates between
the two, capturing the anyonic statistics. The interpolation
parameter for impurities bound to HQHs is filling dependent.
Its slope and a parity-dependent intercept are the same as the
statistical parameters we expect from the Moore-Read state. It
is in fact the parity of the particle number that truly reflects the
non-Abelian nature here, in contrast to the Abelian behavior
seen in case of Laughlin liquids. The statistical parameter ex-
tracted from the angular momentum of impurities reasonably
captures the change in intercept due to parity, confirming the
non-Abelian nature of the anyons. There are, however, some
fluctuations of the intercept, due to finite size effects, that can
be well understood by studying the Berry phase in a finite
system, upon exchange of impurities.

Moreover, instead of noninteracting fermionic impurities
detailed above, we also look at noninteracting bosonic im-
purities as tracer particles, but in the much simpler Abelian
situation. Through Monte Carlo simulations, we demonstrate
that total angular momenta for such bosonic impurities appear
to be proportional to the average angular momentum of a
single impurity in its ground state. This happens because,
confined to the lowest Landau level, such bosons form a con-
densate. Therefore we clearly see that such bosonic impurities
are not suitable as tracer particles to extract the statistical
behavior. However, if the bosons can repulsively interact with
each other, the situation becomes much more intriguing. We
then numerically calculate the total angular momentum of
such impurities and find that they are appropriately explained
by considering the total center of mass angular momentum
and the screened (due to other impurities) relative angular
momentum. Intriguingly, the total angular momentum corre-
sponds to a FQH state which matches the filling factor of
the first state in the hierarchical construction of odd denom-
inator FQH states. Such odd denominator states arise from
quasiparticles in the parent Laughlin liquid, forming their own
FQH states.
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Therefore our study not only opens up the experimentally
challenging possibility of directly reading the non-Abelian
statistics of the Moore-Read states via measurement of the
impurity angular momentum (equivalent to impurity density
measurements), it also shows how other odd denominator
Laughlin states, understood in terms of the hierarchical con-
struction, can be probed within the same approach.

In future work, it will be interesting to go beyond the
system studied here, and to address other types of fractional
quantum Hall systems. This might include other members of
the Read-Rezayi series, which in contrast to the Moore-Read
state may support Fibonacci rather than Ising anyons. Another
interesting subject could be the use of tracer particles in lattice
fractional quantum Hall systems. A construction of quasihole
states for a lattice version of the Moore-Read state has re-
cently been presented in Ref. [67].
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APPENDIX A: BERRY PHASE COMPUTATION

We are interested in computing the Berry phase associated
to a braiding of a HQH around another fixed in the center
of the system. The system is then described by Eq. (4) with
w1 = 0, w2 = Reiθ . The Berry phase for an adiabatic change
of the parameter θ at fixed R is then

γ = i
∮

dθ

〈
ψ∗

N
d

dθ

ψ

N

〉
, (A1)

where N = √〈ψ∗ψ〉 is the normalization of the wave
function. As this normalization is explicitly dependent on the
value of θ we have to explicitly consider it in the computation

of the derivative obtaining

γ = i
∮

dθ Im

(
1

N 2

〈
ψ∗ d

dθ
ψ

〉)
= i2π Im

(
1

N 2

〈
ψ∗ d

dθ
ψ

〉)
,

(A2)

where the last step is justified by the rotational invariance of
the system.

There is left to evaluate the derivative in the round brackets.
The only dependence on θ in the state (4) is in the Pfaffian
term. We then can use the identities

d

dθ
detW = d

dθ
[Pf(W )]2, (A3)

d

dθ
det(W ) = det(W )Tr

(
W −1 dW

dθ

)
, (A4)

to show that

dψ

dθ
= 1

2
Tr

(
W −1 dW

dθ

)
ψ. (A5)

We then obtain

γ = iπ Im

(
1

N 2

〈
ψ∗Tr

(
W −1 dW

dθ

)
ψ

〉)
. (A6)

The quantity inside the round bracket can then be com-
puted by Monte Carlo. To extract the statistical phase we
can remove the Aharonov-Bohm contribution by removing
the w1 quasihole: this corresponds to substituting W, ψ in
Eq. (A6) with the appropriate ones for a single HQH. Finally
the statistical parameter is α = γ /(2π ).

APPENDIX B: IMPURITIES BOUND TO
QUASIELECTRONS

Moore-Read states can also accommodate negatively
charged excitations called quasielectrons. Such an excitation
is related to an increase of the density of the electrons of
the liquid, thus to a decrease of the system’s total angular
momentum by N/2. To bind an impurity to a quasielectron, the
impurity then has to carry negative angular momentum. For a
quasihole, the increase in angular momentum by N/2 units
was achieved by inserting, in the Pfaffian of the MR wave-
function, a term W as in Eq. (8). For a quasielectron the same
cannot be done. If we multiplied with the inverse of W , to
remove angular momentum, we would produce singularities
in the wave function, as we would divide the wave function
by terms ∝ (zi − w). Instead, we can add impurity particles
with negative angular momentum, if they lay in the complex
conjugate of the liquid’s Landau level. This also seems to be
natural from the fact that, in order to bind to a quasielectron,
the impurity should carry positive charge, and therefore feel
opposite magnetic flux. Accordingly, we build the prefactor
W for quasielectrons from terms ∝ (zi − w)∗, and replace z∗

i
by ∂i in the standard way. These considerations finally lead to
the following ansatz:

W = (∂i − w∗
1 ) + (∂ j − w∗

1 )

zi − z j
. (B1)

With this description, quasielectrons and quasiholes are
treated in a fully analogous way, and we argue that, except
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for a change in the sign of the angular momentum, the be-
havior of impurities bound to quasiholes or to quasielectrons
is expected to be the same. Of course, this holds only as
long as one disregards finite-size effects which are likely to
be more pronounced in the quasielectron case due to the

higher density (and thus the nonzero interaction energy in
the system). We note that the derivatives in Eq. (B1) make
the quasielectron wave function unsuited for a numerical
treatment similar to the one which we have carried out for
quasiholes.
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