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Effects of spin-phonon coupling in frustrated Heisenberg models
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The existence and stability of spin-liquid phases represent a central topic in the field of frustrated magnetism.
While a few examples of spin-liquid ground states are well established in specific models (e.g., the Kitaev
model on the honeycomb lattice), recent investigations have suggested the possibility of their appearance in
several Heisenberg-like models on frustrated lattices. An important related question concerns the stability of spin
liquids in the presence of small perturbations in the Hamiltonian. In this respect, the magnetoelastic interaction
between spins and phonons represents a relevant and physically motivated perturbation, which has been scarcely
investigated so far. In this work, we study the effect of the spin-phonon coupling on prototypical models
of frustrated magnetism. We adopt a variational framework based upon Gutzwiller-projected wave functions
implemented with a spin-phonon Jastrow factor, providing a full quantum treatment of both spin and phonon
degrees of freedom. The results on the frustrated J1-J2 Heisenberg model on one- and two-dimensional (square)
lattices show that, while a valence-bond crystal is prone to lattice distortions, a gapless spin liquid is stable for
small spin-phonon couplings. In view of the ubiquitous presence of lattice vibrations, our results are particularly
important to demonstrate the possibility that gapless spin liquids may be realized in real materials.
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I. INTRODUCTION

The physical properties of solid-state materials are ul-
timately governed by very simple physical laws, i.e., the
Coulomb interaction among charged particles, electrons, and
nuclei. However, the low-energy physics of these many-body
systems displays a variety of different behaviors, with emerg-
ing elementary and collective excitations, such as phonons,
excitons, sound waves, magnons, and Higgs modes, to men-
tion a few. This fact has been beautifully described by
Anderson in his milestone paper “More is different” [1].
Quantum spin liquids represent an amazing realization of
this concept, since they exhibit long-range entanglement and
absence of any local symmetry breaking [2,3]. Spin liquids
can be divided into two broad classes, gapped and gapless,
according to the presence or absence of a gap in the excitation
spectrum. While the former ones are expected to be fully
stable with respect to small perturbations, the latter ones are
much more fragile, being inclined to develop some sort of
symmetry breaking, such as valence-bond order [4]. More ex-
otic instabilities have been also discussed, e.g., a topological
phase with non-Abelian anyonic excitations, which is induced
by magnetic fields in the Kitaev model on the honeycomb
lattice [5].

One of the difficulties in detecting quantum spin liquids
is the fact that the characteristic energy scale is given by the
exchange coupling J , or even a small fraction of it, because
of magnetic frustration. Therefore, small perturbations (e.g.,
disorder) may have strong effects [6,7]. Phonons are also char-
acterized by small energy scales (i.e., the Debye frequency
ω), with important effects on electronic properties. In particu-
lar, the superexchange coupling between magnetic moments

is affected by lattice distortions, since it depends upon the
relative distance between the two ions where spins (electrons)
are localized [8–10]. As a consequence, it may be profitable
for the whole system (phonons and spins) to sacrifice some
of the elastic energy in favor of the one gained by creating
singlets, which optimize the magnetic energy of two spins
[11]. For example, within an adiabatic approximation, where
the kinetic energy of ions is neglected and lattice displace-
ments are treated as classical variables, the one-dimensional
spin-1/2 Heisenberg model is unstable with respect to a static
dimerization; for the onset of this instability an infinitesimally
small spin-phonon coupling is sufficient [12], since the energy
gain for a distortion is linear in the displacement, while the
loss due to the elastic energy is quadratic. The adiabatic limit
of spin-phonon models has been studied in detail for a variety
of cases [9,13–17].

On the other hand, the full quantum problem, in which
both spins and phonons are treated quantum mechanically, is
considerably harder than the adiabatic limit. It is worth noting
that the full quantum description is relevant for most materials
(e.g., CuGeO3 [18]), whenever the phonon frequency is of the
same order of magnitude of J . From a computational perspec-
tive, one of the complications comes from the infinite Hilbert
space, which allows for an unbounded number of phonons on
each lattice site. Therefore, numerical approaches such as ex-
act diagonalizations or density-matrix renormalization group
(DMRG) require a truncation of the Hilbert space [19–21],
e.g., fixing a maximum number of phonons on each site. In
addition, DMRG is limited to quasi-one-dimensional systems,
since it needs an exponentially large amount of resources
in two or more spatial dimensions. An alternative approach,
based upon a perturbative expansion and the definition of
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effective spin models, may be also pursued [22,23], but the
generic features of the model for ω ≈ J cannot be captured.
Finally, quantum Monte Carlo methods [24,25] do not have
limitations coming from the infinite Hilbert space of phonons,
but they are restricted to cases in which the Hamiltonian has
no sign problem and this circumscribes their applicability. In
this respect, the most interesting and challenging problems in
which frustrating interactions are present cannot be assessed,
at least at low temperatures.

In spite of all these technical aspects, it would be de-
sirable to include the lattice effects in spin models for two
main reasons. From a very general perspective, the first one
comes from the desire to formulate a microscopic descrip-
tion that contains as many relevant ingredients as possible.
In this regard, the role of disorder, Dzyaloshinskii-Moriya
terms, or ring-exchange couplings have been discussed [26],
but little effort has been spent to clarify the effect of the spin-
phonon interactions. Still, lattice displacements may cause
structural distortions and relevant modifications in the mag-
netic interactions. The typical example is the dimerization in
quasi-one-dimensional systems [27]. Therefore, understand-
ing the influence of phonons on the low-energy behavior of a
quantum magnet is an important issue. The second reason is
related to a particular aspect of the field, which is, however,
of central importance. It deals with understanding the actual
stability of spin-liquid phases in frustrated magnets [2,3]. In
recent years, there have been several investigations addressing
the possibility that a spin-liquid phase may be realized in
an extended region of the phase diagram of frustrated spin
models, one of the most notable examples being the S = 1/2
Heisenberg model on the kagome lattice that is relevant for
Herbertsmithite [28–31]. At present, it is extremely important
to clarify which kind of mechanisms may favor spin liquids
and which ones disfavor them. For example, a fervent activity
focuses on the role of spin-orbit coupling, which may enhance
frustration by inducing microscopic interactions that explic-
itly break the SU (2) spin symmetry. In analogy with the case
of the Kitaev model [5], this could dramatically help the stabi-
lization of spin liquids [32,33]. On the contrary, other kinds of
interactions may be highly detrimental for spin liquids, such
as the spin-phonon coupling that could favor valence-bond
crystals as it happens in one-dimensional systems. The ques-
tion of the stability is particularly important for gapless spin
liquids, which are considered to be more fragile to external
perturbations. However, the analogy with the one-dimensional
Heisenberg model with quantum phonons, where a finite crit-
ical value of the spin-phonon coupling is necessary to induce
a spin-Peierls transition, may suggest that spin liquids could
be stable against moderate lattice distortions.

In this work, we study the frustrated J1-J2 model in one and
two dimensions, coupled to quantum phonons. We employ a
variational Monte Carlo scheme, based upon a wave function
that entangles spin and phonon degrees of freedom, which
has been recently successfully benchmarked on an unfrus-
trated model [34]. In one dimension, we report the critical
line that separates the undistorted (gapless) quantum liquid
from the distorted (gapped) spin-Peierls phase as a function
of J2/J1, for two values of the phonon frequency ω. The
one-dimensional chain is prone to lattice distortions when the
ground state of the pure spin model is gapped (i.e., for J2/J1 �

gapless 
spin liquid

valence-bond crystal

dimerized chaingapless 
spin liquid

FIG. 1. Schematic illustration of the effect of the spin-phonon
coupling on the J1-J2 model in one (top panel) and two dimensions
(bottom panel). In this work, we investigate how the gapless spin
liquid phase in both models gets affected by the presence of spin-
phonon coupling g̃.

0.24), while a finite spin-phonon coupling is necessary to
open a spin gap and induce a distortion for J2/J1 � 0.24, i.e.,
where the pure spin model is gapless. The most important
results are, however, for the J1-J2 model in two dimensions
on the square lattice. In this case, recent studies suggested
that the nonmagnetic region in the proximity of J2/J1 ≈ 0.5
consists of two different phases: a gapless spin liquid and a
valence-bond crystal with columnar order [35–38]. When the
coupling to quantum phonons is included, we find that the
latter one is immediately unstable towards lattice distortions,
as expected. By contrast, the gapless state remains stable
for small spin-phonon couplings, supporting the fact that a
gapless spin liquid may remarkably survive to magnetoelastic
perturbations; however, when large enough spin-phonon cou-
plings are considered, the same distortion of the valence-bond
state (e.g., a columnar order of singlets) appears. In Fig. 1, we
schematically display the effect of the spin-phonon coupling
on the frustrated models under investigation.

The paper is organized as follows: in Sec. II, we describe
the spin-phonon models in one and two dimensions and the
variational wave functions; in Sec. III, we discuss the results;
and finally, in Sec. IV, we draw our conclusions.

II. MODELS AND METHODS

In this section, we present the spin-phonon models and the
variational wave functions employed to obtain their ground-
state properties. In order to make the presentation as clear as
possible, we split the section in two parts: The first one deals
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with the one-dimensional case and the second one with the
two-dimensional system.

A. One-dimensional model

In the one-dimensional J1-J2 model, S = 1/2 spins (sitting
on the sites of a linear chain) interact through antiferromag-
netic first-neighbor (J1 > 0) and second-neighbor (J2 > 0)
Heisenberg exchange. We include magnetoelastic effects by
assuming that the first-neighbor exchange is affected linearly
by lattice distortions, analogously to what happens to the
hopping terms of the Su-Schrieffer-Heeger (SSH) model [39].
Thus, the Hamiltonian of the SSH J1-J2 model is

H1d = J1

∑
r

[1 + g(Xr+1 − Xr )]Sr · Sr+1

+ J2

∑
r

Sr · Sr+2 + ω

4

∑
r

[
P2

X,r + X 2
r

]
. (1)

Taking the lattice spacing as a = 1, we label the sites of the
chain by their integer equilibrium positions r = 1, . . . , N and
we consider periodic boundary conditions. The ion mass M
has been absorbed in the definition of phonon displacements
and their corresponding momenta, namely Xr = √

2Mωxr and
Pr = √

2/(Mω)pr , where xr and pr are the standard conjugate
variables. Within this choice, PX,r = −2i ∂

∂Xr
and [Xr, PX,r] =

2iδr,r′ . We consider optical Einstein phonons with a flat disper-
sion and full quantum dynamics. The parameter g measures
the strength of the magnetoelastic coupling, while ω denotes
the phonon energy. For the sake of the upcoming discussion,
we introduce the renormalized magnetoelastic parameter g̃ =
(J1/ω)g, which allows for an easier comparison of the results
for different values of ω.

We address the spin-phonon problem of Eq. (1) by a vari-
ational Monte Carlo approach. Our trial wave functions are
products of a spin state (�s), a phonon condensate (�p), and
a spin-phonon Jastrow factor (Jsp):

|�0〉 = Jsp|�s〉 ⊗ |�p〉. (2)

A detailed discussion of the variational method is given in
Ref. [34], where a benchmark study on the Heisenberg model
with quantum phonons [Eq. (1) with J2 = 0] was performed.
Here, we summarize the main features of the variational
Ansätze.

The spin state |�s〉 is a Gutzwiller-projected fermionic
state, whose definition stands on the Abrikosov fermion rep-
resentation of S = 1/2 spins [3,40]: The wave function is
constructed by constraining a fermionic state, |�0〉, to the
subspace of the fermionic Hilbert space in which each site is
singly occupied. This operation, named Gutzwiller projection,
yields a suitable state for spins and can be performed by an
appropriate Monte Carlo sampling. Within our approach, the
fermionic state |�0〉 to be projected is the ground state of an
auxiliary BCS Hamiltonian

H0 =
∑
r,r′

∑
σ

tr,r′c†
r,σ cr′,σ +

∑
r,r′

�r,r′cr,↓cr,↑ + H.c., (3)

where cr,σ and c†
r,σ are the annihilation and creation operators

of the Abrikosov fermion at site r with spin σ . The Gutzwiller
projection is represented by the operator PG = ∏

r nr (2 − nr ),

where nr = ∑
σ c†

r,σ cr,σ is the local number operator. Thus,
the full expression for |�s〉 reads

|�s〉 = JssPG|�0〉, (4)

where, on top of the Gutzwiller-projected state, we have in-
cluded also a long-range spin-spin Jastrow factor,

Jss = exp

[∑
r,r′

vs(r, r′)Sz
rSz

r′

]
. (5)

The variational parameters defining |�s〉 are the hopping (tr,r′ )
and pairing (�r,r′ ) amplitudes of H0, and the pseudopoten-
tial parameters of the Jastrow factor, which are taken to be
translationally invariant vs(r, r′) = vs(|r − r′|). The second
building block of the variational Ansatz of Eq. (2) is |�p〉,
a phonon coherent state with momentum k. Its amplitude on
a phonon configuration, labeled by the sites displacements
{X1, . . . , XN }, is a product of Gaussian states

〈X1, . . . , XN |�p〉 =
N∏

r=1

exp[φr (Xr )], (6)

where

φr (Xr ) = iz sin(kr)Xr − 1
4 [Xr − 2z cos(kr)]2. (7)

To describe the Peierls distortion of the SSH J1-J2 chain,
induced by the spin-phonon coupling, we take a coherent state
with momentum k = π . We note that z is another variational
parameter, called fugacity, which controls the amplitude of the
displacements in the phonon condensate [34]. Finally, the last
brick of our variational state is the spin-phonon Jastrow factor

Jsp = exp

[
1

2

∑
r,r′

vX (r, r′)Sz
rSz

r′ (Xr − Xr′ )

]
, (8)

which entangles spin and lattice degrees of freedoms. The
pseudopotential vX (r, r′) depends only on the Euclidean dis-
tance between sites and is odd under the exchange of its
arguments, namely vX (r, r′) = ṽX (|r − r′|) r−r′

|r−r′ | .
We finally remark that the variational wave function ex-

plicitly breaks the SU (2) spin symmetry (due to the Jastrow
factors, which are written in terms of the z component of
the spin operators). This choice is dictated by the fact that
the Monte Carlo sampling is performed within configurations
with given spins along the Sz axis and Jastrow factors con-
taining also the other components of the spin operators would
make the numerical algorithm extremely more complicated.
Nevertheless, the variational Ansatz is sufficiently accurate to
obtain reliable results when compared to exact calculations on
small systems [34].

B. Two-dimensional model

In two dimensions, we study the generalization of the SSH
J1-J2 model previously discussed. The spins of the system sit
on the sites of a square lattice and interact through antiferro-
magnetic exchange at first (J1) and second neighbors (J2). The
first-neighbor coupling is perturbed by lattice deformations in
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a SSH fashion:

H2d = J1

∑
r

[1 + g(Xr+x − Xr )]Sr · Sr+x

+ J1

∑
r

[1 + g(Yr+y − Yr )]Sr · Sr+y

+ J2

∑
r

Sr · Sr+x+y + J2

∑
r

Sr · Sr+x−y

+ ω

4

∑
r

[
P2

X,r + P2
Y,r + X 2

r + Y 2
r

]
. (9)

Here, x = (1, 0) and y = (0, 1) denote the unit vectors of
the lattice. Periodic boundary conditions are adopted in both
x and y directions. The system is characterized by two
phonon modes per site r, which are described by the op-
erators Xr and Yr measuring the displacements along the x
and y directions, respectively; the corresponding momentum
operators are PX,r = −2i ∂

∂Xr
and PY,r = −2i ∂

∂Yr
, thus leading

to [Xr, PX,r] = [Yr, PY,r] = 2iδr,r′ . As for the one-dimensional
model, the phonons of the system are dispersionless, with fre-
quency ω, and their full quantum nature is taken into account.
For simplicity, we assume that the magnetoelastic coupling
affects only first-neighbor exchange: for sites r and r + x (r
and r + y), the spin-spin interaction is linearly coupled to
the difference of sites displacements along the direction of
the bond, i.e., X phonons (Y phonons). The strength of the
magnetoelastic coupling, denoted by g, is isotropic.

A generalization of the variational technique previously
described is employed. The wave function has the same form
as the one introduced in Eq. (2), but its components are
generalized to the two-dimensional case. The spin part, |�s〉,
is a Gutzwiller-projected state defined on the square lattice,
whose details are discussed in the next section. Concerning
the phonon state |�p〉, we take the product of two coherent
states, one for X phonons and one for Y phonons. As for the
one-dimensional case, the amplitude of the state on a phonon
configuration, specified by the displacements {Xr} and {Yr} of
each lattice site, is a product of Gaussian functions:

〈{Xr}; {Yr}|�p〉 =
∏

r

exp
[
φX

r (Xr )
]

exp
[
φY

r (Yr )
]
, (10)

where

φX
r (Xr ) = izX sin(k · r)Xr − 1

4 [Xr − 2zX cos(k · r)]2, (11)

φY
r (Yr ) = izY sin(k · r)Yr − 1

4 [Yr − 2zY cos(k · r)]2. (12)

The phonon condensate is defined by the momentum k and
two fugacity parameters, zX and zY , which can be optimized
independently of each other.

Finally, also the spin-phonon Jastrow factor is a generaliza-
tion of the one-dimensional case and it consists of a product of
two Jastrow terms, Jsp = J X

spJ Y
sp, one involving X phonons

J X
sp = exp

[
1

2

∑
r,r′

vX (r, r′)Sz
rSz

r′ (Xr − Xr′ )

]
, (13)

FIG. 2. The two possible columnar lattice distortions of the
square lattice SSH J1-J2 model. The one on the left involves only
X displacements, with momentum k = (π, 0). The one on the right
involves only Y displacements, with momentum k = (0, π ).

and one involving Y phonons

J Y
sp = exp

[
1

2

∑
r,r′

vY (r, r′)Sz
rSz

r′ (Yr − Yr′ )

]
. (14)

The pseudopotentials vX and vY fulfill the following proper-
ties:

vX (r, r′) = ṽX (|r − r′|) (r − r′)
|r − r′| · x, (15)

vY (r, r′) = ṽY (|r − r′|) (r − r′)
|r − r′| · y. (16)

The parameters ṽX and ṽY are optimized for all the possible
Euclidean distances on the square lattice.

The Peierls instability of the SSH J1-J2 model on the
square lattice is associated with two equivalent columnar lat-
tice distortions, depicted in Fig. 2. These distortions have a
one-dimensional character, because they involve only one of
the two phonon modes, either X or Y . The columnar order
along x corresponds to k = (π, 0), zX 
= 0 and zY = 0 (no
displacements along Y ). On the contrary, the columnar order
along y is described by k = (0, π ), zY 
= 0 and zX = 0 (no
displacements along X ). Alternative patterns for the dimer-
ization have been also considered, limiting to the cases that
may be relevant to the J1-J2 model without phonons. For
example, a staggered valence-bond order can be described
taking k = (π, π ). In addition, a plaquette distortion can be
obtained by slightly modifying the present formalism and in-
troducing two different momenta for φX

r (Xr ) and φY
r (Yr ). Both

the staggered and plaquette patterns do not give competitive
variational energies compared to the columnar one. Therefore,
in the following discussion, we focus on the columnar Peierls
distortions along x, fixing the momentum k = (π, 0).

As in one dimension, the variational state breaks the SU (2)
spin symmetry, due to the presence of Jastrow factors. We
expect that also here the accuracy of the wave function is
sufficient to correctly reproduce the exact properties of the
model. Unfortunately, direct comparisons with exact results
are not numerically affordable, even in small two-dimensional
clusters (e.g., 4 × 4).
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III. RESULTS

In this section, we discuss the numerical results of the SSH
J1-J2 model in one and two dimensions.

A. One-dimensional model

The phase diagram of the spin-only J1-J2 Heisenberg
model, without phonons, is well established: a critical point at
(J2/J1)c ≈ 0.24 separates a gapless phase from a gapped one
with dimer order. Extremely accurate estimates of the criti-
cal point have been achieved by level spectroscopy [41,42].
In the unfrustrated limit J2/J1 = 0, the inclusion of quan-
tum phonons as in Eq. (1) is known to drive a spin-Peierls
transition, towards a gapped and dimerized phase, which is
stabilized for a sufficiently large magnetoelastic coupling that
depends on the frequency ω [19,20,22,24]. Here, we presents
our variational results for the generic case with both J1 and J2.

The auxiliary Hamiltonian (3) defining the spin part of the
variational state contains both hopping and pairing terms. We
start from the variational Ansätze employed in Ref. [43] for
the J1-J2 model without phonons, taking a fermionic Hamilto-
nian with hoppings at first and third neighbors, pairings at first
and second neighbors, and a uniform on-site pairing. Then,
we allow all first-neighbor terms to break the translational
symmetry of the lattice, assuming that they can be different
on even and odd bonds. In the gapless phase, where the chain
is undistorted, the translational symmetry is restored upon
optimization of the variational energy. On the contrary, in the
dimerized phase, the translational symmetry is explicitly bro-
ken by the first-neighbor terms of the fermionic Hamiltonian
and by the displacements of the lattice sites, which form an
alternating pattern of short and long bonds.

The phase diagram of the SSH J1-J2 model can be obtained
by assessing k = π lattice distortions

�X =
∣∣∣∣∣ 1

N

N∑
r=1

eiπr〈Xr〉
∣∣∣∣∣, (17)

and dimer-dimer correlations

D2 = 1

N

N−1∑
R=0

eiπR

(
1

N

N∑
r=1

〈
Sz

rSz
r+1Sz

r+RSz
r+R+1

〉)
, (18)

where in both cases 〈. . . 〉 stands for the expectation value over
the variational wave function of Eq. (2). In the gapless (undis-
torted) phase, both D2 and �X vanish in the thermodynamic
limit, while the gapped (distorted) phase is characterized by fi-
nite values of dimer-dimer correlations and lattice distortions.

The behavior of �X for a large cluster with N = 200 sites
is shown in Fig. 3. Calculations are shown for three values of
J2/J1, across the transition of the pure spin model: J2/J1 = 0.1
and 0.2 are within the gapless phase, while J2/J1 = 0.3 is
within the gapped phase. The results are obtained for two
different values of the phonon frequency, ω/J1 = 0.1 and 1.
As in the unfrustrated Heisenberg model [34], a finite value
of the spin-phonon coupling g̃c is needed to induce the lat-
tice distortion in the gapless phase (J2/J1 = 0.1 and 0.2); by
contrast, in the gapped phase (J2/J1 = 0.3), �X is finite as
soon as spins are coupled to phonons. Finite-size effects are
small away from the critical point, especially when the phonon

0.00

0.05

0.10

0.15

Δ
X

ω/J1 = 0.1

0.1 0.2 0.3J2/J1 =

0.00 0.02 0.04 0.06 0.08

g̃2

0.0

0.1

0.2

0.3

Δ
X

ω/J1 = 1

FIG. 3. Distortion �X [Eq. (17)] of the SSH J1-J2 Heisenberg
chain as a function of g̃2 with g̃ = (J1/ω)g for different values of
the frustrating ratio J2/J1. The results have been obtained with a
finite chain of N = 200 sites. Top and bottom panels correspond to
ω/J1 = 0.1 and ω/J1 = 1, respectively.

energy is not too small (e.g., they are smaller for ω/J1 = 1
than for ω/J1 = 0.1). Approaching the phase transition, they
are more evident; for example, �X can be very small up to
a given cluster size, becoming suddenly finite when the size
exceeds a given value. Still, the critical point can be located
with a sufficient precision. A systematic analysis of lattice
displacements allows us to draw the phase diagram of Fig. 4.
Here, the critical line, separating gapless and gapped phases,
is compatible with the fact that g̃c goes to zero at J2/J1 ≈ 0.24.
Then, not surprisingly, when the pure spin model is already
gapped and dimerized, an infinitesimal spin-phonon coupling
is sufficient to generate a lattice distortion.

A finite lattice distortion is always accompanied by spin
dimerization, signaled by a finite value of D2. However, while
�X gives a rather sharp indication for the onset of distortions,
dimer-dimer correlations require a more detailed size scaling.
Indeed, on finite clusters, D2 may be sizable also in the gapless
region. In Fig. 5, we show such analysis for J2/J1 = 0.2 and
0.3. For the former case, D2 scales to zero in the thermo-
dynamic limit for small values of g̃, while it remains finite

FIG. 4. Phase diagram of the SSH J1 − J2 Heisenberg chain, for
ω/J1 = 0.1 and ω/J1 = 1. The results have been obtained with a fi-
nite chain of N = 200 sites. The shaded areas denote the uncertainty
on the estimates of the critical spin-phonon coupling g̃c.
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FIG. 5. Finite-size scaling of the dimer order parameter D2

[Eq. (18)] of the SSH J1-J2 Heisenberg chain. Top panels: results for
ω/J1 = 0.1, J2/J1 = 0.2 (left panel) and J2/J1 = 0.3 (right panel).
Bottom panels: results for ω/J1 = 1, J2/J1 = 0.2 (left panel) and
J2/J1 = 0.3 (right panel). The large gray squares represent the results
obtained in absence of phonons, i.e., for the spin-only J1-J2 model.

for sufficiently large values of the magnetoelastic coupling
(g̃ � 0.15). Instead, for J2/J1 = 0.3, D2 always extrapolates
to a finite value in the thermodynamic limit.

B. Two-dimensional model

The two-dimensional J1-J2 model on the square lattice
without phonons has been the subject of intensive investiga-
tions in the last 20 years, with contrasting results [44–58].
The most debated (and interesting) region is in the vicinity of
the highest-frustrated point J2/J1 = 0.5, where a magnetically
disordered ground state should exist. Nevertheless, its phys-
ical properties have not been fully identified yet. Recently,
some consensus is emerging, with evidences that two distinct
phases may be present: a gapless spin liquid and a valence-
bond solid [35–38]. Although there are small discrepancies
in the precise location of transition points by different meth-
ods, variational calculations based upon Gutzwiller-projected
fermionic wave functions suggested that a gapless Z2 spin
liquid is stable for 0.48 � J2/J1 � 0.54, while the valence-
bond solid should be present for 0.54 � J2/J1 � 0.6 [36].
We remark that the existence of these two phases has been
inferred from a level crossing between singlet and triplet states
at low energy. By contrast, it is extremely difficult to assess
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Δ
X
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J2/J1 = 0.50 J2/J1 = 0.58
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g̃2

0.0
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Δ
X
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FIG. 6. Lattice distortion order parameter �X [Eq. (19)] for the
SSH J1-J2 Heisenberg model on the square lattice as a function of g̃2,
for J2/J1 = 0.50 and J2/J1 = 0.58. The results have been obtained
with a finite 16 × 16 cluster. Top and bottom panels correspond to
ω/J1 = 0.1 and ω/J1 = 1, respectively.

the presence of valence-bond order directly from dimer-dimer
correlations.

Let us now discuss the auxiliary Hamiltonian (3) defining
the spin part of the variational state. This approach allows dif-
ferent spin-liquid Ansätze, which can be classified according
to the so-called projective-symmetry group technique [59].
Among them, the best variational state of the J1-J2 model has
s-wave hoppings and d-wave pairings [50]. The symmetry of
the pairing terms is dx2−y2 , for fermions on the opposite sublat-
tice, or dxy, for fermions on the same sublattice. The hopping
is limited to first neighbors, while the pairing includes first
(dx2−y2 ), second, and fifth neighbors (dxy); within this Ansatz,
the third-neighbor pairing is not allowed, while at fourth
neighbors a further dx2−y2 would give a marginal energy im-
provement [50]. After having selected the variational Ansatz
for the phonon condensate, fixing the momentum k = (π, 0)
that determines the pattern of sites displacements, we allow
the couplings in the auxiliary Hamiltonian to assume different
values on shorter and longer bonds induced by the distortion.

Having chosen k = (π, 0) (leading to columnar order
along x), we define the distortion order parameter as

�X =
∣∣∣∣∣ 1

N

N∑
r=1

eik·r〈Xr〉
∣∣∣∣∣, (19)

and the dimer-dimer correlations as

D2 = 1

N

∑
R

eik·R
(

1

N

∑
r

〈
Sz

rSz
r+xSz

r+RSz
r+R+x

〉)
. (20)

We focus on two values of the frustrating ratio, one in the
gapless spin liquid phase (J2/J1 = 0.50) and the other in
the valence-bond solid phase (J2/J1 = 0.58). In Fig. 6, we
show the lattice distortion �X for ω/J1 = 0.1 and 1, and
different values of the spin-phonon coupling. The results are
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FIG. 7. Variational energy as a function of the lattice distortion
�X for the SSH J1-J2 Heisenberg model on the square lattice. The
energy landscape has been computed for the case ω/J1 = 0.1 and
J2/J1 = 0.50, g̃ = 0.3 (left panel) and g̃ = 0.4 (right panel). Finite
clusters of different size have been used for the calculation (L = 14,
16, 18, and 20).

remarkably different for the two values of the frustrating ratio:
While for J2/J1 = 0.58, the lattice is immediately distorted,
i.e., as soon as an infinitesimal magnetoelastic coupling is
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FIG. 8. Variational energy as a function of the lattice distortion
�X for the SSH J1 − J2 Heisenberg model on the square lattice. The
energy landscape has been computed for the case ω/J1 = 1, J2/J1 =
0.50 (on the left) and J2/J1 = 0.58 (on the right), and different values
of g̃. The results have been obtained on a 16 × 16 square lattice.
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FIG. 9. Finite-size scaling of the dimer order parameter D2

[Eq. (20)] of the SSH J1-J2 Heisenberg model on the square lat-
tice. Results for ω/J1 = 0.1 are shown: J2/J1 = 0.50 (left panel)
and J2/J1 = 0.58 (right panel). The large gray squares represent the
results obtained in absence of phonons, i.e., for the spin-only J1-J2

model.

included, for J2/J1 = 0.50 there are no appreciable distortions
until the spin-phonon coupling reaches a finite critical value
g̃. This observation suggests that the spin liquid is stable also
in the presence of spin-lattice interactions. Given the gapless
nature of the quantum spin liquid and its proximity to a
valence-bond phase, this represents an absolutely nontrivial
result.

As in one dimension, size effects are particularly relevant
for small values of ω/J1 and in the vicinity of the phase
transition, especially in the distorted regime. In fact, �X may
be very small up to a given cluster size and then, abruptly,
may become finite. In order to quantify size effects, in Fig. 7
we show the landscape of the variational energy as a function
of �X , for different values of the cluster size. The different
variational solutions forming the landscape are obtained by
fixing the fugacity parameter zX to a set of different values and
optimizing only the remaining parameters to get the lowest
energy. Each of the solutions correspond to a state with a
different value of �X and a different energy. In Fig. 7 we
concentrate on J2/J1 = 0.50 and we take two values of the
magnetoelastic coupling (corresponding to undistorted and
distorted cases). In the undistorted case (i.e., for g̃ = 0.3), size
effects are under control, the landscape having a minimum at
�X = 0, which is stable upon increasing N . By contrast, in
the distorted case (i.e., for g̃ = 0.4), the landscape starts hav-
ing a well-defined minimum at �X 
= 0 only for sufficiently
large values of N . Still, the full Monte Carlo optimization (in
which all parameters are optimized simultaneously) is able to
detect the minimum at finite �X even when the landscape is
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FIG. 10. The same as in Fig. 9 but for ω/J1 = 1.

very shallow, as demonstrated for the 16 × 16 cluster, where
�X ≈ 0.1 is obtained, see Fig. 6.

For ω/J1 = 1 size effects are much weaker than for ω/J1 =
0.1 and, therefore, relatively small clusters are sufficient to
capture the correct thermodynamic picture. In Fig. 8, we re-
port the calculations of the energy landscape for the 16 × 16
cluster for both J2/J1 = 0.50 and 0.58, for different values
of g̃. The landscapes confirm our previous observation: A
stable minimum at �X 
= 0 is always present when including
the spin-phonon coupling on the valence-bond solid (J2/J1 =
0.58); on the contrary, in the gapless spin-liquid regime
(J2/J1 = 0.50), no distortions are visible if the magnetoelastic
coupling is below a certain critical value g̃c.

Finally, we conclude our analysis with the dimer-dimer
correlations, see Figs. 9 and 10, where the calculations for
ω/J1 = 0.1 and 1 are shown, respectively. The correlations
follow the behavior of �X , i.e., D2 scales to zero in the
thermodynamic limit when �X ≈ 0, while a finite dimer or-
der is detected in the cases in which �X 
= 0. Notice that
prominent size effects are visible for ω/J1 = 0.1 close to the
transition, namely for g̃ ≈ 0.4 at J2/J1 = 0.50 and g̃ ≈ 0.1 at
J2/J1 = 0.58, where an accurate scaling is hard. Nevertheless,
in both cases, the trend of the data indicate a finite value of D2

in the thermodynamic limit. We note that in Figs. 9 and 10,
the values of D2 of the pure spin model are also reported for
comparison. As emphasized above, dimer-dimer correlations
for the spin-only J1-J2 model on the square lattice do not show
any appreciable long-range order in the thermodynamic limit,
even in the putative valence-bond solid, i.e., at J2/J1 = 0.58.
However, it is remarkable that, in the presence of a magne-
toelastic coupling, the spin-liquid and valence-bond phases

react in a radically different way, with the latter immediately
developing a finite value of D2 in the thermodynamic limit.

IV. CONCLUSIONS

In this work, we investigated the effects of the spin-phonon
coupling on two paradigmatic models of frustrated mag-
netism, namely the J1-J2 Heisenberg model in one and two
dimensions (square lattice). Starting from the pure spin mod-
els, we introduced a magnetoelastic interaction by coupling
the first-neighbor spin exchange to the relative displacements
of lattice sites. The resulting models of spins and phonons
have been tackled by a variational Monte Carlo approach,
which incorporates the full quantum dynamics of the problem
by means of Gutzwiller-projected fermionic states and Jas-
trow factors. The method does not suffer of sign problem in
the presence of frustration, nor requires a truncation of the
infinite Hilbert space of the phonons.

In the one-dimensional SSH J1-J2 model we track the
evolution of the spin-Peierls transition, induced by the spin-
phonon interaction, as a function of the frustrating exchange
term (J2). The onset of Peierls dimerization is assessed by
measuring lattice distortions and dimer-dimer correlations.
For small values of the frustrating ratio, a finite magnetoelastic
coupling g̃c is necessary to drive the system from the gapless
phase to the dimerized one, as in the simple SSH Heisenberg
chain (J2 = 0) [20]. However, the critical spin-phonon cou-
pling of the Peierls transition decreases upon increasing J2/J1

and vanishes when the J1-J2 model enters the gapped phase
with long-range dimer correlations (J2/J1 � 0.24). Here, an
infinitesimally small magnetoelastic coupling is sufficient to
induce a finite lattice distortion.

The most interesting results are obtained for the J1-J2

model on the square lattice with spin-phonon interactions.
We focused our attention on the highly frustrated region of
the pure spin model in the proximity of J2/J1 ≈ 0.5, whose
nature is still undetermined. Recent numerical investigations
indicated that the nonmagnetic region could be split into
two phases, namely a gapless spin liquid followed by a
valence-bond solid [35–38]. At variance with the case of the
one-dimensional J1-J2 model, the nonmagnetic region around
the transition is extremely narrow and the dimer-dimer cor-
relations do not differ appreciably in the two phases, thus
making the presence of valence-bond order hardly detectable.
However, the inclusion of magnetoelastic effects considerably
enhances the difference between the two phases. For J2/J1 =
0.58, within the valence-bond ordered phase, the system de-
velops a finite columnar distortion and long-range dimer order
as soon as the spin-phonon coupling is included. On the con-
trary, for J2/J1 = 0.50, within the spin-liquid phase, a finite
critical value of the magnetoelastic coupling is required to
drive the system towards dimerization. This important result
suggests that gapless spin liquids, which are believed to be
fragile to external perturbations, could be stable with respect
to the interaction between spins and lattice distortions.

The present results open the way to a number of applica-
tions of the variational method to other lattices (e.g., triangular
and kagome) and more realistic frustrated spin models. In
addition, it would be interesting also to study the effect of
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the spin-phonon coupling in magnetically ordered states (es-
pecially for large values of J2/J1 where different spin-spin
correlations are present along x and y directions) or in fully
gapped spin liquids. Finally, the stability of spin liquid phases
to other kinds of phonons, with an acoustic dispersion, repre-
sents a possible direction of future investigations.
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