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Scaling properties of a spatial one-particle density-matrix entropy in many-body localized systems
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We investigate a spatial subsystem entropy extracted from the one-particle density matrix (OPDM) of one-
dimensional disordered interacting fermions that host a many-body localized (MBL) phase. Deep in the putative
MBL regime, this OPDM entropy exhibits the salient scaling features of localization, even though it provides
only an upper bound to the von Neumann entropy. First, we numerically show that the OPDM entropy of the
eigenstates obeys an area law. Second, like the von Neumann entropy, the OPDM entropy grows logarithmically
with time after a quantum quench, albeit with a different prefactor. Both these features survive at moderately
large interactions and well toward the transition into the ergodic phase. We discuss prospects for calculating the
OPDM entropy using approximate numerical methods and for its measurement in quantum gas experiments.
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I. INTRODUCTION

Many-body localized (MBL) systems challenge the usual
paradigm of thermalization [1–5]. While it is well established
that, for noninteracting particles, disorder leads to Anderson
localization [6], it has been suggested that, for sufficiently
strong disorder, a localized phase survives in the presence of
interactions [7,8]. Despite intense theoretical effort (see recent
reviews [1–5]), the scenario is not fully settled. On the exper-
imental side, MBL has been investigated in trapped ions [9],
ultracold atoms [10–14], or superconducting qubits [15–18].
Experimental signatures of MBL have been observed in the
quasiperiodic Aubry-André Fermi-Hubbard model [11,19],
the disordered Ising model [9], the disordered Bose-Hubbard
model (BHM) [10,14], and the quasiperiodic Aubry-André
BHM [12,13].

Entanglement-related measures, such as the von Neumann
entropy, display several intriguing behaviors in the puta-
tive MBL phase. First, a distinctive feature of localization
is that eigenstates exhibit area-law entanglement [20–22],
in stark contrast with the volume law expected in clean
systems. Second, the entanglement entropy grows logarith-
mically after global quenches [23–26], which is regarded as
“smoking gun” evidence for MBL. Indeed, this is different
in Anderson-localized systems, where the entanglement en-
tropy saturates, and in clean systems, where a linear behavior
occurs, rigorously established for integrable models [27–30].
The logarithmic growth can be explained by the existence
of emergent local integrals of motion in the MBL phase
[25,31–33]. Remarkably, the logarithmic growth of the entan-
glement entropy has been observed in cold-atom experiments
[13] and systems of superconducting qubits [15,17]. However,
measuring entanglement is a challenging task and cannot eas-
ily be scaled up to larger systems, as it requires full quantum
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state tomography [15], accessing all the n-point correlation
functions [13,17], or a high-fidelity state preparation [13].

Here, we show that a suitably defined spatial-subsystem
entropy based on the one-particle density matrix (OPDM)
computed in eigenstates and its out-of-equilibrium dynamics
after a quantum quench contains salient information about
MBL phases, akin to the behavior of the spatial entangle-
ment entropy. The main motivation for studying the OPDM
is that, in the MBL phase, the eigenstates of the OPDM are
localized in real space but delocalized in the ergodic phase
[34,35]. Moreover, its eigenvalues indicate Fock-space local-
ization in the MBL regime [34,35], a defining feature of MBL
[8,36–38]. This is reflected in the OPDM being close to that
of a free-fermion system [34,35,39–43] and its eigenmodes
being a proxy for the localized quasiparticles [35].

We focus on the OPDM restricted to a subsystem A and
on the associated entropy. For noninteracting fermionic sys-
tems, this coincides with the von Neumann entropy [44,45].
We consider a generic model of disordered spinless fermions
with nearest-neighbor interactions. Numerically, we show
that, in the MBL phase, the disorder-averaged OPDM entropy
exhibits an area law in eigenstates like the von Neumann
entropy. This is remarkable because, in the presence of
interactions, the OPDM entropy is not a proper (spatial) en-
tanglement measure.

Crucially, after a quantum quench in the MBL phase,
the OPDM entropy increases logarithmically with time like
the von Neumann entropy. The prefactor of the logarithmic
growth is nonuniversal, and it is different from that of the
von Neumann entropy. The logarithmic growth survives for
moderately strong interactions and as the disorder strength is
decreased. In the noninteracting limit, i.e., for the Anderson
insulator, the OPDM entropy saturates. Our results establish
the OPDM entropy as an alternative diagnostic tool for the
MBL phase. This could be relevant for both experiments
and approximate theoretical approaches inspired by ab initio
methods. Importantly, provided that one has access to the
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correlation function [46], the computational cost of extracting
the OPDM entropy from the correlation function is only poly-
nomial. We also note that the OPDM diagnostic tool that we
propose is not limited to the regime of weak interactions, in
contrast with other one-body measures based on Anderson or-
bitals [47] or the self-consistent Hartree-Fock approximation
[48].

The plan of the paper is following: In Sec. II, we intro-
duce a model of spinless fermions with a nearest-neighbor
interaction and provide basic definitions. The OPDM entropy
will be introduced in Sec. III. In Sec. IV, we provide details
of the numerical simulations. The distributions of the OPDM
entropy for our model are discussed in Sec. V. We then numer-
ically demonstrate that the disorder-averaged OPDM entropy
satisfies an area law in Sec. VI. Finally, we show in Sec. VII
that the disorder-averaged OPDM entropy increases logarith-
mically in time in global quenches from product states. We
conclude in Sec. VIII.

II. MODEL AND DEFINITIONS

In this paper, we consider spinless fermions with a nearest-
neighbor interaction and with diagonal disorder described by
the Hamiltonian

H =
L∑

i=1

[
− J

2
(c†

i ci+1 + H.c.)

+ V

(
ni − 1

2

)(
ni+1 − 1

2

)
+ εi

(
ni − 1

2

)]
, (1)

where c(†)
i is a fermionic creation/annihilation operator, and

ni = c†
i ci is the fermionic density at site i. Here, L is the

system size, J is the hopping matrix element, V is the strength
of the nearest-neighbor interactions, and εi is a random poten-
tial drawn from a uniform box distribution [−W,W ]. Using
a Jordan-Wigner transformation, Eq. (1) can be mapped onto
a spin- 1

2 XXZ chain with random local magnetic fields. For
V/J = 1, one obtains the isotropic Heisenberg model, which
is a standard system in which MBL physics has been in-
vestigated [5,36]. Here, we consider V/J = 1 and V/J = 0.1
as representative of the strong and weak interaction regimes,
respectively.

We will compare the behavior of the OPDM entropy to
that of the von Neumann entanglement entropy SvN(A) of a
subystem A. First, we split the system into two parts, A and its
complement Ā. We always consider the case in which A and
Ā are equal to the half chain. Any state of the full system |ψ〉
can be Schmidt decomposed as

|ψ〉 =
∑

μ

√
λμ|φμ〉A|ϕμ〉Ā , (2)

where the
√

λμ are the Schmidt coefficients, and {|φμ〉A} and
{|ϕμ〉Ā} are orthonormal bases for A and Ā. The von Neumann
entanglement entropy is given by

SvN(A) = −
∑

μ

λμ ln λμ. (3)

For a pure state |ψ〉, Eq. (2) implies that SvN(A) = SvN(Ā).

III. OPDM ENTROPY

Our main interest is in the properties of an entropy ex-
tracted from the OPDM: We restrict the OPDM ρ

(1)
i j =

〈ψ |c†
i c j |ψ〉 (1 � i, j � L) to a subsystem A, which yields

C(A)
i j = 〈ψ |c†

i c j |ψ〉, i, j ∈ A , (4)

where |ψ〉 is a many-body state. Here, C(A) is usually called a
correlation matrix. Given the eigenvalues nα of C(A), we define
the OPDM entropy as

SOPDM(A) = −
∑

α

[nα ln(nα ) + (1 − nα ) ln(1 − nα )]. (5)

Even though we restricted the OPDM to a subsystem, we use
the name OPDM entropy for simplicity. The OPDM entropy
defined here should not be confused with the entanglement of
one particle with all other ones [34,35,49]. For noninteracting
fermions, SOPDM coincides with the von Neumann entropy
[44,45] because the reduced density matrix of system A is a
Gaussian operator, which is fully characterized by the cor-
relation matrix C(A). Indeed, the entanglement entropy of a
generic Gaussian state with correlation matrix C(A) is given
by Eq. (5).

Several remarks are in order. First, it is instructive to con-
sider the case where A is the full system. Clearly, in this case,
SvN = 0 holds. For a free fermion system, the eigenvalues nα

are the fermionic occupations of the single-particle orbitals,
and nα = 0, 1, with

∑
α nα = N , where N the total number of

fermions. By using Eq. (5), this implies that the full-system
OPDM entropy is zero. In the presence of interactions, this
is not the case for the OPDM entropy. Specifically, upon
switching interactions on, yet still in the MBL regime, the
eigenvalues of the OPDM exhibit a bimodal distribution with
nα ≈ 0, 1, signaling that the true eigenmodes are quasiparti-
cles. Note that this implies that the full-system OPDM entropy
of an interacting system is nonzero except in trivial limiting
cases.

While the previous argument holds for A being the full
system, in fact, SOPDM always upper bounds SvN. This can
be seen from considering a generic fermionic state and an
arbitrary partitioning. Indeed, it has been shown that, given
the set of fermionic states with a fixed matrix C(A) [cf. Eq. (4)],
the Gaussian states maximize the von Neumann entropy [50].
A similar result holds for bosonic states [51,52]. The proof
relies only on the strong subadditivity of the von Neumann
entropy, on the invariance under local unitary operations, and
its additivity for tensor-product density matrices. This implies
that generic fermionic states, such as eigenstates of interacting
many-body systems, have lower values of SvN than the cor-
responding Gaussian state with the same correlation matrix
C(A). The OPDM approximation, Eq. (5), used for any state of
an interacting system means to project down to the SvN of a
corresponding Gaussian state, which is then necessarily larger
than the true SvN. This holds true both for eigenstates and the
out-of-equilibrium dynamics, meaning that, at any time, one
has SOPDM(t ) � SvN(t ).

In the following sections, we show that the OPDM entropy
exhibits two of the hallmark features of MBL, namely, the
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area-law behavior in excited states and the logarithmic growth
after a global quantum quench.

IV. NUMERICAL METHOD FOR OBTAINING
EIGENSTATES

We use exact diagonalization to compute all eigenstates
of Eq. (1) up to L = 18. We consider a system with peri-
odic boundary conditions, and we restrict ourselves to a fixed
number of fermions N/L = 1

2 , which corresponds to zero
magnetization in the spin language. We average the OPDM
entropy over 104 disorder realizations for L � 16 and 103

disorder realizations for L = 18. We focus on entanglement
properties of midspectrum eigenstates. To be precise, for each
disorder realization, we consider eigenstates with an energy
such that ε = (E − Emin)/(Emax − Emin) ≈ 1

2 , with Emin the
ground-state energy and Emax the energy of the most excited
state. We use the shift-and-invert method [53] to target the de-
sired energy window. Typically, for each disorder realization,
we consider six eigenstates.

V. DISTRIBUTION OF SOPDM

Throughout this paper, we consider the bipartition where A
and Ā have the same length of L/2. For such a partitioning, we
always observe that both SOPDM and SvN lie within the inter-
val [0, L/2 log(2)]. Moreover, for maximally entangled states,
we observe SOPDM = SvN = L/2 ln(2), whereas for product
states (that have no entanglement), SOPDM = SvN = 0 (see the
discussion below). An important observation is that, in the
presence of interactions and disorder, SOPDM(A) �= SOPDM(Ā).
This asymmetry is induced by disorder, yet for the disorder
average, S̄OPDM(A) ≈ S̄OPDM(Ā).

Next, we study the full distribution of SOPDM(A) and
SOPDM(Ā), shown in Figs. 1(a) and 1(b), where the dis-
tribution of SvN is also included. At small values of
SOPDM, P[SOPDM(A)] ≈ P[SvN], while both P[SOPDM(A)] and
P[SOPDM(Ā)] exhibit significant tails beyond the largest values
of SvN. For this reason, we introduce Smin

OPDM and Smax
OPDM as

Smin
OPDM = min[SOPDM(A), SOPDM(Ā)], (6)

Smax
OPDM = max[SOPDM(A), SOPDM(Ā)]. (7)

Figures 1(c) and 1(d) show the respective typical distributions
in eigenstates. Clearly, P[Smin

OPDM] is the closest to P[SvN] as it
exhibits the smallest tails at large values. Therefore, we expect
that Smin

OPDM is the best candidate to capture the scaling proper-
ties of the von Neumann entropy, which will be substantiated
by the following analysis.

VI. AREA LAW OF THE OPDM ENTROPY
IN THE MBL REGIME

In this section, we show that, for the eigenstates of Eq. (1),
the disorder-averaged OPDM entropy defined in Eq. (6) sat-
isfies the area law. This behavior can be anticipated from
the limit of strong disorder, i.e., deep in the MBL phase.
In this limit, the eigenvalues of the OPDM take the values
nα = 0, 1, i.e., they exhibit the typical steplike behavior as for
free-fermion systems. This signals that the MBL state is close

FIG. 1. (a) and (b) Eigenstate distribution P of SOPDM(A) and
SOPDM(Ā), respectively. The distribution P[SvN] (dark-shaded area)
is also included. (c) and (d) Eigenstate distribution of Smin

OPDM and
Smax

OPDM, respectively. Data are averaged over 104 disorder realization
and are obtained from 6 × 104 eigenstates. Results are for fixed
ε = 1,V/J = 1,W/J = 15, and system size L = 16.

to a single Slater determinant [34,35], for which the OPDM
entropy coincides with the von Neumann entropy. Since this
proximity to a Slater determinant persists throughout the MBL
regime and since the eigenmodes of the OPDM are a proxy for
the localized quasiparticles [35], it is natural to expect that,
for sufficiently strong disorder, the OPDM entropy in Eq. (5)
exhibits a similar behavior as the von Neumann entropy.

In Fig. 2(a), we focus on the half-chain entanglement and
OPDM entropies for a system with L = 16. Results are for
V/J = 1 and W/J = 15. For these parameters, the system
is expected to be in the MBL phase because the putative
transition happens at Wc/J ≈ 4 [34,36,54–56]. Note also that,
for V/J = 1, the system is far from the “trivial” noninteracting
limit V = 0.

The two-dimensional histogram shows the correlation be-
tween SvN (on the x axis) and Smin

OPDM (on the y axis) computed
in the same eigenstate. The color scale denotes the number of
eigenstates with a given pair of values of the entanglement en-
tropies. The main conclusion from Fig. 2(a) is that the OPDM
entropy is always larger than the entanglement entropy, i.e.,
SvN � Smin

OPDM for all eigenstates. This is a confirmation of
the results of Ref. [50], yet for a many-body system. One
can also observe that the majority of the points lies close to
the diagonal, i.e., for most of the eigenstates, SvN is close to
Smin

OPDM. Interestingly, a second cluster of states is visible at
Smin

OPDM = 2SvN. This feature corresponds to resonant pairs and
is explained below. With increasing disorder strength, at least
for fixed system size, all eigenstates collapse on the main di-
agonal, and the minimal OPDM entropy becomes comparable
with the von Neumann entropy. In the limit of strong disorder
W/J → ∞, the eigenstates become single Slater determinants
for which the equality holds.
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FIG. 2. (a) Two-dimensional histogram showing the correlation
between von Neumann entanglement SvN and the one-particle density
matrix (OPDM) Smin

OPDM entropies, both computed in the same eigen-
state. For each pair of (SvN, Smin

OPDM), the color encodes the number of
eigenstates with those entropies. Data are averaged over 104 disor-
der realizations and are obtained from 6 × 104 eigenstates. Results
are for fixed ε = 1,V/J = 1,W/J = 15, and system size L = 16.
(b) The same for Smax

OPDM. Thin dotted lines indicate S = 2SvN and
S = 3SvN.

For comparison, in Fig. 2(b), we show the half-chain en-
tanglement and the maximal OPDM entropies Smax

OPDM for the
same systems considered in Fig. 2(a). Here, one also observes
some points that are close to the diagonal, and a second cluster
of states is visible at Smax

OPDM = 2SvN. Moreover, a third diago-
nal emerges along Smax

OPDM = 3SvN, and more importantly, there
are states for which Smax

OPDM 	 SvN ≈ 0. These features render
Smin

OPDM the better object to capture the scaling properties of SvN

than Smax
OPDM.

We now explain, using a toy two-particle system of four
sites, that the second diagonal in Figs. 2(a) and 2(b) is due to
interactions. Let us consider a two-particle state

|ψ〉 =
∑
αβ

ψαβ |α, β〉 =
∑
αβ

ψαβc†
αc†

β |0〉, (8)

where |0〉 is the fermionic vacuum, and the creation operator
c†
α creates a fermion in a localized state α (this can be a site,

i.e., a Wannier orbital). Here, we assume that site α ∈ {1, 2}
is in subsystem A, whereas site β ∈ {3, 4} is in Ā. Such a
state |ψ〉 assumes each fermion to be localized in the re-
spective parts and neglects fluctuations of the fermions across
the boundary (for states accounting for the fluctuations, see
Appendix A). We note that the particular choice for |ψ〉 with
all ψαβ = 1

2 was considered in Ref. [25] as a toy model for

localized particles in an initial product state to understand
the out-of-equilibrium dynamics of the von Neumann entropy.
There, it was shown that effective interactions between local-
ized particles induce a growth of the von Neumann entropy
in time.

In those states that are described by Eq. (8), any (effective)
interaction gives rise to correlations between the fermions,
resulting in nontrivial eigenstates. A nontrivial eigenstate that
can be generated is a state close to the superposition |ψ ′〉 =
ψ13|1, 3〉 + ψ24|2, 4〉.

It is straightforward to check that, for |ψ ′〉, the correlation
matrix C(A) and the reduced density matrix ρ (A) for subsystem
A coincide and are diagonal as

ρ (A) = C(A) =
(|ψ13|2 0

0 1 − |ψ13|2
)

, (9)

where we used the normalization condition |ψ24|2 = 1 −
|ψ13|2. For our two-particle system, the same applies to
C(Ā) and ρ (Ā), which implies that SA

OPDM = SĀ
OPDM, and thus,

Smin
OPDM = Smax

OPDM. It is thus sufficient to consider one num-
ber SOPDM only. By varying the coefficient ψ13, one obtains
0 � SvN � ln(2). It is also straightforward to check that, for
any ψ13, SOPDM = 2SvN.

Several remarks are in order. First, the reasoning laid out
above is not expected to capture the full entanglement patterns
in Figs. 2(a) and 2(b). For instance, in general, a third diagonal
with eigenstates with SOPDM = 3SvN can appear, see Fig. 2(b).
This requires considering more complicated correlations in-
volving more than two fermions. Still, the clustering of the
eigenstates around the main and the second diagonal suggests
that the entanglement structure is dominated by correlations
involving two-body resonances across the boundary between
the two subsystems.

We now demonstrate that the disorder-averaged OPDM
entropy S

min
OPDM obeys the area law (the L dependence of

S
max
OPDM is discussed in Appendix B). In Fig. 3, we present

the average OPDM entropy for the half chain as a function
of L for several values of W/J , V/J = 1, and V/J = 0.1.
For V/J = 1, standard diagnostic tools give a putative MBL
transition at Wc/J ≈ 4 [34,36,54–56] (see also Refs. [57–67]).
In Fig. 3(a), we display the L dependence of the OPDM en-
tropy on the MBL side. Deep in the MBL phase (for instance,
for W/J � 10), the OPDM entropy is almost L independent,
implying area-law behavior [20–22]. Moreover, the OPDM
entropy becomes very close to the von Neumann entropy upon
increasing the disorder strength [see the inset of Fig. 3(a)].
For the regime of weak interactions V/J = 0.1 [see Fig. 3(b)],
smaller values of W are sufficient to observe the area-law be-
havior. This is expected because, upon lowering V , the MBL
transition is shifted toward smaller values of W . We estimate
the transition at V = 0.1J from standard diagnostic tools, such
as the average gap ratio [36,68] and the occupation distance
measure [56], which give Wc/J ≈ 2 − 3 (see Appendix C). An
analysis of the behavior of S̄min

OPDM across the transition into the
ergodic region is beyond the scope of this paper and left for
future research.
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FIG. 3. (a) Main panel: Disorder average of the one-particle den-
sity matrix (OPDM) entropy S

min
OPDM plotted as a function of 1/L for

V/J = 1 and disorder strength W/J = 5, . . . , 15 (different symbols).
The arrow shows increasing disorder strength. Inset: Comparison
between OPDM S

min
OPDM (full circles) and von Neumann SvN (open

squares) entropies for V/J = 1 and W/J = 5, 15. (b) Same as in
(a) for weak interactions V/J = 0.1 and disorder strength W/J =
3, . . . , 7.

VII. LOGARITHMIC GROWTH OF THE OPDM ENTROPY
IN THE MBL REGIME

Next, we discuss the time dependence of the OPDM
entropy after a global quantum quench deep in the MBL
phase. We consider the evolution from initial random product
states such as |ψ0〉 = |1010 . . . 1〉, where 0, 1 are the initial
fermionic occupations. We study the Hamiltonian dynamics
|ψ (t )〉 = e−iHt |ψ0〉 by using full exact diagonalization of H .
For each disorder configuration, we select product states |ψ0〉
with energy density ε = (〈ψ0|H |ψ0〉 − Emin)/(Emax − Emin)
that fulfills | 1

2 − ε| � 2 × 10−4, i.e., close to midspectrum
energy density. We average over 200 disorder realizations.

In the putative MBL phase, the von Neumann entropy
grows logarithmically after global quenches [23–25,69],
whereas on the ergodic side, a ballistic or subballistic en-
tanglement growth is observed [70]. The change of behavior
happens at the eigenstate transition [69]. As anticipated in
Sec. III, after a quantum quench, we observe SOPDM(t ) �
SvN(t ) in all states at any time.

First, we provide a simple argument why the OPDM en-
tropy increases logarithmically after a quantum quench from
the initial product state. Let us again consider a generic state
in Eq. (8). We take a particular choice of this state, where
all ψαβ = 1

2 , and follow the arguments of Ref. [25]. The

initial state can be written as |ψ0〉 = 1
2 (c†

1 + c†
2)(c†

3 + c†
4)|0〉.

For such an initial state, there is no entanglement between
the particle in orbitals 1, 2 and the particle in orbitals 3, 4 at
t = 0, as can be verified by a direct calculation. An effective
interaction produces the time-evolved state |ψ (t )〉, which is
given by

|ψ (t )〉 =
∑
α,β

1

2
e−iEαβ t |α, β〉 , (10)

where the energies Eαβ = εα + εβ + δEαβ , and εα and εβ are
the single-particle energies, whereas δEαβ is due to the inter-
actions. It is natural to expect that δEαβ = kαβṼ e−x/ξ , with
kαβ a constant, Ṽ an effective interaction strength between the
two localized particles with distance x from each other, and ξ

the localization length, for which we assume x 	 ξ . For the
state from Eq. (10), the reduced density matrix ρ (A) coincides
with the OPDM matrix C(A) and is given by

ρ (A) = C(A) = 1

2

[
1 F (t )/2

F ∗(t )/2 1

]
, (11)

where F (t ) = e−i�t (1 + e−iδ�t ), with � = ε1 − ε2 + δE13 −
δE23, and δ� = δE14 − δE24 + δE13 − δE23. The eigenvalues
of ρ (A) are

λ± = 1

2

[
1 ± |F (t )|

2

]
. (12)

Note that F (t ) vanishes at t∗ = π/δ�, and at t∗ = π/2δ�, the
entanglement entropy SvN has a maximum with SvN = ln(2).
This effect is due to δ�, which reflects the presence of (ef-
fective) interactions. By using the definition of the OPDM
entropy, one obtains that SOPDM(t ) = 2SvN(t ). Therefore, at
any time, the OPDM entropy differs from the von Neumann
entropy only by a prefactor. This prefactor can in general be
different from two because the toy state in Eq. (10) does not
account for the full correlation pattern of a general many-body
wave function in the MBL phase.

In Fig. 4, we show the dynamics of the OPDM en-
tropy S

min
OPDM for V/J = 1 (strong interactions) and W/J =

5, . . . , 15, and for V/J = 0.1 (weak interactions) and W/J =
3, . . . , 7 computed numerically for L = 16 (the time depen-
dence of S

max
OPDM is discussed in Appendix B). In both cases,

the system is in the MBL phase. For large enough times,
the data exhibit a clear logarithmic increase for all values of
W . The prefactor of the logarithmic growth depends on the
interaction strength V and hence is nonuniversal like for the
von Neumann entropy. Note that, in the limit W/J → ∞, the
entropy saturates. Interestingly, the prefactors of the logarith-
mic growth of the OPDM and von Neumann entropies are not
the same. This is illustrated in the insets of Fig 4. Only in
the limit of large W/J , the dynamics of the OPDM entropy
becomes quantitatively the same as the von Neumann entropy.

Finally, interesting features appear for weak interactions
[see Fig. 4(b)]. First, longer times are needed for the loga-
rithmic behavior to set in. For instance, for V/J = 0.1, this
happens for tJ � 100. Moreover, the dynamics of the OPDM
and von Neumann entropies is the same at short times. This is
highlighted in the insets in Fig. 4. Clearly, the OPDM entropy
coincides with the von Neumann entropy up to tJ ≈ 10.
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FIG. 4. (a) Main panel: Time evolution of the average one-
particle density matrix (OPDM) entropy S

min
OPDM for L = 16, V/J = 1,

and disorder strength W/J = 5, . . . , 15. The arrow denotes increas-
ing disorder strength. For all values of W , a clear logarithmic growth
with a nonuniversal prefactor is visible at long times. Inset: Compar-
ison between the OPDM S

min
OPDM (full circles) and the von Neumann

SvN (gray lines) entropies for L = 16, V/J = 1, and W/J = 5, 15.
(b) Same as in (a) for weak interactions V/J = 0.1 and disorder
strength W/J = 3, . . . , 7.

VIII. CONCLUSIONS

We provided numerical evidence that the OPDM entropy
exhibits the salient features of the von Neumann entropy in
putative MBL phases of matter. Specifically, deep in MBL
phases, the eigenstate OPDM entropy obeys the area law.
Most importantly, the entropy grows logarithmically after a
global quantum quench. Although formally, this is expected in
the limit W/J → ∞, we observe that there is a sizable region
in parameter space, i.e., interaction and disorder strength,
where this behavior persists. This behavior is expected since
the OPDM eigenstates approximate the localized quasiparti-
cles also known as l-bits in the MBL phase [35].

There are several interesting directions for future work.
First, our results could be combined with ab initio methods
for the correlation functions, e.g., Green’s function methods
[48,71,72]. This would allow us to compute the evolution
of the OPDM entropy for larger systems and also in higher
dimensions. Importantly, the computation of the OPDM scales
only polynomial in the linear dimension. Moreover, it would
be interesting to measure the evolution of the OPDM en-
tropy in cold-atom experiments using single-site resolution
[13,73,74] or in embryonic quantum computers [75,76]. Fi-
nally, in contrast with the entanglement entropy, the OPDM
entropy relies on the fermionic correlation functions, which
are standard tools in condensed matter physics. This renders

the OPDM amenable to an analytical study and, for instance,
by using the renormalization group techniques reviewed in
Ref. [1].

Research data is partially available as ancillary files [77].
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APPENDIX A: OPDM vS VON NEUMANN ENTROPY
IN A TWO-PARTICLE, FOUR-SITE SYSTEM

In this section, we compare the OPDM and von Neumann
entropies in a generic two-particle fermionic state in a four-
site system with bipartition A = {1, 2} and Ā = {3, 4}. Note
that, for such a system, SA

OPDM = SĀ
OPDM, and it is thus suf-

ficient to consider one number SOPDM only. Particles can be
thought of as localized in A or as being delocalized across the
boundary between A and Ā. With this setup, we consider a
generic wave function

|ψ〉 =
∑
α<β

ψαβ |α, β〉 =
∑
α<β

ψαβc†
αc†

β |0〉 , (A1)

where |0〉 is the fermionic vacuum, and the creation operator
c†
α creates a fermion at site α. We allow for particle fluctua-

tions across the partition, i.e., α ∈ {1, 2, 3} and β ∈ {2, 3, 4}.
The state in Eq. (A1) is a generalization of the state in Eq. (8)
discussed in the main text. For such a state, the matrix ele-
ments of C(A) read

C(A)
11 = |ψ12|2 + |ψ13|2 + |ψ14|2, (A2)

C(A)
22 = |ψ24|2 + |ψ23|2 + |ψ12|2, (A3)

C(A)
12 = ψ∗

14ψ24 + ψ∗
13ψ23, (A4)

C(A)
21 = [

C(A)
12

]∗
, (A5)

and the reduced density matrix reads

ρ (A) =

⎡
⎢⎢⎢⎢⎣

|ψ12|2 0 0 0

0 C(A)
11 − |ψ12|2 C(A)

12

0 C(A)
21 C(A)

22 − |ψ12|2
0 0 0 |ψ34|2

⎤
⎥⎥⎥⎥⎦ .

(A6)
From Eqs. (A6) and (A2)–(A5), one can construct the OPDM
and entanglement entropies.

Neglecting particle fluctuations across the partition, i.e.,
setting ψ12 = ψ34 = 0, the OPDM coincides with the reduced
density matrix ρ (A) = C(A) and is given by

ρ (A) =
( |ψ13|2 + |ψ14|2 ψ∗

14ψ24 + ψ∗
13ψ23

ψ∗
24ψ14 + ψ∗

23ψ13 |ψ24|2 + |ψ23|2
)

. (A7)

A special case of the reduced density matrix in Eq. (A7) was
given in the main text in Eq. (9), for which it was shown that
SOPDM = 2SvN.

We will now discuss the clean system of two fermions in
four sites with translational invariance. Here, there are two
relevant states. The first one is the state |ψ ′〉 from Eq. (8),
with |ψ13|2 = |ψ24|2, which is translational invariant and can
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FIG. 5. Comparison between the von Neumann and one-particle
density matrix (OPDM) entropies for the two-fermion states in
Eq. (A10) as a function of |c|2. Notice that SvN = 2SOPDM for |c| = 0,
and SvN = SOPDM for |c| = 1/2. The horizontal dotted lines mark the
values ln(2) and 2 ln(2).

be written as

|ψ ′〉 =
2∑

α=1

ψαα+2|α, α + 2〉, (A8)

for which we derive that SOPDM = 2SvN in the main text. The
second relevant state can be written as

|ψ ′′〉 =
4∑

α=1

ψαα+1|α, α + 1〉, (A9)

where |ψ12|2 = |ψ23|2 = |ψ34|2 = |ψ14|2 = 1
2 , and we as-

sume periodic boundary conditions. Now the reduced density
matrix is diagonal in the basis with four eigenvalues 1

4 , giving
the von Neumann entropy SvN = 2 ln(2). At the same time,
the OPDM is diagonal with two equal eigenvalues 1

2 , which
give SOPDM = 2 ln(2). This confirms our expectation that, for
a maximally entangled state, the two entropies must be equal.

The eigenstates of clean systems can be thought of as a
mixture of the states in Eqs. (A8) and (A9):

|ψ̃〉 =
2∑

α=1

ψαα+2|α, α + 2〉 +
4∑

α=1

ψαα+1|α, α + 1〉, (A10)

where |ψ12|2 = |ψ23|2 = |ψ34|2 = |ψ14|2 =: |c|2, and
|ψ13|2 = |ψ24|2 =: |c′|2. Here, due to the normalization
condition, we have |c′|2 = (1 − 4|c|2)/2. From Eqs. (A6)
and (A2)–(A5), one can obtain the entanglement and OPDM
entropies as a function of |c|2. In Fig. 5, we plot SvN and
SOPDM as a function of |c|2, assuming that both c and c′ are
real. As is clear from the figure, SOPDM � SvN for any |c|. We
thus see how the entropies interpolate between states |ψ ′〉
and |ψ ′′〉.

APPENDIX B: SCALING OF S̄max
OPDM

For comparison with the behavior of S̄min
OPDM shown in

Fig. 3, in Fig. 6, we show the average OPDM entropy S̄max
OPDM

for the half chain as a function of L and for several values of
disorder strength W/J . On the one hand, deep in the MBL
phase, e.g., at W/J ≈ 15 for V/J = 1 [see Fig. 6(a)], the

FIG. 6. (a) Main panel: Disorder average of the one-particle den-
sity matrix (OPDM) entropy S̄max

OPDM plotted as a function of 1/L for
V/J = 1 and disorder strength W/J = 5, . . . , 15 (different symbols).
The arrow shows increasing disorder strength. Inset: Comparison
between S̄max

OPDM (full circles) and von Neumann entropy S̄vN (open
squares) for V/J = 1 and W/J = 5, 15. (b) Same as in (a) for weak
interactions V/J = 0.1 and disorder strength W/J = 3, . . . , 7.

behavior of S̄min
OPDM is like that of S̄min

OPDM and S̄max
OPDM. On the

other hand, S̄min
OPDM is closer to the von Neumann entropy than

S̄max
OPDM, as displayed in the insets of Figs. 3 and 6. This is

expected since S̄max
OPDM includes more resonances across the

two subsystems than S̄min
OPDM.

In Fig. 7, we show the time evolution of S̄max
OPDM for the

same set of parameters as for S̄min
OPDM in Fig. 4. As is clear

from the figure, S̄max
OPDM grows logarithmically with time after

the quench. In the insets of Fig. 7, we compare S̄max
OPDM with

the von Neumann entropy. Clearly, both entropies exhibit a
logarithmic growth but with a different nonuniversal prefactor.
Nevertheless, as in the case of eigenstates, we observe that
S̄min

OPDM compares to the von Neumann entropy better than
S̄max

OPDM, as displayed in the insets of Figs. 4 and 7.

APPENDIX C: MBL TRANSITION ESTIMATE
AND ADDITIONAL NUMERICAL DATA

FOR WEAK INTERACTIONS

In this section, we employ standard diagnostic tools to
identify the putative MBL transition at V/J = 0.1 (see the
main text). Specifically, we consider the average gap ratio
[36,68] and the occupation distance measure [56].

We start discussing the average gap ratio r̄. Given the
eigenergies En of the quantum many-body Hamiltonian, we
first define the gaps δn as

δn ≡ En+1 − En . (C1)
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FIG. 7. (a) Main panel: Time evolution of the average one-
particle density matrix (OPDM) entropy S̄max

OPDM for L = 16, V/J = 1,
and disorder strength W/J = 5, . . . , 15. The arrow denotes increas-
ing disorder strength. For all values of W , a clear logarithmic growth
with a nonuniversal prefactor is visible at long times. Inset: Com-
parison between S̄max

OPDM (full circles) and the von Neumann entropy
S̄vN (gray lines) for L = 16, V/J = 1, and W/J = 5, 15. Note that the
prefactor of the logarithmic growth of the OPDM and von Neumann
entropies are different. (b) Same as in (a) for weak interactions
V/J = 0.1 and disorder strength W/J = 3, . . . , 7.

The gap ratio rn is defined as

0 � rn = min{δn, δn−1}
max{δn, δn−1} � 1. (C2)

The average ratio r̄ results from averaging over the eigen-
states of the Hamiltonian and over disorder configurations.
For Poisson-distributed energy-level spacings, e.g., for inte-
grable systems, the average value of the ratio is r̄ = 2 ln(2) −
1 ≈ 0.386. In the nonintegrable case, one expects that level
spacings are described by the Gaussian orthogonal ensemble
(GOE) [78]. This yields r̄ = 4 − 2

√
3 ≈ 0.535 for 3 × 3 ma-

trices.
In Fig. 8(a), we show r̄ [36,68] as a function of W/J .

The expected behavior [36,68] is visible. At weak disorder,
r̄ converges to the GOE result upon increasing L, while in the
strong-disorder regime, r̄ is compatible with the Poisson value
r̄ ≈ 0.38. Using the scaling ansatz form r̄ = g[L1/ν (W − Wc)]
[36], with ν a critical exponent and Wc the critical value of the
disorder, we get Wc/J = 2.0(2) (we have used L = 14, 16, 18
for the scaling collapse). However, like Ref. [36], one obtains
ν = 0.6(1), which violates the Harris bound [60,79,80]. In
conclusion, the analysis of the gap ratio r̄ suggests a change
in behavior at Wc/J ≈ 2.

FIG. 8. Diagnostics of the many-body localized (MBL) transi-
tion at V/J = 0.1: (a) average gap ratio r̄, (b) average occupation
distances δni, and (c) δnα . W/J , plotted on the horizontal axis,
is the disorder strength. We show data for V/J = 0.1. Different
curves correspond to different system sizes L = 10, 12, 14, 16, 18.
Data are averaged over up to 105 disorder realization. The arrows
denote increasing system size. In (a), the horizontal dashed lines
denote the analytic results assuming Wigner-Dyson (r̄ ≈ 0.53) and
Poisson distribution (r̄ ≈ 0.38) of the energy level spacings. In (b),
the occupation distances are expected to attain the values δni = 1

2
in the ergodic phase (dashed lines). In all panels, the shaded area is
estimated to be in the MBL phase. Thus, all results shown in the main
text are for a disorder strength well above the transition.

To complement our analysis, we also consider the occupa-
tion distances δni and δnα introduced in Ref. [56]. These are
derived from the OPDM

ρ
(1)
i j = 〈ψn|c†

i c j |ψn〉, (C3)

where |ψn〉 denotes an eigenstate. We define ni as the
fermionic spatial occupations ni = ρ

(1)
ii , and nα are the eigen-

values of ρ
(1)
i j . Here, we consider the distances δni = ni −

[ni] and δnα = nα − [nα] to the closest integers of [ni] and
[nα], respectively. Finally, we obtain the averaged occupation
distances δni and δnα by averaging over different disorder
realizations.

The occupation distances measure the degree of Fock-
space localization in the chosen single-particle basis. They
are almost independent of system size in the MBL phase
[56], while in the ergodic region, δni must converge to the
average particle filling, in our case 0.5, while δnα approaches
a smaller, energy-dependent value.

In Figs. 8(b) and 8(c), we plot the occupation distances δni

and δnα as a function of W/J . We observe that δni become
almost L independent for W/J > 2. For δnα , this happens
for W/J > 2.6. Thus, the occupation distances confirm the
qualitative scenario obtained from the analysis of the gap ratio
r̄ [see Fig. 8(a)].
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[61] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Phys. Rev. E
102, 062144 (2020).

[62] P. Sierant, D. Delande, and J. Zakrzewski, Phys. Rev. Lett. 124,
186601 (2020).

[63] D. Abanin, J. Bardarson, G. De Tomasi, S. Gopalakrishnan, V.
Khemani, S. Parameswaran, F. Pollmann, A. Potter, M. Serbyn,
and R. Vasseur, Ann. Phys. 427, 168415 (2021).

[64] R. K. Panda, A. Scardicchio, M. Schulz, S. R. Taylor, and M.
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