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Close to the Fermi energy, nodal loop semimetals have a torus-shaped, strongly anisotropic Fermi surface,
which affects their transport properties. Here we investigate the non-equilibrium dynamics of nodal loop
semimetals by going beyond linear response and determine the time evolution of the current after switching
on a homogeneous electric field. The current grows monotonically with time for electric fields perpendicular
to the nodal loop plane however it exhibits nonmonotonical behavior for field orientations aligned within the
plane. After an initial nonuniversal growth ∼Et , the current first reaches a plateau ∼E . Then, for perpendicular
directions, it increases while for in-plane directions it decreases with time to another plateau, still ∼E . These
features arise from interband processes. For long times or strong electric fields, the current grows as ∼E 3/2t or
∼E 3t2 for perpendicular or parallel electric fields, respectively. This nonlinear response represents an intraband
effect where the large number of excited quasiparticles respond to the electric field. Our analytical results are
benchmarked by the numerical evaluation of the current from continuum and tight-binding models of nodal loop
semimetals.
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I. INTRODUCTION

Recently, the investigation of properties of topologically
nontrivial states in solids has become one of the main fo-
cuses of condensed matter physics. The theoretical prediction
[1] and experimental realization [2] of topological insulators
have inspired the prediction of exotic phenomena such as the
topological magnetoelectric effect [3] and opened the door for
exciting new applications in tools for measuring fundamental
constants [4], in thermoelectric devices [5], and in architec-
tural elements of spintronics devices [6]. The bulk topological
insulators, just as ordinary insulators, are characterized by a
gap separating the valence and conduction bands. However,
in these materials, the topological properties of bulk states,
characterized by the Z2 invariant [7], guarantee the presence
of robust, spin-polarized states on the perimeter of samples.

Topology can still impact the properties of systems in
the absence of a band gap. The interplay of topology and
symmetry can also stabilize robust features in these so-called
topological semimetals [8–10]. In Dirac and Weyl semimet-
als [8,11] band degeneracies near the Fermi-level occur at a
discrete set of points in the Brillouin zone. Recently these sys-
tems have been intensively studied both theoretically [12] and
experimentally culminating in several interesting observations
such as the chiral anomaly, anomalous Hall conductivity, and
Fermi arc surface states [13–16].

The story of topological semimetals does not end with the
Dirac and Weyl points. In certain materials, called nodal line
semimetals, band crossings can appear not only in selected
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points but through continuous lines, which may form closed
loops or traverse the whole Brillouin zone [8–10]. Stabilizing
these nodal lines against gap opening requires the presence of
some additional symmetries [10,17–19].

When the protecting symmetry is broken, either a finite
band gap opens or the nodal line breaks into several nodal
points in the Brillouin zone. Nodal line semimetals, in gen-
eral, do not host protected edge states [9]; however, localized
surface states can appear between the surface projection of
the nodal lines [18,20] called drumhead states. These surface
states owing to their dispersionless nature may provide a fer-
tile ground for correlation-induced effects [21,22].

Model systems and material realizations of nodal line
semimetals have been recently proposed in hyperhoneycomb
structures [23,24], superlattices made of topological insula-
tors [10,25], alkaline-earth metal crystals [20,26,27], and cold
atomic systems [28,29].

There has been also intense experimental progress to in-
vestigate the surface properties using angle-resolved photoe-
mission spectroscopy (ARPES) [8,30,31] or magnetotransport
experiments to reveal the bulk characteristics [32–34]. The
characteristic features of nodal line semimetals have been
identified in various materials, e.g., PbTaSe2 [35,36], ZrSiTe
and ZrSiSe [32,37], or Ca3P2 [20]. Although the lack of
protected edge states makes nodal line semimetals quite chal-
lenging to identify experimentally the peculiar nature of their
Fermi surface endows them with characteristic electronic and
magnetic properties [38–40].

In this paper, we investigate the non-equilibrium dynamics
beyond the linear response of nodal loop semimetals after a
sudden switch of a homogeneous electric field. We consider a
simple continuum model with a single nodal loop located in
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FIG. 1. Schematic picture of the current in nodal loop semimet-
als when the electric field perpendicular to the nodal loop (blue line)
and parallel to it (red line). The black dashed lines represent the
timescales, which split up the time domain into four different region.

the (px, py) plane in the momentum space at the Fermi level.
Following the works in Refs. [41,42], we provide a detailed
derivation of the temporal behavior of the electric current for
two distinct cases: when the electric field is perpendicular
to the plane of the nodal loop (z direction) or parallel to it
(x direction). The short time/weak electric field limit of the
current is obtained using first-order perturbation theory in the
electric field while for the long time/strong electric field limit,
we use the Dykhne-Davis-Pechukas (DDP) method. The main
results are displayed in Fig. 1. We find that in both cases, the
time domain splits into four different regions. In the ultrashort
regime, the current is linear in time and electric field, and the
slope is determined by the high-energy cutoff. In the second
region, the current in the z direction reaches a plateau then
starts to increase linearly while in the x direction 1/t decay is
observed. For the third region, both currents are constant yet
again. This tendency of the current agrees with the suggested
behavior from the frequency-dependent optical conductivity
from Ref. [43].

In the last temporal regime, the electric field dependence of
the current becomes nonlinear. For the current, we obtained
∼E3/2t dependence in z direction and ∼E3t2 in x direction.
To test the applicability of our result, we calculated the cur-
rent by solving the Schrödinger equation numerically and
also compared it with the current obtained from tight-binding
calculations. The numerical results agree well with the time
and electric field dependence of the current obtained from
analytical calculations. These nonlinear features of the electric
response are expected to be observable in transport measure-
ments in nodal loop semimetals.

The paper is organized as follows: in Sec. II, we briefly
introduce the model Hamiltonian and the current operators. In
Secs. III and IV, the temporal and electric field dependence
of the current is investigated when the electric field is perpen-
dicular or parallel with the nodal loop, respectively. Then the
results of the tight-binding calculation are detailed in Sec. V.
In Sec. VI, the experimental possibilities are briefly discussed
and in Sec. VII our main results are summarized.

II. MODEL HAMILTONIAN AND OBSERVABLES

We consider the effective low-energy Hamiltonian of a
nodal loop semimetal [39] as

H =
[
� − p2

x + p2
y

2m

]
σx + vF pzσz = Pxσx + Pzσz, (1)

where σi’s (i = x, z) are the Pauli matrices, m ≈ 0.1 − 1 me

(me is the mass of an electron) is the effective mass [34,44,45],
� ≈ 0.1 − 1 eV is the energy scale that defines the nodal loop
radius [46,47], and vF ≈ 105 − 106 m/s is the Fermi-velocity
in the z direction [44,45]. Diagonalizing the Hamiltonian
yields the energy spectrum as E±(p) = ±εp with ± the band

index and εp =
√

(vF pz )2 + (� − (p2
x + p2

y )/2m)2. The ho-

mogeneous electric field switched on at t = 0 is introduced
as a time-dependent vector potential A(t ) through the Peierls
substitution: p → p − eA(t ) at t = 0. We are interested in two
different cases, when the electric field points to x and z direc-
tion, which leads us to two different vector potentials Ax(t ) =
[Et�(t ), 0, 0] and Az(t ) = [0, 0, Et�(t )], respectively.

For each momentum p the Hamiltonian Eq. (1) with the
time-dependent vector potential represents a two-level system.
Depending on the orientation of the electric field, the instanta-
neous spectrum exhibits one or two (avoided) level crossings,
thus a distinct temporal behavior of the electric current in the
x and z directions is expected. We investigate the current using
the framework of the Landau-Zener dynamics [48], with the
general time-dependent Schrödinger equation given by

H (t ) = Px(t )σx + Pz(t )σz, (2)

ih̄∂t�p(t ) = H (t )�p(t ). (3)

It is convenient to perform a time-dependent unitary transfor-
mation first [49], which diagonalizes H (t ), and brings us to
the adiabatic basis [48]. In the resulting equation, the positive
and negative energy eigenstates are readily distinguished, sim-
plifying further analytic and numerical analysis. The unitary
transformation is given by

U =
[

cos
(

θt
2

)
sin

(
θt
2

)
sin

(
θt
2

) − cos
(

θt
2

)], (4)

where tan(θt ) = Px(t )/Pz(t ). In the adiabatic basis, the
Schrödinger equation takes the form

ih̄∂t	p(t ) = [εp(t )σz + F (t )σy]	p(t ), (5)

where �p(t ) = U	p(t ) and F (t )σy = −ih̄U +∂tU arise due
to the explicit time-dependence of the unitary transformation.
F (t ) is referred to as diabatic coupling and is written as [50]

F (t ) = h̄
Pz(t )∂t Px(t ) − Px(t )∂t Pz(t )

2ε2
p(t )

. (6)

The initial condition of Eq. (5) corresponds to half filling
at zero temperature: 	T

p (t = 0) = [0, 1]. The current oper-
ator for a given momentum in the original basis is defined
as jp(t ) = ∂H (t )/∂A(t ) giving jx(t ) = e

m (px − eEt )σx and
jz(t ) = −evFσz. In the adiabatic basis, the expression for the
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FIG. 2. Visualization of the Landau-Zener dynamics when the
E points in the z direction. The gap between the two bands is
determined by p̂z initially. During the time evolution, the gap starts
to decrease and when p̂z − t̂ = 0 it closes at p̂⊥ = ±

√
�̂, then start

to increase. During the time evolution, the system is driven through
a quantum critical point [41].

current operator is

jx(t ) = e

m
(px − eEt )( sin(θt )σz − cos(θt )σx ), (7)

jz(t ) = −evF( cos(θt )σz + sin(θt )σx ). (8)

The contribution to the current from a given momentum
mode is the expectation value of these operators. By denoting
	T

p (t ) = [α(t ), β(t )], we introduce the transition probability
as np(t ) = |α(t )|2, which gives the number of electrons ex-
cited from the lower to the upper band (and also number of
the holes remaining in the lower band). The contribution of
a given momentum state to the current expressed with the
transition probability reads as

〈 jx〉p(t ) = e

m
(px − eEt ) sin(θt )(2np(t ) − 1) + 2εp(t )

E
∂t np(t ),

(9)

〈 jz〉p(t ) = −evF cos(θt )(2np(t ) − 1) + 2εp(t )

E
∂t np(t ).

(10)

In both cases, the current consists of an intraband (first
term) and interband (second term) part, which are also called
conduction and polarization current in QED terminology,
respectively [41,42,51]. The total current is given by the mo-
mentum integral of the momentum resolved contributions. We
note that the np(t ) independent terms, corresponding to fully
occupied or empty states, give no contribution to the current
and hence can be omitted [41,52]. The properties of np(t ) and
the electric current are discussed in the following sections.

III. CURRENT IN THE Z DIRECTION

In this section, the constant electric field is aligned to the
z direction, i.e., it is perpendicular to the nodal loop. The
time-dependent vector potential is A(t ) = [0, 0, Et�(t )], and
the variables in Eq. (2) are Px = � − (p2

x + p2
y )/2m, which

remain time independent and Pz(t ) = vF(pz − eEt ). The evo-
lution of the instantaneous spectrum is plotted in Fig. 2.

The time-dependent Schrödinger equation and the current
contribution in the adiabatic basis for t > 0 read as

ih̄∂t	p(t ) =
[
εp(t )σz + h̄vFeE

2ε2
p(t )

(
� − p2

⊥
2m

)
σy

]
	p(t ),

(11)

〈 jz〉p(t ) = −evF
vF(pz − eEt )

εp(t )
(2np(t ) − 1)

+ 2εp(t )

E
∂t np(t ). (12)

Here, we introduced p⊥ =
√

p2
x + p2

y. The scaling properties

of the Schrödinger equation allow us to introduce dimension-
less variables as t̂ = t/τz, �̂ = �τz/h̄, p̂z = vF pzτz/h̄, p̂⊥ =
p⊥

√
τz/2mh̄ where the scaling factor τz = √

h̄/evFE defines
the natural time scale connected to the electric field. The
transition probability behaves differently for t̂ 	 1 and t̂ 
 1,
which also defines the short- and long-time limits of the to-
tal current, respectively. As we show below, for short times,
the dominant contribution to the current is coming from the
polarization part while in the long-time limit, the current is
determined by the number of excited electrons in the conduc-
tion band [41,53].

A. Short-time evolution of the current

The Schrödinger equation in Eq. (11) can be solved analyt-
ically for arbitrary times and electric fields [51,54], but it does
not give an immediately transparent solution for the transition
probability. Therefore it is more practical to obtain np(t ) from
approximate solutions in different limits of t . In the short-time
limit, employing first-order perturbation theory in E yields the
transition probability as

np(t ) = (h̄vFeE )2

4ε6
p

(
� − p2

⊥
2m

)2

sin2
(εpt

h̄

)
, (13)

which is valid except in the close vicinity of the nodal loop,
i.e., εp 
 vFeEt and resembles closely to the result obtained
for graphene [41]. To check the validity of our result, we cal-
culated the transition probability by solving the Schrödinger
equation in Eq. (11) numerically using the explicit Runge-
Kutta method. We obtained good agreement between the
analytical and numerical results visualized on the left side of
Fig. 3.

Using this result in Eq. (12), the conduction part of the
current contains already higher (second)-order terms in elec-
tric field and gives negligible contribution to the total current.
Only the polarization current contributes to the linear order in
the electric field as

〈 jz〉(t ) = v2
Fe2E

(2π )2h̄2

∫ �z

0
d pz

∫ �⊥

0
d p⊥ p⊥

(� − p2
⊥/2m)2

ε4
p

× sin

(
2εpt

h̄

)
, (14)

�z and �⊥ are the momentum cutoffs, which arise from
the high-energy cutoff W determined by the bandwidth as
W = vF�z = �2

⊥/2m. In Eq. (14), two different energy scales
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FIG. 3. Transition probability for short (left) and long (right)
times. The np(t ) resembles closely to the transition probability ob-
tained for graphene and Weyl semimetals [41,42], i.e., dipolar for
short times and cylindrical for long times, but shifted to p̂⊥ = ±

√
�̂.

are present, W and �, which in turn determine three different
temporal regions: the ultrashort time transient response, when
t 	 h̄/W , the second when h̄/W 	 t 	 h̄/� and the third
region when h̄/� 	 t 	 √

h̄/evFE .
For the ultrashort time transient response (t 	 h̄/W ), the

current is obtained as

〈 jz〉p(t ) = v2
Fe2Et

(2π )2h̄3

(� − p2
⊥/2m)2√

(vF pz )2 + (� − p2
⊥/2m)2

3 . (15)

The momentum integral over pz and p⊥ yields

〈 jz〉(t ) = me2vFE

2π2h̄3 W t ln[
√

2 + 1], (16)

in the � 	 W limit. This behavior has also been observed in
Dirac and Weyl fermions [41,42] with the picture of classical
particles accelerated by an external electric field. These parti-
cles obey Newton’s equation with the effective mass given by
m−1

zz = ∂2εp(t )/∂ p2
z .

In the second region, when h̄/W 	 t 	 h̄/�, the current
saturates to a constant value similarly to graphene [41]. This
can be explained by symmetry considerations since for the
electric field aligned to the z direction, the cylindrical sym-
metry of the system remains intact. Therefore, the nodal loop
can be thought of as two effective, graphene-like systems with
high-energy cutoff W and �, originating from states outside
or inside the nodal loop, respectively. Then, the current con-
tribution coming from the first graphene-like system saturates
first when h̄/W 	 t [41,42]. With increasing time, an addi-
tional linear term in time arises from the second graphene-like

FIG. 4. Temporal behavior of the current after switching on the
electric field. The blue and black dashed lines represent the polariza-
tion current in Eq. (17) and Eq. (18), respectively. When t̂ 
 1 the
conductive current becomes dominant, scaling as ∼t̂ .

system with cutoff �. The total current can be approximated
as

〈 jz〉(t ) = me2vFE

(2π )2h̄2

[
π2

8
+ 2t�

h̄

]
. (17)

In the third temporal region, the additional � dependent part
also saturates, and the current reaches another constant value

〈 jz〉(t ) = me2vFE

16h̄2 . (18)

This result allows us to define a dc conductivity by taking
the time-independent current in Eq. (18) and divide it with
the applied electric field as σ 0

z = jz/E = me2vF/16h̄2. This
agrees with the optical conductivity at ω → 0 in Ref. [43]
up to a factor of two, due to the spin degeneracy. As the
frequency starts to increase, the optical conductivity decreases
with 1/ω while for high frequencies, it tends to a constant
value σ 0

z /2. All these features in the optical conductivity are
in accord with our time-dependent current. Our analytical and
numerical results agree and are illustrated in Fig. 4.

B. Long-time, strong electric field limit

The long time, strong electric field limit, i.e., t 
√
h̄/evFE is out of the scope of perturbation theory. Although

the Schrödinger equation can be solved exactly for arbitrary
times and electric fields in terms of the parabolic cylinder
functions [51], it does not provide transparent expressions for
the transition probability and the current. Instead, we rely
on the so-called WKB approach to obtain np(t ), which is
often used to determine transition probability upon tunneling
through a barrier [55]. In practice, we use its temporal vari-
ant, the Dykhne-Davis-Pechukas (DDP) method [56], which
is also known as Landau-Dykhne method for linear time
dependence [53].

For long t and large E , the dispersion relation has lin-
ear time dependence with an (avoided) crossing visualized
in Fig. 2. Then using the DDP method, we obtain for the
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transition probability [41,42,53]

np(t ) = �(pz )�(eEt − pz ) exp

[
−π (� − p2

⊥/2m)2

h̄vFeE

]
. (19)

The exponential term is also called the Schwinger pair pro-
duction rate [51,57]. The result in Eq. (19) agrees well with
transition probability obtained from numerical calculations,
visualized in Fig. 3. Eq. (19) is applicable only when (pz, pz −
eEt ) 
 |� − p2

⊥/2m|/vF holds.
Using this, we calculate the total current, which is domi-

nated by the conductive part as

〈 jz〉(t ) = − 2ev2
F

(2π )2h̄3

∫ ∞

−∞
d pz

∫ ∞

0
d p⊥ p⊥

pz − eEt

εp(t )
np(t ).

(20)
We can estimate the overall time and field dependence by
rescaling the integral. The transition between bands occurs
only if the system is driven through the touching points
as plotted in Fig. 2. This holds for 0 	 pz 	 eEt , so the
number of excited electrons can be characterized by a lon-
gitudinally growing cylinder of length ∼Et [42]. Using the
scaling parameter τz, we rescale p⊥ as p̂⊥ = p⊥

√
τz/(2mh̄) in

the second integral of Eq. (20), which brings out an additional
∼E1/2 factor. Consequently, the total current should scale with
∼E3/2t .

The integrals over pz and p⊥ yield

〈 jz〉(t ) = 2me2vFE

(2π )2h̄2

√
vFeE

h̄
t fz

( √
π�√

h̄vFeE

)
, (21)

where fz(x) = (1 + erf(x))/2 with erf(x), the error function
[58]. The time and electric field dependence agree with our
estimation from scaling and resembles closely to electric cur-
rent in graphene [41]. The number of excited particles is given
by

N (t ) = 1

(2π )3h̄3

∫
d3 p np(t )

= 2meE

(2π )2h̄2

√
vFeE

h̄
t fz

( √
π�√

h̄vFeE

)
, (22)

which leads to 〈 jz〉(t ) = evFN (t ). The current increases lin-
early with time due to the increasing number of electron-hole
pairs, which propagate with a constant vF velocity in the con-
duction and valence band. Due to the nodal loop, an additional
� dependent part also arises, which is responsible to a factor
of 2 enhancement in the electric current. In the � → ∞ or
E → 0 limit, due to the structure of the dispersion relation, the
electrons can tunnel to twice as many states as in the � → 0
or E → ∞ limit, which explains the factor of 2 difference in
the electric current, visualized in Fig. 5.

IV. CURRENT IN THE x DIRECTION

To calculate the current in the x direction, we use the
vector potential A(t ) = [Et�(t ), 0, 0]. The variables defined
in Eq. (2) are Pz = vF pz and Px = �eff − (px − eEt )2/2m
where �eff = � − p2

y/2m. In contrast with the previous case,
the energy-momentum dispersion relation has a t2 temporal
dependence for t → ∞, but the nodal loop is shifted in the x

FIG. 5. Schematic plot of the dispersion relation in the �̂ → 0
and �̂ → ∞ limit. For a given energy (green dashed line) slightly
above the gap edge, there are twice as many empty states in the
conduction band for �̂ large, therefore the current is 2 times larger.

direction during the time evolution. The temporal behavior of
the instantaneous spectrum is visualized in Fig. 6.

The time-dependent Schrödinger equation and the electric
current contribution for a given momentum mode in the adia-
batic basis are given by

ih̄∂t	p(t ) =
[
εp(t )σz + h̄vFeE pz(px − eEt )

2mε2
p(t )

σy

]
	p(t ),

(23)

〈 jx〉p(t ) = e

m

(px − eEt )

εp(t )

(
�eff − (px − eEt )2

2m

)

× (2np(t ) − 1) + 2εp(t )

E
∂t np(t ). (24)

We again introduce dimensionless variables as t̂ = t/τx,
where τx = 3

√
2mh̄/(eE )2 coming from the Schrödinger equa-

tion, giving �̂eff = �effτx/h̄, p̂x/y = px/y
√

τx/2mh̄ and p̂z =

FIG. 6. Left panel: The time evolution of the dispersion relation
is illustrated. The time-dependent vector potential shifts the nodal
loop in the x direction. Right panel: The time evolution of p̂x at
different values of �̂eff and p̂z. When �̂eff > 0, p̂z determines the
gap, and �̂eff > 0 sets the location of the two minimum/maximum
points. On the other hand, when �̂eff < 0 the gap starts to increase
and only one minimum/maximum remains.
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FIG. 7. Transition probability for short (top) and long times
when �eff > 0 (middle) and �eff < 0 (bottom). For short times, the
numerical result agrees with the result from first-order perturbation
theory. For long times, when �eff > 0, we have three different re-
gions (separated with white lines) depending on how far the nodal
loop is shifted from its original position. In this case, the modified
DDP formula works well for the transition probability. In the last
case, when �eff < 0 the simple DDP formula is reliable only in
the adiabatic limit ( p̂z → ∞). However, the disagreement has only
a minor effect on the current since the number of excited particles
decreases exponentially as �eff → −∞.

vF pzτx/h̄. In order to analyze the Schrödinger equation, we
apply the same approximations as before, namely first-order
perturbation theory for t̂ 	 1 and the DDP method for t̂ 
 1.

A. Short-time and weak electric field limit

We again use lowest order perturbation theory to obtain the
transition probability in the t̂ 	 1 limit.

After some straightforward algebra, we get

np(t ) =
(

h̄vFeE

2m

)2 p2
x p2

z

ε6
p

sin2
(εpt

h̄

)
, (25)

which is valid for εp 
 (eEt )2/2m. The transition probability
is evaluated by solving the Schrödinger equation in Eq. (23)
numerically and is plotted in Fig. 7. For short times and
low electric fields, we obtained good agreement between the
numerical and analytical result.

For short times, the dominant contribution to the current
comes from the polarization term as

〈 jx〉(t ) = e2v2
FE

2m2(2π )2h̄2

∫ �z

0
d pz

∫ �⊥

0
d p⊥

p3
⊥ p2

z

ε4
p

sin

(
2εpt

h̄

)
,

(26)

where p⊥ =
√

p2
x + p2

y and the high-energy cutoff defined

similarly to 〈 jz〉(t ) as W = vF�z = �2
⊥/2m. Here again, we

have two competing energy scales, which separate the time
domain into three distinct regions.

The ultrashort response, i.e., t 	 h̄/W , is obtained by ex-
panding the integral in time up to first order. For W 
 �, we
obtain

〈 jx〉(t ) = e2EtW 2

(2π )2h̄3vF
[1 −

√
2 + ln(1 +

√
2)], (27)

which grows linearly with time and electric field. This result
is understood from fully classical consideration by applying
Newton’s equation with effective mass m−1

xx = ∂2εp(t )/∂ p2
x.

For h̄/W 	 t 	 h̄/�, the current does not saturate but starts
to decay in time as 1/t and tends to a minimum value. In this
time interval the current reads as

〈 jx〉(t ) = e2E

(2π )2h̄vF

[
�π2

8
+ h̄ sin2(W t/h̄)

3t

]
. (28)

The oscillating part in Eq. (28) is not universal and comes
from the sharp energy cutoff. By applying a smooth ex-
ponential cutoff, exp(−p/�) instead of the sharp one,
oscillations are absent and the second term is modified to
2h̄W 2t/(3(4W 2t2 + 1)). This also decays as ∼1/t with in-
creasing time, similarly to the sharp cutoff scheme, which
means that it is a universal characteristic feature of nodal loop
semimetals.

For h̄/� 	 t 	 3
√

2mh̄/(eE )2, the current tends to a time
independent constant as

〈 jx〉(t ) = e2E

(2π )2h̄vF

[
�π2

4
+ h̄(sin2(W t/h̄) − 1/2)

3t

]
. (29)

Taking the t → ∞ limit in Eq. (29), the dc response is σ 0
x =

jx/E = e2�/16h̄2vF, which agrees with Ref. [43]. Moreover,
the optical conductivity grows linearly with the frequency
with increasing frequency, which corresponds to the 1/t decay
in our calculation. The current is also calculated numerically
and agrees with our analytical findings in Fig. 8.

B. Long-time evolution of the current

Once more we employ the DDP method, using the results
of Ref. [56], to elucidate the long time temporal behavior of
the transition probability.

For long t and large E , the dispersion relation displays ∼t2

time-dependence with two (avoided) crossings, visualized in
Fig. 6. The diabatic coupling reads as

F (p, t ) = h̄vFeE pz(px − eEt )

2mε2
p(t )

, (30)
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FIG. 8. Short and long time behavior of the current after switch-
ing on the electric field in x direction for large and small values of �̂.
The blue dashed line represents the ∼1/t decay of the polarization
current while the black dashed line shows the t → ∞ limit of the
polarization current from Eq. (29), which is ∼σ 0

x E . The insets show
the long time behavior when the conductive current is dominant. For
large �̂ a linear term in time can arise, due to the single channel
transitions, but it is overwhelmed by the leading ∼t̂2 term with
increasing time.

which is an odd function in time for eEt 
 px and px is small.
The wave function of Eq. (23) is rewritten as

	p(t ) =
[

a1(t ) exp
[
i
∫ t

0 εp(t ′)dt ′]
a2(t ) exp

[−i
∫ t

0 εp(t ′)dt ′]
]

(31)

with initial conditions ai
1 = a1(0) = 0 and ai

2 = a2(0) = 1
and the transition probability is np(t ) = |a f

1 /a f
2 |2, where a f

1,2
denotes the final states in the t → ∞ limit. In the adiabatic
limit, for a single crossing point the connection between the
initial and final states is given by[

a f
1

a f
2

]
=

[
1 0

eiDc 1

][
ai

1

ai
2

]
, (32)

where Dc is the time integral over the classically forbidden
region where εp(t ) is imaginary. The limits of the integral are
given by the complex crossing points where ε(tc) = 0 as

tc = ±
√

2m

eE

√
�eff ± i|vF pz|, (33)

and Dc is

Dc = 2√
β

∫ √
μ+i

0
dz

√
1 + (μ − z2)2, (34)

where β = (h̄eE )2/(2m|vF pz|3) and μ = �eff/|vF pz|. We can
identify

√
β as an adiabaticity parameter since as

√
β → 0

the transition probability also tends to 0 [56]. The integral
yields [56]

Dc = π

2
√

β

√
(μ + i)(μ2 + 1)2F1

[
1

2
,−1

2
; 2;

μ + i

μ − i

]
, (35)

where 2F1(a, b; c; x) is the hypergeometric function [58].
When only one channel is available to tunnel through the bar-
rier, i.e., when �eff > 0 and |px| 	 √

2m�eff or |px − eEt | 	√
2m�eff, the transition probability is

n1
p(t ) = �

(√
2m�eff − |px|

)
exp (−2Im[Dc]). (36)

To take into account both tunneling channels when√
2m�eff 	 px 	 eEt − √

2m�eff for �eff > 0, we apply the
matrix from Eq. (32) twice for the two crossing points, but for
the second time, the off-diagonal elements pick up an extra
minus sign. This extra minus sign arises due to the diabatic
coupling in Eq. (30), which has a freedom in its sign [59]. By
fixing F (p, t ) to be positive for the first crossing point, then
we have to insert a negative sign for the off-diagonal terms
since F (p, t ) is an odd function in time for eEt 
 px [59].
The final states are given by[

a f
1

a f
2

]
=

[
1 0

eiDc − e−iD∗
c 1

][
ai

1

ai
2

]
. (37)

For the two-channel tunneling case, the transition probability
yields

n2+
p (t ) = �(px −

√
2m�eff )�(eEt −

√
2m�eff − px )

× 4 sin2(Re[Dc])e−2Im[Dc]. (38)

This method is also applicable for the opposite, �eff < 0 case,
though with a modified time-dependent part due to the lack of
the single channel transition regions. In this case, the transi-
tion probability reads as

n2−
p (t ) = �(px )�(eEt − px )4 sin2 (Re[Dc])e−2Im[Dc]. (39)

These transition probabilities are expected to work in prin-
ciple only in the adiabatic limit, i.e.,

√
β → 0 [56,59,60].

However, for �eff > 0 case, we can indeed go beyond the adi-
abatic limit and obtain results superior to n2+

p (t ) in Eq. (38).
For large �eff, we can treat our system as two, independent
Landau-Zener models. Its S matrix is known exactly between
the initial and final states as [61][

a f
1

a f
2

]
=

[√
1 − |R|2e−iχ −R

R
√

1 − |R|2e+iχ

][
ai

1

ai
2

]
, (40)

where R = exp[iDc] with the phase factor

χ = π

4
+ λ

2
ln

(
λ

2

)
− λ

2
+ arg

[
�

(
1 − iλ

2

)]
, (41)
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and λ = 1/(2
√

βμ). Applying the S matrix for both crossing
points in the same way as in Eq. (37), we end up with

n2mod
p (t ) = �(px −

√
2m�eff )�(eEt −

√
2m�eff − px )

× 4 sin2(Re[Dc] + χ )e−2Im[Dc](1 − e−2Im[Dc] ).

(42)

This expression, though similar to n2+
p (t ) in Eq. (38), works

much better and is used instead of n2+
p (t ) in the following. We

compared the analytical transition probabilities from DDP and
the numerical result in the second and third row of Fig. 7.
For �eff > 0, n1

p(t ) and n2mod
p (t ) agrees with the numerical

calculations even beyond the adiabatic limit (i.e., pz → 0) as
advertised above. Outside the nodal loop (�eff < 0), the nu-
merical and analytical results differ. However this region gives
a tiny contribution to the current since as �eff → −∞ the
transition probability is exponentially suppressed due to the
increasing gap. Finally, the results for transition probability
are summarized as

np(t ) = �(�eff )
(
n1

p(t ) + n1
eEt−px

(t ) + n2mod
p (t )

)
+�(−�eff )n

2−
p (t ). (43)

The temporal and electric field scaling of the current can be
estimated similarly to the previous case. Rescaling the py and
pz variables with τx gives a factor of E . The excitation to the
upper band occurs only upon complete nonadiabatic passage
through the touching points, which holds for 0 	 px 	 eEt
so the number of excited electrons scales with ∼Et . The
velocity itself is explicitly time-dependent, which also brings
a factor of ∼Et . Combining these, we predict E3t2 scaling for
the total current.

This prediction is reproduced by using (42) for the conduc-
tive current contribution in Eq. (24) as

〈 jx〉(t ) = − 2

(2π )3h̄3

∫
d3 p(∂px εp(t ))np(t ), (44)

while the polarization part gives only a subleading contri-
bution ∼E . The one channel tunnelings contribute with ∼t
terms to the current for t → ∞ while the other part gives the
dominant, ∼t2 contribution as

〈 jx〉(t ) = e4E3

(2π )3mh̄2vF
t2 fx

(
3

√
2m

(h̄eE )2
�

)
, (45)

where fx(x) contains the result of py and pz integrals and
satisfies fx(0) = const. and fx(x → ∞) ∼ x2/3. This means
that for small and large �̂, the current scales as E3t2 and
�2/3E23/9t2, respectively. Given the large electric field expo-
nent close to 3, these can be written to a good approximation
as E3t2.

The field and time dependence of the electric current agree
with our previous estimation. The number of the excited par-
ticles are estimated as

N (t ) =
∫

d3 pnp(t ) ≈ e2E2t

(2π )3h̄vF
fx

(
3

√
2m

(h̄eE )2
�

)
, (46)

which leads to 〈 jx〉(t ) = ev(t )N (t ) where v(t ) = eEt/m is the
time-dependent part of the velocity operator. Therefore, the

current comes from the increasing number of particles excited
to the upper band, but also these particles are accelerated by
the electric field.

V. TIGHT-BINDING MODEL

To validate the results obtained from the continuum model,
we performed tight-binding calculations [29,62] based on the
lattice Hamiltonian defined as

HTB = [δ − γ cos(kxa) − γ cos(kya)]σx − γ sin(kza)σz,

(47)
where ki’s (i = x, y, z) are the wave numbers in different di-
rections, γ is the hopping integral, a is the lattice constant,
and δ determines the radius of the nodal loop. The nodal
loops are located in the kx − ky plane for kza = 0 and π .
In order to avoid their overlaps and the concomitant Bloch
oscillations, we use aeEt/h̄ < π in the numerics. We can
identify the parameters of the continuum model by expanding
Eq. (47) in ki up to second order, which gives � = 2γ − δ,
m = h̄2/a2γ and vF = γ a/h̄. We solved the time-dependent
Schrödinger equation on a finite cubic lattice with 300 unit
cells in each direction with an adaptive grid. We introduce
the dimensionless electric field as Ê = eEvFh̄/γ 2 = eEa/γ .
The obtained current for various electric fields are shown in
Figs. 9 and 10, displaying nice agreement with our analytical
findings.

In the z direction, the current has two plateaus for short
times, while for long times it scales with ∼E3/2t . In the x
direction, the current decays for short times and grows ∼E3t2

for later times. Due to additional linear subleading terms scal-
ing is adversely affected in the x direction as compared to the
z orientation.

We calculated numerically the polarization current using
first-order perturbation theory in the electric field, which is
represented with the black dashed lines in Fig. 9 and Fig. 10.
Similarly to the continuum model, the t → ∞ limit defines
the static current as σ 0

x E and σ 0
z E for x and z direction,

respectively. Overall, the long- and short-time behavior of the
current from tight-binding calculations agrees well with the
analytical and numerical results from the continuum model.

VI. EXPERIMENTAL POSSIBILITIES

So far, we discussed and evaluated the real time evolution
of the electric current, after switching on an electric field. Here
we briefly discuss possible experiments related to measuring
the current.

First, by following time dependence of the current, the
observation of the characteristic crossover timescales allows
us to determine various parameters of nodal loop semimet-
als. The electric field dependent timescales τx/z separate the
short- and long-time behavior. By experimentally identifying
these timescales, the Fermi velocity and the effective mass
can be obtained as vF = h̄/(eEτ 2

z ) and m = τ 3
x (eE )2/(2h̄).

The short-time evolution of the current also contains useful
information about the nodal loop parameter � and the band-
width. When the electric field aligned to the z direction, two
plateaus are observable when t > h̄/W and t > h̄/�. Identi-
fying the temporal crossing points when the current reaches
these plateaus allows us to estimate the bandwidth and the
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FIG. 9. The electric current from the tight-binding model for Ê
in the z direction. Top panel: Short-time response with δ/γ = 1.5.
The brown and light blue dashed lines represent the two time scales
1/δ and 1/� = 1/(2γ − δ), respectively. The polarization current
dominates, represented by the black dashed line. Bottom panel:
Long-time response with with δ/γ = 1.5. The orange dashed line
represents the ∼E 3/2t prediction. For large electric fields and long
times, Bloch oscillations start to kick in.

nodal loop parameter. Similarly, the peak in jx current before
the 1/t decay also determines the bandwidth.

One way to detect the nonlinear electric response is to
experimentally realize these nodal loop semimetals in ultra-
cold atomic systems [63,64]. Applying a weak magnetic-field
gradient [63] or tuning the frequency difference of laser waves
responsible for the optical lattice [65] create a constant force,
which is equivalent to switching on an electric field in solid-
state systems. The main advantages of these measurements
are the absence of scattering and dissipation and strong elec-
tric fields are not needed to obtain the nonlinear response.
According to our tight-binding calculations, the current from
the electron-hole pair creation is observable before the Bloch
oscillations kick in.

Another way to obtain the short and late time electric
response of nodal loop semimetals is to measure the current in
a solid-state realization. However, in these systems scattering
processes appear due to the phonons, impurities, etc. The
Drude picture provides a simple way to interpret our results
in the presence of impurities: The charge carriers move bal-
listically until a momentum transfer happens due to scattering
processes. The average lifetime can be characterized by the

FIG. 10. The electric current from the tight-binding model for Ê
pointing to the x direction. Top panel: Short-time response for δ/γ =
1.5. The brown dashed line represents the border of the ultrashort
time domain at 1/δ. The black dashed line represents the polarization
current. Bottom panel: Long-time response with δ/γ = 1.97. The
orange dashed line represents our prediction ∼E 3t2. The additional
constant term, j0

x is the dimensionless static current coming from the
polarization current. For longer times, the Bloch oscillations would
kick in.

relaxation time τsc, which introduces a restricting time scale to
our system. For t > τsc, the current become stationary, which
is estimated by substituting t → τsc in the corresponding ex-
pressions for the current. Consequently, long-time features of
the electric current are only observable if τx/z < τsc, which is
equivalent to E > Ex/z,c, where Ex/z,c is the critical electric
field, which separates the linear from the nonlinear regions.
It is defined as Ez,c = h̄/(evFτ

2
sc) for z direction and Ex,c =√

2mh̄/(e2τ 3
sc) for x direction. The scattering time is estimated

as τsc ∼ 10−2 − 10−1 ps [45,66], which implies that the min-
imal electric field required to observe nonlinear transport is
Ex/z,c ∼ 105 − 107 V/m. For EE > Ex/z,c, the current changes
its slope as a function of the electric field, but an even larger
electric field window may be required to obtain the corre-
sponding exponents.

VII. CONCLUSION

In this paper, we have investigated the time evolution of the
non-equilibrium electric current of nodal loop semimetals af-
ter switching on a homogeneous electric field. We considered
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TABLE I. Time evolution and electric field dependence of the current in nodal loop semimetals

Ultrashort response Kubo I Kubo II Long time response
t 	 h̄/W h̄/W 	 t 	 h̄/� h̄/� 	 t 	 τx/z τx/z 	 t

x direction jx ∼ Et jx ∼ E (const. + 1/t ) jx ∼ E jx ∼ E 3t2

z direction jz ∼ Et jz ∼ E (const. + t ) jz ∼ E jz ∼ E 3/2t

the two characteristic cases, namely when the electric field is
within the plane of the loop or perpendicular to it. To calculate
the current, we determined the transition probabilities by us-
ing a variety of techniques, including first-order perturbation
theory for short times and weak electric fields and the DDP
method for long times and strong electric fields. Based on this,
the intra- and interband contributions to the electric current are
identified.

For short times and weak electric fields, the interband
processes dominate the current for both electric field orien-
tations, and the ensuing time dependence can also be formally
understood from a Kubo formula calculation of the optical
conductivity. For long times and strong fields, on the other
hand, the current originates from intraband processes, namely
by the increasing number of excited quasiparticles in the ini-
tially empty upper band. In addition, we benchmarked our
analytical results by the numerical solution of the Schrödinger

equation both in the continuum limit and for tight-binding
models. Our results are summarized in Table I.
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