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Photoinduced dynamics of organic molecules using nonequilibrium Green’s functions
with second-Born, GW , T -matrix, and three-particle correlations
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The ultrafast hole dynamics triggered by the photoexcitation of molecular targets is a highly correlated process
even for those systems, such as organic molecules, having a weakly correlated ground state. We provide a
unifying framework and a numerically efficient matrix formulation of state-of-the-art nonequilibrium Green’s
function (NEGF) methods such as second-Born as well as GW and T -matrix without and with exchange
diagrams. Numerical simulations are presented for a paradigmatic, exactly solvable molecular system, and the
shortcomings of the established NEGF methods are highlighted. We then develop a NEGF scheme based on
the Faddeev treatment of three-particle correlations; the exceptional improvement over established methods is
explained and demonstrated. The Faddeev NEGF scheme scales linearly with the maximum propagation time,
thereby opening up prospects for femtosecond simulations of large molecules.
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I. INTRODUCTION

The study of nonequilibrium phenomena in correlated
materials has recently become one of the most active and
exciting branches of atomic, molecular, and condensed-matter
physics. This is largely due to advances in light sources and
time-resolved spectroscopies on the ultrashort timescales [1],
which made it possible not only to observe and describe but
also to design systems with new remarkable properties by
coupling them to external electromagnetic fields [2]. In a
long time perspective, they may lead to practical applications
having a huge societal impact [3].

As an example, consider the quantum evolution of an or-
ganic molecule initially in its weakly correlated ground state
and then perturbed by an ultrashort (sub-fs) weak extreme
ultraviolet (XUV) pulse [4–7]. The target molecule undergoes
a transition to an excited one-hole state through the emission
of a single electron. The resulting cationic state can no longer
be characterized as weakly correlated. In fact, immediately
after the excitation, quantum scattering processes mediated
by the Coulomb interaction start to roll. They promote the
decay of the left behind hole into a two-hole and one-particle
(2h-1p) state. Thus, in contrast to the initial nondegener-
ate ground state, the system is now in a superposition of a
large number of quasidegenerate states whose energies and
mutual interactions represent a formidable challenge for the
theory. In particular, this is true for methods based on density
functional theory as most approximations to the exchange-
correlation (xc) potential rely on ground-state correlations
only. It is also a challenge for wave-function methods. They
can, in principle, deal with multiconfigurational ionized states
(static correlations) [8–10] and systematically treat 2h-1p,
3h-2p, etc. configurations, thus making the approach accurate
and predictive for small molecular systems. However, the

inclusion of dynamical correlations (“quasiparticle dressing”
in physics terminology) remains a difficult numerical task.

Other challenges for the theory include the treatment of
large molecular systems, where nuclear and collective elec-
tronic excitations emerge as important scattering channels
[11,12], as well as the description of processes with a variable
number of particles as in transport [13,14] and photoemission
experiments [15–17]. Methods that can deal with all these
ingredients on an equal footing are still in their infancy; de-
velopments in the realm of wave-function expansions [18–21]
and time-dependent density-functional theory (DFT) are cer-
tainly foreseeable [22,23].

The nonequilibrium Green’s function (NEGF) theory
[24,25] is another fertile playground for the development of
efficient methods. Its main variable, namely the single-particle
Green’s function, naturally appears in the observables charac-
terizing the aforementioned phenomena, and the inclusion of
static and dynamical electronic correlations as well as inter-
actions with other quasiparticles of a bosonic nature, such as
plasmons and vibrational modes, is possible through the exact
resummation of diagrammatic expansions to infinite order in
the interactions strength.

The NEGF versatility, however, comes at the cost of deal-
ing with two-times correlators. The time-evolution of any
quantum system is described by the so called Kadanoff-
Baym equations (KBEs) [24,25] for the Green’s function.
The KBEs are nonlinear first-order integrodifferential equa-
tions scaling cubically with the physical propagation time,
thereby making it difficult to resolve small energy scales as-
sociated with phonons, magnons, etc. A less severe quadratic
scaling can be achieved by means of the so-called general-
ized Kadanoff-Baym ansatz (GKBA) [26], which allows for
reducing the KBE to a single equation of motion for the
one-particle density matrix [27]. Recent applications of the
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NEGF + GKBA approach include the nonequilibrium dy-
namics [28,29] and many-body localization [30] of Hubbard
clusters, time-dependent quantum transport [31–33], real-time
description of the Auger decay [34], excitonic insulators out
of equilibrium [35], equilibrium absorption of sodium clus-
ters [36], transient absorption [37–40], and carrier dynamics
[41,42] of semiconductors.

A tremendous amount of progress has been recently
achieved in further reducing the NEGF+GKBA scaling to
the ideal linear law [43] and establishing that the method is
applicable for state-of-the-art diagrammatic approximations
such as the second-Born (2B), GW , and T -matrix (both in the
ph and pp channels) [44]. These approximations have been
extensively tested in the past for model and realistic systems
in the neutral state, both by solving full Kadanoff-Baym equa-
tions [45–50] and by using GKBA [35,44,51]. However, they
lose accuracy in the description of photoionization-induced
dynamics even for systems having a weakly correlated ground
state.

Let us return to our initial picture of the 1h → 2h-1p
scattering in photoexcited molecular targets. In a realistic sce-
nario, one has to deal with recurrent scatterings of this kind.
Mathematically, this is treated by the resummation of certain
classes of Feynman diagrams. One may focus on the fate of
one particle and one hole in the final state and disregard other
interactions, schematically indicated as h → (p + h) + h. De-
pending on which hole h is paired with the particle p in the
final state, we end up with either the GW approximation or
the T -matrix approximation in the ph channel (henceforth
T ph). Alternatively, one may elect to describe the interactions
between two-holes (or particles) in the final state, schemati-
cally indicated as h → (h + h) + p, leading to the so-called
T -matrix approximation in the pp channel (henceforth T pp)
[52]. All these approximations treat either a hole or a particle
as a spectator, i. e., they ignore three-particle correlations.
Such a limitation has a profound impact on the description
of fundamental physical processes. This is especially true in
the presence of (near) degeneracies between the involved elec-
tronic states. In the case of the inner-valence-hole migration,
the quasidegeneracies are due to spin degrees of freedom. The
multitude of spin-states in the 1h → 2h-1p scattering scenario
is not accounted for by the conventional GW and T -matrices
approximations.

In this work, we apply all conventional approximations
to study the inner-valence-hole migration in the glycine
molecule. The numerical simulations clearly show that none
of these methods is capable of describing the quantum beating
associated with transitions between different 2h-1p states. A
resolution within NEGF is achievable by explicitly correlating
the three-particle states. The so called three-particle ladder
approximation describes all pair-wise correlations among the
three particles. This partial resolution was first explored in the
context of nuclear physics [53], and it leads to the well-known
Faddeev equations [54,55], later applied to model [56], atomic
[57], and small molecular systems [58]. However, to the best
of our knowledge, a full treatment of three-particle correla-
tions has never been investigated in the context of the NEGF
formalism.

The main achievement of our work is the development of
a NEGF + GKBA method based on the three-particle Green’s

function. For the purpose of a self-contained exposition, we
first introduce the 2B, GW , and T -matrix approximations.
In Sec. II we provide a simple and concise derivation of
the equations of motion, cast the equations in a numerically
efficient matrix form, and highlight the common underlying
mathematical structure of all these approximations. In Sec. III
we present the full-fledged three-particle method, henceforth
referred to as the Faddeev method. Its derivation relies on
the extension of the GKBA to high-order Green’s functions.
Conventional approximations and the Faddeev method are
benchmarked against the exact photoinduced electron dynam-
ics in the paradigmatic glycine molecule, finding an excellent
agreement for the latter; see Sec. IV. Note that the numerical
solution of the Faddeev-GKBA method scales linearly with
the maximum propagation time. In Sec. V we recapitulate
our finding and propose systems and experimental scenarios
in which the method is particularly relevant.

II. UNIFYING FORMULATION OF THE GKBA
EQUATIONS FOR STATE-OF-THE-ART METHODS

Let us start from a generic fermionic Hamiltonian,

Ĥ (t ) =
∑

i j

hi j (t )d̂†
i d̂ j + 1

2

∑
i jmn

vi jmn(t )d̂†
i d̂†

j d̂md̂n, (1)

where hi j stands for the one-body part and vi jmn is the
Coulomb interaction tensor; they are time-dependent in gen-
eral. The time dependence in hi j (t ) originates, for instance,
from the coupling to external fields, whereas the time de-
pendence in vi jmn(t ) could be due to the adiabatic switching
protocol adopted to generate a correlated initial state. Be-
low, we skip the time arguments if they are not essential for
the discussion. The indices i, j, etc. comprise a spin index
and an orbital index, which (without any loss of general-
ity) is associated with some localized basis functions, but it
is straightforward to reformulate the equations in, e. g., a
plane-wave basis or any other suitable basis. In this work, we
consider a spin-symmetric single-particle Hamiltonian and a
spin-independent interaction. Making explicit the spin depen-
dence, this implies that hiσ1 jσ2 = δσ1σ2 hi j and

viσ1 jσ2mσ3nσ4 = δσ1σ4δσ2σ3vi jmn. (2)

The lesser and the greater Green’s functions (GFs) are
defined as

G<
i j (t, t ′) = +i

〈
d̂†

j (t ′)d̂i(t )
〉
, (3a)

G>
i j (t, t ′) = −i

〈
d̂i(t )d̂†

j (t ′)
〉
, (3b)

and they fulfill the symmetry relation G≶(t1, t2) =
−[G≶(t2, t1)]†. They carry information on the single-particle
spectra and occupations. The generalized Kadanoff-Baym
ansatz (GKBA) [26] factorizes these two independent
ingredients (see Appendix A),

G≶(t1, t2) = −GR(t1, t2)ρ≶(t2) + ρ≶(t1)GA(t1, t2), (4)

so that the greater/lesser density matrices become our main
single-time variables,

ρ
≶
i j (t ) = −iG≶

i j (t, t ) [ρ>
i j = ρ<

i j − δi j]. (5)
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(a)

(c)

(d)

(e)

(b)

FIG. 1. Diagrammatic representation of Eq. (9) for the scattering
term.

Using the GKBA, the Kadanoff-Baym equations (KBEs)
are reduced to an equation of motion for the density matrix,

d

dt
ρ<(t ) = −i[hHF(t ), ρ<(t )] − (I (t ) + I†(t )), (6)

provided that the retarded (GR) and advanced (GA) Green’s
functions are approximated as functionals of ρ<. In this work,
we consider the Hartree-Fock functional form

GR(t, t ′) = −iθ (t − t ′)T
{
e−i

∫ t
t ′ dτ hHF(τ )

}
, (7)

and hence GA(t, t ′) = [GR(t ′, t )]†. In Eqs. (6) and (7),

hHF,i j (t ) = hi j (t ) +
∑
mn

[vimn j − vim jn]ρ<
nm(t ) (8)

is the Hartree-Fock (HF) Hamiltonian, which is a functional
of ρ<. The so-called collision integral I (t ) in Eq. (6), there-
fore, accounts for electronic correlations, and through the
GKBA and Eq. (7) it too is a functional of ρ<; see below.
The ultimate goal for numerics is to compute the collision
integral in the most accurate and efficient fashion. Its exact
form follows straightforwardly from the first equation of the
Martin-Schwinger hierarchy, and it involves the two-particle
Green’s function (2-GF) G at equal times,

Il j (t ) = −i
∑
imn

vlnmi(t )Gim jn(t ). (9)

The diagrammatic expression of Eq. (9) is shown in Fig. 1(a).
In this section, we evaluate the collision integral in the di-

agrammatic approximation d = 2B [see Fig. 1(b)], as well as
d = GW + (X ), T ph + (X ), T pp + (X ) [see Fig. 1(c)–1(e)].
For the latter approximations, the addition of exchange (X )
simply amounts to solving the Bethe-Salpeter equations of
Figs. 1(c)–1(e) with an interaction line wimn j = vimn j − vim jn.

In 2B the use of w allows for writing the direct and exchange
diagrams in terms of a single diagram; see again Fig. 1(b).
Depending on the approximation d , we find it convenient to
rewrite Eq. (9) in different, yet equivalent, forms

Il j (t ) = −i
∑
imn

v
(d )
lm
in

(t )G (d )
m j
ni

(t ), (10)

where the relation between the one-particle 4-rank tensors
v,G and the two-particle 2-rank tensors v(d ),G (d ) is provided
in Table I. To distinguish matrices (2-rank tensors) in the
two-particle space from matrices or tensors in the one-particle
space, we use bold letters for the former. In the following sub-
sections, we show that the GKBA expression for the 2-GF has
the following compact form for all approximations (omitting
the dependence on d):

G(t ) = i
∫ t

t0

dt ′ �R(t, t ′)Ψ (t ′)�A(t ′, t ), (11)

where the initial time t0 = 0 without any loss of generality.
From Eq. (11) it follows that G(t0) = 0, i.e., the initial state is
uncorrelated. If a correlated initial state is desired [44], then
the adiabatic switching, from which any stationary GKBA-
compatible state can be obtained [27], is performed before
triggering the nonequilibrium dynamics.

Starting from Eq. (11), we shall derive the ordinary dif-
ferential equation (ODE) for G(t ). In Ref. [44] the reverse
strategy (for diagrammatic approximations without exchange)
has been used: the equation of motion was first derived for
G(t ), and Eq. (11) followed as its general solution. Ac-
cording to Eq. (11), G is the integral of a product between
(d-dependent) time-dependent matrices in two-particle space.
The (d-dependent) matrix

Ψ (t ) ≡ ρ>(t )w(t )ρ<(t ) − ρ<(t )w(t )ρ>(t ) (12)

is a simple product between the time-dependent matrices
ρ≶ and w defined in Table I. The (d-dependent) retarded
propagator �R(t, t ′) = [�A(t ′, t )]† satisfies for any t > t ′ the
differential equation

i
d

dt
�R(t, t ′) = [

h(t ) + a ρ�(t )w(t )
]
�R(t, t ′), (13)

with the boundary condition

i�R(t+, t ) = 1 ×
{−1, d = 2B, GW ;

1, d = T ph, T pp.
(14)

The matrix h as well as the constant a are given in Table I,
whereas

ρ�(t ) ≡ ρ>(t ) − ρ<(t ). (15)

The equation of motion for the 2-GF [43,44] follows di-
rectly from Eq. (13),

i
d

dt
G(t ) = −Ψ (t ) + [h(t ) + aρ�(t )w(t )]G(t )

− G(t )[h(t ) + aw(t )ρ�(t )]. (16)

The coupled differential equations (6) and (16) form the
essence of the NEGF+GKBA method for all the approxima-
tions in Table I. The numerical solution of these equations
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TABLE I. Definitions of the two-particle 2-rank tensors. The vertically grouped indices are combined into one superindex. Here h ≡ hHF

for brevity.

Quantity 2B GW + (X ) T pp + (X ) T ph + (X )

G G
13
24

= G4132 G
13
24

= G4132 G
13
24

= G1234 G
13
24

= G1432

h h
13
24

= h13δ42 − δ13h42 h
13
24

= h13δ42 − δ13h42 h
13
24

= h13δ24 + δ13h24 h
13
24

= h13δ42 − δ13h42

v v
13
24

= v1432 v
13
24

= v1432 v
13
24

= v1243 v
13
24

= v1423

w w
13
24

= v1432 − v1423 w
13
24

= v1432 − (v1423) w
13
24

= v1243 − (v1234) w
13
24

= v1423 − (v1432)

ρ< ρ<

13
24

= ρ<
13ρ

>
42 ρ<

13
24

= ρ<
13ρ

>
42 ρ<

13
24

= ρ<
13ρ

<
24 ρ<

13
24

= ρ<
13ρ

>
42

ρ> ρ>

13
24

= ρ>
13ρ

<
42 ρ>

13
24

= ρ>
13ρ

<
42 ρ>

13
24

= ρ>
13ρ

>
24 ρ>

13
24

= ρ>
13ρ

<
42

a 0 −1 1 1

scales linearly with the propagation time. The concise deriva-
tion of such a unifying formulation is made possible by the
diagrammatic structure of the 2-GF, which takes into account
only two-particle correlations (in p-p or p-h channels); see
again Figs. 1(c)–1(e). We can then order the indices (see
Table I) in such a way as to construct RPA-like equations
in the respective channels. The contraction over the pair of
indices translates in our notation to a matrix product, while
the particle permutation symmetry is taken into account by the
constant a. The 2B approximation is the lowest-order term of
all the correlated methods, GW , and T -matrix, when exchange
is added. Accordingly, the 2B equations (now expressed in the
GW index convention) can be equivalently formulated using
the T -matrix index conventions—this point is expanded on in
Sec. II A. We also observe that

G† = G, v† = v, w† = w, h† = h, ρ≷† = ρ≷,

(17)

as follows directly from the symmetry properties

v1234 = v∗
4321 = v2143, (18a)

G1234 = G∗
3412 = G2143. (18b)

In the remainder of this section, we present the derivation
of Eq. (11). We point out, however, that it is not necessary
to go through the derivation in order to follow the Faddeev
method in Sec. III.

A. Second Born approximation

Let us start with the simplest case, in which the collision
integral is given by its second-order (in v) expression—hence
the name. The equal-time 2-GF can be expressed as the con-
volution of two response functions χ0 [see Fig. 2(a)],

G(t ) = −i
∫ t

0
dt ′{χ0,>(t, t ′)w(t ′)χ0,<(t ′, t ) − (>↔<)}.

(19)
As already pointed out, in 2B there is a freedom in selecting
the index convention. We define here three different response

functions as matrices in two-particle space,

χ
0,≶
13
24

(t, t ′) = i

⎧⎪⎪⎨
⎪⎪⎩

−G≶
13(t, t ′)G≷

42(t ′, t ), GW,

+G≶
13(t, t ′)G≶

24(t, t ′), T pp,

+G≶
13(t, t ′)G≷

42(t ′, t ), T ph.

(20)

Then the collision integral in Eq. (10) does not change if we
consistently use for v, χ0,≶ and w the same index convention
as described in Table I.

Evaluating the noninteracting response functions with the
GKBA in Eq. (4), we find

χ0,≶(t, t ′) = PR(t, t ′)ρ≶(t ′) − ρ≶(t )PA(t, t ′), (21)

where, depending on the approximation d = GW, T pp, T ph,

PR
13
24

(t, t ′) =

⎧⎪⎨
⎪⎩

+iGR
13(t, t ′)GA

42(t ′, t ), GW,

+iGR
13(t, t ′)GR

24(t ′, t ), T pp,

−iGR
13(t, t ′)GA

42(t ′, t ), T ph,

(22)

PA(t, t ′) = [PR(t ′, t )]†, (23)

(a)

(b)

FIG. 2. Diagrammatic representation of Eq. (19) (a) and Eq. (28)
(b) for the two-particle Green’s function in terms of the RPA χ and
noninteracting χ0 response functions.

035124-4



PHOTOINDUCED DYNAMICS OF ORGANIC MOLECULES … PHYSICAL REVIEW B 104, 035124 (2021)

and the matrices ρ> and ρ< are defined in Table I for each
diagrammatic approximation. Taking into account that t ′ � t
in Eq. (19), and substituting Eqs. (21) into it, we arrive at

G(t ) = i
∫ t

0
dt ′ PR(t, t ′)Ψ (t ′)PA(t ′, t ). (24)

Comparing this result with Eq. (11), we are left to prove that
PR satisfies Eq. (13) with the boundary condition in Eq. (14).
The equation of motion for PR follows from the equation of
motion of the retarded/advanced Green’s functions. Accord-
ing to Eq. (7), we have (repeated indices are summed over)

i
d

dt
GR/A

ma (t, t ′) = hHF
mc (t )GR/A

ca (t, t ′) + δmaδ(t − t ′), (25a)

−i
d

dt ′ G
R/A
ma (t, t ′) = GR/A

mc (t, t ′)hHF
ca (t ′) + δmaδ(t − t ′). (25b)

By defining the matrix h in the two-particle space accord-
ing to Table I, we can then write for all cases and for t > t ′

i
d

dt
PR(t, t ′) = h(t )PR(t, t ′), (26)

which coincides with Eq. (13) when d = 2B since in this
case a = 0. The initial conditions for PR can likewise be
obtained by taking the equal-time limit of Eq. (22) and by
using GR(t+, t ) = −i and GA(t, t+) = i:

iPR(t+, t ) = 1 ×
{−1, GW ;
+1, T pp, T ph.

(27)

Using the GW index convention (this is the convention used
in Table I for 2B), we find the boundary condition of Eq. (14).

B. GW and T -matrices approximation

Higher-order diagrammatic approximations for G such as
GW and T -matrices with exchange require the notion of the
RPA response functions χ as depicted in Fig. 2(b). For all the
cases, we can write

G(t ) = −i
∫ t

0
dt ′{χ>(t, t ′)w(t ′)χ0,<(t ′, t ) − (>↔<)},

(28)
where the noninteracting χ0 has been defined in Eq. (20). To
recover the more standard GW and T -matrix approximations,
we can simply replace w with v in Eq. (28) and in the RPA
equation for χ. We can also consider the exchange-only ver-
sion of these approximations; in this case, the replacement is
w → w − v. To reduce the voluminousness of the equations,
we introduce the two-time function w(t, t ′) = w(t )δ(t − t ′)
and the shorthand notation

[a · b](t, t ′) =
∫

dt̄ a(t, t̄ )b(t̄, t ′). (29)

The Langreth rules then imply (see Appendix B)

χ≶ = (δ + χR · w) · χ0,≶ · (w · χA + δ) (30)

with

χR/A = χ0,R/A + χ0,R/A · w · χR/A, (31a)

= χ0,R/A + χR/A · w · χ0,R/A. (31b)

In the GW case, χ is well known as the density-density
response function, of high relevance for the optical properties.
Let us work out the expression of χ when the Green’s function
is evaluated using the GKBA.

By definition, χ0,R/A(t, t ′) = ±θ (±t ∓ t ′)[χ0,>(t, t ′) −
χ0,<(t, t ′)]. Hence from Eq. (21),

χ0,R(t, t ′) = PR(t, t ′)ρ�(t ′), (32a)

χ0,A(t, t ′) = ρ�(t )PA(t, t ′), (32b)

where ρ� has been defined in Eq. (15). Inserting this result
into Eqs. (31), we find

χR(t, t ′) = �R(t, t ′)ρ�(t ′), (33a)

χA(t, t ′) = ρ�(t )�A(t, t ′), (33b)

where �R/A satisfy the RPA equations,

�R − PR = �R · ρ�w · PR = PR · ρ�w · �R, (34a)

�A − PA = �A · wρ� · PA = PA · wρ� · �A. (34b)

In Eqs. (34), the quantities [wρ�](t, t ′) ≡ w(t, t ′)ρ�(t ′) and
[ρ�w](t, t ′) ≡ ρ�(t )w(t, t ′). Notice that P and �, unlike the
response functions χ0 and χ, are auxiliary quantities that
cannot be written as operator averages, i.e., they are not cor-
relators.

Using the GKBA for χ0,≶ [Eq. (21)] and the GKBA for
χR/A [Eq. (33)] in Eq. (30) we obtain a rather concise form for
χ≶ that can be paralleled with Eq. (21),

χ≶ = (δ + �R · ρ�w) · (PRρ≶ − ρ≶PA) · (wρ� · �A + δ)

= �Rρ≶ · (δ + wρ� · �A) − (�R · ρ�w + δ) · ρ≶�A.

(35)

Inserting now Eq. (21) for χ0,≶ and Eq. (35) for χ≶ into
Eq. (28), and using again the RPA equations (34) that relate
� and P, the general result for G(t ) in Eq. (11) follows. We
are then left to prove that �R satisfies Eq. (13) with boundary
condition (14).

This can be achieved by first observing that the prop-
erty (23) transfers directly to �R and �A through the RPA
equations. The retarded/advanced nature of the � func-
tions further implies that i�R(t+, t ) = iPR(t+, t )—hence the
boundary condition (14). Finally, the equation of motion (13)
follows by differentiating Eq. (34) and using the equation of
motion (26) for PR(t, t ′) with the boundary condition Eq. (27).

III. THE FADDEEV METHOD IN THE GKBA

The main objective of this work is to develop an accurate
and efficient approximation scheme to simulate the electron
dynamics of organic molecules induced by a weak XUV
pulse. In these systems, ground-state electronic correlations
are rather weak, and the unperturbed many-body state is
well approximated by a Slater determinant of HF wave func-
tions. The weak XUV pulse extracts one electron from the
inner-valence states causing hole migration. In a simplifying
picture, the hole can either move “freely” in the space of
the originally occupied (O) HF molecular orbitals (MOs) or
scatter with an electron in one of the unoccupied (V) HF MOs
thereby creating another particle-hole pair. The “free” motion
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is captured by a time-dependent HF treatment (which amounts
to discarding the collision integral). The second process,
henceforth called the shake-up process, is instead triggered
by the Coulomb integrals vimn j with only one index in the
unoccupied sector. As we shall see, these processes require a
nonperturbative treatment of three-particle correlators for the
evaluation of the collision integral. In the remainder of this
work, the spin indices are explicitly spelled out for clarity.

A. Shake-up effects

We recall that the Hamiltonian is invariant under spin-flip
and that the initial state is spin-compensated; it is therefore
sufficient to calculate the up-up component of the density ma-
trix since ρiσ1 jσ2 = δσ1σ2ρi j . Let us denote by vs the shake-up
Coulomb tensor defined as vs = v if only one index belongs
to the unoccupied sector and three other indices are distinct
occupied ones, and vs = 0 otherwise. We can then write the
shake-up contribution to the collision integral as

Is
l j (t ) ≡ Is

l↑ j↑(t ) = −i
∑
imn
σ

vs
lnmiGi↑mσ j↑nσ (t ), (36)

where l , j, i, m, n are the orbital indices. In deriving this equa-
tion, we have made use of the spin-structure of the Coulomb
tensor; see Eq. (2). After the XUV pulse has passed through
the molecule, the equal-time 2-GF is given by

Gi↑mσ j↑nσ (t ) = 1

i2
〈ϕ(t )|d̂†

nσ d̂†
j↑d̂i↑d̂mσ |ϕ(t )〉, (37)

where |ϕ(t )〉 = e−iĤt |ϕ〉 and |ϕ〉 is the state of the molecule
just after the pulse. This state differs from the HF ground
state |φHF〉 since it contains a small component in the cationic
space: |ϕ〉 = (1 + ∑

kσ αkd̂kσ )|φHF〉, where the coefficients
αk � 1 are linear in the electric field of the XUV pulse. We
intend to approximate G to the lowest order in the shake-up
transition amplitudes vs while still treating nonperturbatively
2h-1p correlation effects. For this purpose, we write the full
Coulomb tensor as v = vs + v′ and retain in v′ only the two-
index direct and exchange integrals. This means that

v′
imn j = δi jδmnvimmi + δinδm jvimim − δi jδmnδimviiii. (38)

This selection of Coulomb integrals is dictated by the fact that
only direct and exchange terms contribute to the energy of
2h-1p states; see below. The full Hamiltonian appearing in
Eq. (37) is then approximated as

Ĥ � Ĥ ′ + Ĥ s
int, (39)

where [see Eq. (1)]

Ĥ ′ =
∑

i j
σ

hi j d̂
†
iσ d̂ jσ + 1

2

∑
i jmn
σσ ′

v′
i jmnd̂†

iσ d̂†
jσ ′ d̂mσ ′ d̂nσ , (40)

and

Ĥ s
int = 1

2

∑
i jmn
σσ ′

vs
i jmnd̂†

iσ d̂†
jσ ′ d̂mσ ′ d̂nσ . (41)

Notice that no double counting occurs in Eq. (39) since vs

has only one index in the V-sector and v′ has orbital indices

equal in pairs. We also remind the reader that hHF is always
evaluated with the full Coulomb tensor [cf. Eq. (8)].

Approximating Ĥ as in Eq. (39) and expanding Eq. (37) to
first order in vs, we obtain∑

σ

Gi↑mσ j↑nσ (t ) = Aim jn(t ) + A∗
n jmi(t ), (42)

with

Aim jn(t ) = 1

2i3

∫ t

0
dt̄

∑
pqrs

σσ1σ2

vs
pqrsG4

pσ1qσ2rσ2sσ1
mσ i↑ j↑nσ (t, t̄ ) (43)

and

G4
pσ1qσ2rσ2sσ1
mσ iσ ′ jσ ′ nσ (t, t̄ ) ≡ 〈ϕ(t )|d̂†

nσ d̂†
jσ ′ d̂iσ ′ d̂mσ e−iĤ ′(t−t̄ )

× d̂†
pσ1

d̂†
qσ2

d̂rσ2 d̂sσ1 |ϕ(t̄ )〉. (44)

Since shake-up processes have been removed from Ĥ ′, and
|ϕ〉 has no electrons in the unoccupied sector, we conclude
that the indices r and s ∈ O belong to the occupied sector.
This also implies that either p or q ∈ V , otherwise vs

pqrs would
vanish. Therefore, Aim jn is nonvanishing only if the indices
m or i ∈ V [are unoccupied]. Shake-up scatterings are then
of two kinds: (i) initial hole in i and final 2h-1p in the states
n j-m, or (ii) initial hole in m and final 2h-1p in the states n j-i.
To fully account for the three-particle correlations, we make
the following approximation:

G4
pσ1qσ2rσ2sσ1
mσ i↑ j↑ nσ (t, t̄ ) � − f̄m

{
δσ2↑G>

iq(t, t̄ )G<
3

pσ1r↑sσ1
mσ j↑nσ (t, t̄ )

− δσ1↑G>
ip(t, t̄ )G<

3
qσ2r↑s↑
mσ j↑nσ (t, t̄ )

}
− f̄i

{
δσσ1 G>

mp(t, t̄ )G<
3

qσ2rσ2sσ
i↑ j↑nσ (t, t̄ )

− δσσ2 G>
mq(t, t̄ )G<

3
pσ1rσ sσ1
i↑ j↑nσ (t, t̄ )

}
, (45)

where f̄m = 1 if m is initially occupied and zero otherwise. In
Eq. (45) we have introduced the central object of the Faddeev
method, i.e., the 2h-1p GF

iG<
3

pσ ′
1rσ ′

2sσ ′
3

mσ1 jσ2nσ3
(t, t̄ ) ≡ 〈ϕ(t )|d̂†

nσ3
d̂†

jσ2
d̂mσ1 e−iĤ ′(t−t̄ )

× d̂†
pσ ′

1
d̂rσ ′

2
d̂sσ ′

3
|ϕ(t̄ )〉

= iG<
3

pσ ′
1sσ ′

3rσ ′
2

mσ1nσ3 jσ2
(t, t̄ ), (46)

where in the last equality we used that two fermionic annihi-
lation (or creation) operators anticommute.

B. Extended GKBA for the 2h-1p Green’s function

From Eq. (45) we see that the GKBA for the lesser and
greater Green’s function is not sufficient for closing the equa-
tion of motion (6) since G3 is not an explicit functional of
the density matrix. We pursue here the idea of extending the
GKBA to higher-order Green’s functions, and we propose the
following form for G<

3 (t, t̄ ) when τ = t − t̄ > 0:

G<
3

pσ ′
1rσ ′

2sσ ′
3

mσ1 jσ2nσ3
(t, t̄ ) = −[

GR
3

σ ′
1σ

′
2σ

′
3

σ1σ2σ3
(t, t̄ )

]
m jnρ

>
mp(t̄ )ρ<

r j (t̄ )ρ<
sn(t̄ )

+ [
GR

3
σ ′

1σ
′
3σ

′
2

σ1σ2σ3
(t, t̄ )

]
m jnρ

>
mp(t̄ )ρ<

rn(t̄ )ρ<
s j (t̄ ).

(47)
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This indeed has a form G<
3 (t, t̄ ) = iGR

3 (t, t̄ )G<
3 (t̄, t̄ ) for t >

t̄ as detailed in Appendix A. The motivation for this ansatz
is that the evolution operator e−iĤ ′(t−t̄ ) evolves the bra state
from time t to t̄ , whereby the scattering takes place on the
same subset of 2h-1p states, possibly changing the spin. The
second ingredient is the equal-time G<

3 (t̄, t̄ ) that reduces to
the antisymmetrized product of ρ>(t̄ )ρ<(t̄ )ρ<(t̄ ) as explicitly
derived using Wick’s theorem (A18).

Evaluating now G4 in Eq. (45) using the GKBA expres-
sions for G> and G<

3 , we obtain

Aim jn(t ) = −
∫ t

0
dt̄

∑
σσ ′

{
f̄m�imn j (t̄ )e−iεiτ

[
GR

3
σ ′↑σ ′

σ ↑ σ (t, t̄ )
]

m jn

− f̄m�im jn(t̄ )e−iεiτ
[
GR

3
σ ′σ ′↑
σ ↑ σ (t, t̄ )

]
m jn

+ f̄i�imn j (t̄ )e−iεmτ
[
GR

3
σ ′σ ′σ
↑↑ σ (t, t̄ )

]
i jn

− f̄i�im jn(t̄ )e−iεmτ
[
GR

3
σ ′σσ ′

↑ ↑ σ (t, t̄ )
]

i jn

}
, (48)

where we have defined

�imn j (t ) ≡
∑
pqrs

vs
pqrsρ

>
mp(t )ρ>

iq (t )ρ<
r j (t )ρ<

sn(t ). (49)

In Eq. (48) we have also used that the XUV pulse is weak
(only single-photon ionization events are considered) and
hence the retarded Green’s function in Eq. (7) is well approx-
imated by the equilibrium expression

GR
ip(t, t̄ ) = −iδipθ (τ )e−iεiτ , (50)

where εi is the eigenvalue of the equilibrium single-particle
HF Hamiltonian.

Through the generalized GKBA in Eq. (47), the symmetry
property in Eq. (46) is transferred to GR

3 , hence[
GR

3
σ ′

1σ
′
2σ

′
3

σ1 σ2 σ3
(t, t̄ )

]
i jn

=
[
GR

3
σ ′

1σ
′
3σ

′
2

σ1 σ3 σ2
(t, t̄ )

]
in j

. (51)

Furthermore, the invariance of the Hamiltonian under spin-flip
implies that[

GR
3

σ ′
1σ

′
3σ

′
2

σ1 σ3 σ2
(t, t̄ )

]
in j

=
[
GR

3
σ̄ ′

1σ̄
′
3σ̄

′
2

σ̄1 σ̄3 σ̄2
(t, t̄ )

]
in j

, (52)

where σ̄ is the reverse of σ . We can then rewrite Eq. (48)
according to

Aim jn(t ) = Pim jn(t ) + Pmin j (t ), (53)

where Pim jn(t ) is given by the first two terms on the right-hand
side of Eq. (48).

C. Faddeev scheme for the 2h-1p propagator

Now we come to the most interesting nonperturbative
aspect concerning the evaluation of GR

3 . This object is the
evolution operator on a fixed subspace of three orbitals as only
spin can change; see Fig. 3. Accounting for 2h-1p correlations
is mandatory for a good description of the shake-up processes.
However, none of the state-of-the-art diagrammatic approx-
imations (GW and T -matrix) can deal with this scenario.
The states involved in the first two terms of Eq. (48) form a

FIG. 3. Dominant ground-state configuration of the neutral sys-
tem and the cationic Slater determinants of interest. A hole created
in the state i (denoted here as a blue circle) may decay by virtue
of the 1h → 2h-1p scattering into one of the three states defined by
Eqs. (54).

triplet,

|1↓〉 ≡ d̂†
m↑d̂ j↑d̂n↑|φHF〉, (54a)

|2↓〉 ≡ d̂†
m↓d̂ j↓d̂n↑|φHF〉, (54b)

|3↓〉 ≡ d̂†
m↓d̂ j↑d̂n↓|φHF〉. (54c)

Denoting by hm jn;αβ ≡ 〈α↓|Ĥ ′|β↓〉 the matrix elements of
the 3 × 3 matrix hm jn, we find

hm jn =
⎛
⎝E1

m jn vx
m j vx

mn

vx
m j E2

m jn −vx
jn

vx
mn −vx

jn E3
m jn

⎞
⎠, (55)

with

E1
m jn = εm − ε j − εn − wm j − wmn + w jn, (56a)

E2
m jn = εm − ε j − εn − wm j − vd

mn + vd
jn, (56b)

E3
m jn = εm − ε j − εn − vd

m j − wmn + vd
jn, (56c)

and the direct, exchange, and antisymmetrized Coulomb ma-
trix elements read

vd
μν = vμννμ, vx

μν = vμνμν, wμν = vd
μν − vx

μν. (57)

We notice that using the full Hamiltonian H in place of H ′
in the definition of h would not change the result; this justifies
the splitting of Coulomb integrals in Eq. (39). Our approxima-
tion for the retarded 2h-1p propagators appearing in Eq. (48)
is then (omitting the subscript m jn)⎛
⎜⎜⎜⎝

GR
3

↑↑↑
↑↑↑(t, t̄ ) GR

3
↓↓↑
↑↑↑(t, t̄ ) GR

3
↓↑↓
↑↑↑(t, t̄ )

GR
3

↑↑↑
↓↓↑(t, t̄ ) GR

3
↓↓↑
↓↓↑(t, t̄ ) GR

3
↓↑↓
↓↓↑(t, t̄ )

GR
3

↑↑↑
↓↑↓(t, t̄ ) GR

3
↓↓↑
↓↑↓(t, t̄ ) GR

3
↓↑↓
↓↑↓(t, t̄ )

⎞
⎟⎟⎟⎠ = −iθ (τ )e−ih(τ ).

(58)

It is important to comment on the relation between the
Faddeev scheme and the more conventional approaches dis-
cussed in Sec. II. In the GW approximation as well as in the
T -matrix approximation in the ph channel, one of the holes is
a mere spectator, and only the scattering between the particle
and the other hole is treated to infinite order. Similarly, in the
T -matrix approximation in the pp channel, the particle is a
mere spectator, while the scattering between the two holes
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is treated nonperturbatively. It is possible to recover these
approximations by doing the following:

(i) Selecting a 2 × 2 subspace of the 3 × 3 effective Hamil-
tonian hm jn (55): mn for GW + (X ), n j for T pp + (X ), and m j
for T ph + (X ).

(ii) Retaining on the diagonal vx
mn (and vd

mn), vd
n j (and vx

n j),
and vd

m j (and vx
m j) for each channel GW + (X ), T pp + (X ),

and T ph + (X ), respectively.

D. Working formulas

According to Eq. (42), the collision integral can be written
as

Is
l j (t ) = −i

∑
imn

vs
lnmi(Aim jn + A∗

jnim). (59)

Let �λ and Y λ be the eigenvalues and the eigenvectors of the
3 × 3 Hamiltonian in Eq. (55): hm jnY λ

m jn = �λ
m jnY

λ
m jn. Using

the spectral decomposition

[e−ihτ ]αβ =
∑

λ

e−i�λτY λαY λβ (60)

to write the 2h-1p propagator, we obtain the following expres-
sion for Aim jn:

Aim jn(t ) = ∑
λ

(
Pλ

im jn(t ) + Pλ
min j (t )

)
, (61)

where Pλ
im jn(t ) is the solution of the ODE:

i
d

dt
Pλ

im jn(t ) = − f̄m
[(

Y λ1
m jn + Y λ3

m jn

)2
�imn j (t )

− (
Y λ1

m jn + Y λ3
m jn

)(
Y λ1

m jn + Y λ2
m jn

)
�im jn(t )

]
+ (

�λ
m jn + εi

)
Pλ

im jn(t ). (62)

This equation, together with Eq. (6), forms a closed system
of ODEs which define the Faddeev scheme within the GKBA
framework. We emphasize that to obtain �λ

m jn and Y λ
m jn, we

simply have to diagonalize 3 × 3 matrices for every m ∈ V
and for every pair j, n ∈ O. The numerical solution of the
Faddeev scheme scales linearly with the propagation time,
and it is therefore competitive with the NEGF approaches
discussed in Sec. II.

IV. PHOTOINDUCED DYNAMICS IN GLYCINE

As a test model for the investigation of the shake-up
processes, we consider the Gly I conformer of the glycine
molecule in which an XUV pulse creates a hole in the inner-
valence states. Glycine is the simplest natural amino acid with
just 15 valence molecular orbitals. Its nontrivial electronic
structure [59] represents a tough test for numerical methods,
as discussed below. The system has been previously studied
in a number of works. Kuleff et al. [8,60] describe in detail
the periodic charge migration of a hole following its sudden
creation in the 11a′ MO. They demonstrate that oscillations
with a period of about 8 fs between the 11a′ and 12a′ MOs
are responsible for the major part of the dynamics. However,
this is also accompanied by the excitation-deexcitation of the
4a′′ and 16a′ MOs, and by the promotion of an electron to
the unoccupied 5a′′ MO. This picture was confirmed using
the NEGF-2B method [61]. Very similar quantum beatings

TABLE II. HF energies of the five MOs contributing to the re-
duced photoinduced dynamics of the glycine molecule. The energy
level positions are indicated according to the aufbau principle with
respect to the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO).

State Position HF Energy (eV)

11a′ HOMO-9 −19.15
12a′ HOMO-8 −18.74
4a′′ HOMO-2 −12.93
16a′ HOMO −10.86
5a′′ LUMO+3 + 4.79

between 11a′ and 12a′ have been predicted in Ref. [62]; here
the authors also propose a mechanism to experimentally de-
tect the effect using the so-called single-photon laser-enabled
Auger decay. Finally, we mention a recent DFT study tuned
toward a more realistic description of the initial photoioniza-
tion [63]—the attosecond XUV pulse is explicitly taken into
account leading to the broad 17–35 eV spectrum of excita-
tions.

We consider here a reduced Hamiltonian for the Gly I
conformer which takes into account only the five HF MOs
involved in the dynamics of the 8 fs charge oscillation, namely
the occupied states 11a′, 12a′, 4a′′, and 16a′ and one un-
occupied state 5a′′. The occupancies of all other valence
states are frozen to the equilibrium value. The HF energies
of the relevant MOs are reported in Table II. We refer to
our previous works on the electronic structure of the ground
and excited states, the basis representation, and femtosecond
dynamics of this molecule [61,64]. The reduced system is
ionized by coupling the MOs to a fictitious vacuum state
through �(t ) = E (t )D, where D is the dipole matrix element
(chosen independent of the states) and E (t ) is the electric
field of a weak attosecond XUV pulse causing single-photon
ionizations. To better highlight correlation effects, we did not
consider pulse-induced transitions between different MOs;
see below. We perform our calculations at the fixed geometry
since the nuclear dynamics is expected to take place at longer
timescales. However, this is an important ingredient [65–67]
to make theory predictive in experimental energy- and time-
ranges.

In Fig. 4(a) we show the time-dependent change of the
MO occupancies as obtained from the exact solution of the
Schrödinger equation in the subspace of the 5 + 1 states
(thin lines). Additionally, we demonstrate that the dynamics
can be reasonably represented by taking into account only
1h and 2h-1p states in the configuration-interaction (CI) ex-
pansion (thick lines). This implies that shake-up processes
dominate the correlation-driven dynamics. During the action
of the XUV pulse, the occupied states lose charge mainly due
to photoionization. Shake-up 1h → 2h-1p processes initiate
immediately after the pulse and are responsible for populat-
ing the virtual (unoccupied) state 5a′′. Time-dependent HF
simulations clearly show the crucial role played by correla-
tions; see panel (b). The HF Hamiltonian remains essentially
the same after the pulse as only � 10−8 electrons are ex-
pelled. Since pulse-induced transitions between MOs have
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FIG. 4. Electron occupancies of the five MOs of the glycine molecule after photoionization. (a) Exact solution of the Schrödinger equation
in the subspace spanned by the five MOs and the fictitious vacuum state (thin lines). Additionally, we demonstrate that the dynamics can be
reasonably represented by truncating the CI expansion to 2h-1p states (thick lines). (b)–(h) GKBA simulations in different approximations.

been neglected, the occupancies remain almost constant, and
in particular the virtual state does not populate.

The considered subspace of five MOs captures well the 8 fs
oscillation of the 11a′ and 12a′ occupancies; see again panel
(a). Although this effect can be described in terms of simple 1h
transitions between the involved MOs, the HF approximation
remains inadequate. This is due to the fact that the cationic
states d̂11a′ |φHF〉 and d̂12a′ |φHF〉 are not exact eigenstates of
Ĥ (excited-state correlations). As we shall see, almost all
correlated methods cure this problem; they are able to describe
the bounce of charge between the 11a′ and 12a′ MOs, albeit
with slightly different periods. A secondary, yet dominant,
feature is the superimposed oscillation of higher frequency,
with a period � 1.4 fs. A careful inspection reveals that this
faster mode can be associated with the 1h → 2h-1p transition
(see the illustration in Fig. 5):

d̂12a′ |φHF〉 → d̂†
5a′′ d̂16a′ d̂4a′′ |φHF〉. (63)

It turns out that this mode is much more difficult to predict.
To appreciate the difficulty, we have performed 2B, GW ,

and T -matrix simulations with and without exchange (X )
diagrams. All these methods bring about some correlations
already in the neutral ground state, and thus it seems un-
avoidable to perform the adiabatic switching procedure in

FIG. 5. Left: Resonance between two shake-up states in the
glycine molecule leading to 1.4 fs quantum beating. Right: Direct
and exchange Coulomb integrals manifested in three considered cor-
related methods. The Faddeev method takes all these integrals into
account.

order to construct a stationary correlated ground state. As
already discussed, however, the initial ground state of glycine
is well approximated by a single Slater determinant, and it is
therefore accurate to start the simulation from the HF ground
state. The following question then arises: how can the adia-
batic switching be avoided in such a way that the HF ground
state is a stationary solution of the GKBA equation (6) in
the absence of external fields? The answer to this question
is rooted in the physics of the photoinduced dynamics. The
main role of the collision integral is to initiate the shake-up
process. Following the reasoning that has led us to develop
the Faddeev scheme, we replace v with vs in Eq. (9); compare
with Eq. (36). Furthermore, the expansion of G to lowest order
in vs amounts to replacing v with vs also in Eq. (12). The full
Coulomb tensor w is instead retained in the products wρ�

and ρ�w of Eq. (16) in order to fully account for the repeated
scattering between particles in the virtual 2h-1p states. With
this adjustment, the HF density matrix is stationary in the
absence of external field for any correlated method since the
vs Coulomb tensor has only one index in the V-sector, and Ψ

contains the product of two ρ< = diag{1, 1, 1, 1, 0} and two
ρ> = diag{0, 0, 0, 0, 1}—this implies that the driving term at
the initial time, i.e., Ψ (0), vanishes.

In Fig. 4(c), we show the results of the simplest correlated
approximation, i.e., the 2B approximation. Due to the lack of
h-h and p-h scatterings, the energy of the 2h-1p state is simply
given by

�2B = ε5a′′ − ε16a′ − ε4a′′ (64)

and hence the transition energy �2B + ε12a′ � 9.8 eV, cor-
responding to a period of 0.42 fs, is severely overestimated.
The situation does not improve in the GW approximation
[see panel (d)] nor in the T -matrix approximation in the pp
channel (almost the same as in GW and hence not shown). The
T -matrix approximation in the ph channel is unstable toward
the formation of strongly bound electron-hole pairs; therefore,
we do not have results to show for T ph. As anticipated, the
failure of these methods must be attributed to the absence of
2h-1p correlations.
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The inclusion of exchange diagrams does not, in general,
guarantee a better performance. In panel (e), we show the re-
sults of a simulation using the T -matrix approximation in the
ph channel with only exchange diagrams (X -only). Although
X -only T ph is stable, the 1.4 fs oscillation is absent. We could
perform simulations with both direct and exchange diagrams
for GW and T pp. Surprisingly, we found that GW + X pro-
vides a key improvement [see panel (g)], whereas exchange
diagrams in T pp play essentially no role [see panel (f)]. The
rationale behind these outcomes can be found in the values
of the direct and exchange Coulomb integrals, i.e., vd

μν and
vx

μν , responsible for renormalizing the energy of the 2h-1p
states; see Eqs. (55)–(57). The 12a′ hole of spin σ is mainly
coupled (through vs) to the 2h-1p states 16a′

σ 4a′′
↑-5a′′

↑ and
16a′

σ 4a′′
↓-5a′′

↓ [see Fig. 5(left)], which are in turn coupled
by the anomalously large exchange integral vx

4a′′,5a′′ � 2.3 eV
(all other exchange integrals are negligible). The energy of
these two 2h-1p states is almost the same (E1

m jn � E3
m jn in the

notation of Sec. III C) and is given by

� � �2B + vd
4a′′,16a′ − vd

5a′′,16a′ − vd
4a′′,5a′′ + vx

4a′′,5a′′ . (65)

The direct integrals are all large with vd
4a′′,16a′ � vd

5a′′,16a′ �
6.5 eV and vd

4a′′,5a′′ � 10.6 eV. Due to the cancellation be-
tween the first two direct integrals in Eq. (65), only the
direct and exchange integrals with labels 4a′′, 5a′′ are relevant
in �. These are precisely the ones taken into account by
the GW approximation; see the discussion below Eq. (58)
and Fig. 5(right). The inclusion of exchange diagrams, i.e.,
GW + X , provides a key improvement of the theory since
it renormalizes the energy E1

m jn and E3
m jn by the sizable

amount vd
4a′′,5a′′ . We conclude that the good performance of

the GW + X approximation in glycine is a mere coincidence
as it strongly relies on the cancellation between two different
Coulomb integrals.

Time-dependent simulations in the Faddeev scheme are
shown in Fig. 4(h). The results are of comparable quality to
the GW + X ones, in agreement with the discussion above.
However, the Faddeev method does not rely on any special
values of the Coulomb integrals—2h-1p correlations are fully
taken into account. This is reflected in a slightly more accurate
value of the period of the superimposed oscillations, 1.33 fs,
compared with the 1.2 fs in GW + X (we recall that the exact
value is 1.4 fs).

The occupations of the MOs coincide with the diagonal
elements of the one-particle density matrix ρ<. As the GKBA
approach returns the full density matrix, we could also in-
vestigate how accurate the off-diagonal elements are. For this
purpose, we have calculated the photoinduced dipole moment

dα (t ) =
∑

i j

dα
i jρ

<
ji (t ), (66)

where dα
i j are the dipole matrix elements along the direction α

calculated in Ref. [61], and then we extracted the power spec-
trum from the Fourier transform, ‖d (ω)‖2 = 1

3

∑
α |dα (ω)|2.

The outcome of exact and GKBA simulations is shown in
Fig. 6. With the exception of GW + X and Faddeev, all other
approximations yield only four peaks; their origin is essen-
tially the same as in HF (see the top panel), although different
approximations give different weights. The GW + X repre-

FIG. 6. Power spectrum computed as the Fourier transform of the
photoinduced dipole moment. The peaks associated with the 11a′ ↔
12a′ quantum beating at energy 0.5 eV (period � 8 fs) and the shake-
up processes involving the electron promotion to the unoccupied 5a′′

state at energy 2.9 eV (period � 1.4 fs) are clearly visible. Notice
that the number of peaks is smaller than in the DFT analysis of Ayuso
et al. [63] because of the minimal model considered here.

sents a clear improvement over all other methods, but visible
discrepancies occur here, too. The lowest-energy and higher-
energy peaks are well reproduced, but all other peaks are
either misplaced by hundreds of meV or completely absent.
In contrast, the Faddeev scheme captures with high accuracy
all the main peaks except for the second and third low-energy
ones (whose energy is overestimated) and the one at energy
� 6.7 eV which is missing.

Finally, we mention that we have also calculated the total
energy of the Gly I conformer and found that it fluctuates
around a constant value, i.e., no divergent behavior is found,
no matter what the magnitude of the photoionizing XUV field
E is. The size of the fluctuations scales quadratically with
E . For the field E = 10−5 a.u. ∼5 × 106 V/m used in our
simulations, the fluctuations relative to the equilibrium energy
are as small as 10−10.

V. CONCLUSIONS

In conclusion, we have provided an accurate NEGF de-
scription and an efficient implementation scheme for the
ubiquitous shake-up mechanism which accompanies the ultra-
fast valence-hole migration in organic molecules triggered by
a weak XUV pulse. Calculations based on the unifying matrix
formalism clearly demonstrate that none of the state-of-the-
art NEGF methods, such as second Born, GW , or T -matrix,
are capable of describing it. Our solution has been inspired
by the three-particle Faddeev approach, which treats 2h-1p
scatterings nonperturbatively, and it relies on an extension of
the original GKBA to higher-order Green’s functions. The
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Faddeev-NEGF scheme scales linearly in time, opening up
prospects for the incorporation of other effects such as inter-
action with collective nuclear and electronic excitations, and
the inclusion of continuum scattering states for an accurate
description of ultrafast spectroscopies of organic molecules.
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APPENDIX A: INTUITION BEHIND THE GKBA AND ITS
GENERALIZATION TO HIGHER-ORDER GFs

Let us start by “deriving” the generalized Kadanoff-Baym
ansatz. This is just an approximation that can intuitively be
derived from the following considerations for the mean-field
GF. Let us express our main quantity as

G<
0 (t1, t2) = U (t1, t0)G<

0 (t0, t0)U (t0, t2), (A1)

where U (t0, t ) is the usual time-evolution operator

U (t, t0) = T {e−i
∫ t

t0
dτ hHF(τ )}. (A2)

Equations (A1) and (A2) are understood in matrix form. Using
the semigroup property of the time-evolution operator, we
split the time dependence in Eq. (A1),

G<
0 (t1, t2) =

︷ ︸︸ ︷
θ (t1 − t2)U (t1, t2)

︷ ︸︸ ︷
U (t2, t0)G<

0 (t0, t0)U (t0, t2)

+U (t1, t0)G<
0 (t0, t0)U (t0, t1)︸ ︷︷ ︸U (t1, t2)θ (t2 − t1)︸ ︷︷ ︸ .

(A3)

Recall now that Hartree-Fock retarded (advanced) GFs fulfill
the equations of motion (25), and therefore they can be written
in terms of the evolution operator

GR
0 (t1, t2) = −iθ (t1 − t2)U (t1, t2), (A4a)

GA
0 (t1, t2) = +iθ (t2 − t1)U (t1, t2), (A4b)

allowing us to rewrite

G<
0 (t1, t2) = iGR

0 (t1, t2)G<
0 (t2, t2) − iG<

0 (t1, t1)GA
0 (t1, t2).

(A5)

Analogous considerations hold for the greater GF. Now the
crucial step is to perform the replacements G≶

0 (t1, t2) →
G≶(t1, t2) and G≶

0 (t, t ) → iρ≶(t ) because the main point of
the GKBA is to approximate the interacting correlators. This
approximation is physically justified provided that, e.g., the
quasiparticle lifetime is greater than the averaged electron
collision time [26], and it leads us to the following compact
form:

G≶(t1, t2) = −GR(t1, t2)ρ≶(t2) + ρ≶(t1)GA(t1, t2). (A6)

Equation (A6) allows for further generalizations in the
case of more complicated two-times correlators. Consider, for

instance, a very general greater correlator

G>(1, 2) = 1

in
〈ĈH (x̄1, t1)Ĉ†

H (x̄2, t2)〉, (A7)

where 1 ≡ (x̄1, t1), etc., for brevity, ĈH (x̄, t ) being a composite
operator that can be expressed as a product of n fermionic
creation d̂† and annihilation d̂ operators in the Heisenberg
picture, and x̄ being a collective coordinate associated with
the product. Our goal is to devise a GKBA for the correlator
(A7) starting again with a correlator averaged over |φHF〉. To
simplify the discussion, we introduce a new set of fermionic
operators ĉ and ĉ† so as to make the Hartree-Fock state |φHF〉
be the vacuum state, which we will denote for brevity as |φ〉.
Specifically, we have

ĉi =
{

d̂i, i ∈ O,

d̂†
i ,i ∈ V,

ĉ†
i =

{
d̂†

i ,i ∈ V,

d̂i, i ∈ O,
(A8)

where O denotes the set of occupied states and V is the set of
unoccupied states. With these definitions,

ĉi|φ〉 = 0, (A9)

and the only operators for which the mean-field approxima-
tion to the correlator (A7)

G>
0 (x̄1, t1; x̄2, t2) = 1

in
〈φ(t1)|Ĉx̄1Û (t1, t2)Ĉ†

x̄2
|φ(t2)〉 (A10)

is nonvanishing are those given by the product

Ĉx̄1 = ĉx̄11 ĉx̄12 · · · ĉx̄1n . (A11)

As we mention above, this convenience is one of the reasons
for introducing new fermionic operators.

In Eq. (A10), we expanded the operators in the Heisenberg
picture, introduced the time-evolution operator Û (t1, t2), and
embedded some of the time dependence into the bra and ket
states. Consider now the states

|ȳ〉 = Ĉ†
ȳ |φ〉,

which form a complete orthonormal system. The complete-
ness relation

1

n!

∑
ȳ

|ȳ〉〈ȳ| = 1 (A12)

can be used in order to factorize G>
0 . There is a certain freedom

in where it can be inserted. To build parallels with Eq. (A5),
we split Eq. (A10) into two parts, proportional to θ (t1 − t2)
and θ (t2 − t1), respectively. In the first part, the completeness
relation is inserted after Û (t1, t2), and in the second part,
before it. As a consequence, we obtain a generalization of
Eq. (A5),

〈φ(t1)|Ĉx̄1Û (t1, t2)Ĉ†
x̄2
|φ(t2)〉

= 1

n!
θ (t1 − t2)

∑
ȳ

〈φ(t1)|Ĉx̄1Û (t1, t2)Ĉ†
ȳ |φ(t2)〉

× 〈φ(t2)|ĈȳĈ†
x̄2
|φ(t2)〉+ 1

n!
θ (t2−t1)

∑
ȳ

〈φ(t1)|Ĉx̄1 Ĉ†
ȳ |φ(t1)〉

× 〈φ(t1)|ĈȳÛ (t1, t2)Ĉ†
x̄2
|φ(t2)〉. (A13)
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Let us introduce the retarded and advanced correlators,

GR(t1, t2) = − i

n!
θ (t1 − t2)

〈[
ĈH (x̄1, t1), Ĉ†

H (x̄2, t2)
]〉
, (A14a)

GA(t1, t2) = + i

n!
θ (t2 − t1)

〈[
ĈH (x̄1, t1), Ĉ†

H (x̄2, t2)
]〉
. (A14b)

This form is chosen to put them in correspondence with
the n-body time-evolution operators; cf. Eq. (A4). We fur-
thermore notice the presence of equal-time correlators in
Eq. (A13) such as 〈φ(t2)|ĈȳĈ†

x̄2
|φ(t2)〉 and 〈φ(t1)|Ĉx̄1 Ĉ†

ȳ |φ(t1)〉.
They are analogous to the single-particle densities in Eq. (A6).
Performing now a transition to the correlated reference state
in Eq. (A13), using definitions Eqs. (A7) and (A14), and con-
sidering that the same arguments apply to the lesser correlator,
we finally obtain

G≶(x̄1, t1; x̄2, t2) = i
∑

ȳ

GR(x̄1, t1; ȳ, t2)G≶(ȳ, t2; x̄2, t2)

− i
∑

ȳ

G≶(x̄1, t1; ȳ, t1)GA(ȳ, t1; x̄2, t2).

(A15)

Notice that in order to introduce the retarded and advanced
GFs in these equations, we used

1

n!
θ (t1 − t2)〈φ|ĈH (x̄1, t1), Ĉ†

H (x̄2, t2)|φ〉

= 1

n!
θ (t1 − t2)

〈
φ|[ĈH (x̄1, t1), Ĉ†

H (x̄2, t2)
]|φ〉

= iGR
0 (t1, t2),

(A16)

where the commutator can be introduced in view of the special
choice of operators [Eq. (A9)] that guarantee that Ĉx̄1 |φ〉 = 0.

At first glance, Eq. (A15) seems to be just a trivial gener-
alization of the GKBA to many-particle scenarios. However,
let us inspect the physical content of even simpler GR/A

0 (1, 2)
correlators. They are computed with the ordinary HF Hamil-
tonian, but on the subspace of n-particle excitations, making
it similar to the multiconfiguration time-dependent Hartree-
Fock approach [9]. We remind the reader that in Sec. III C

we have n = 3, i.e., with the help of the GKBA (A15), we
factorize the 2h-1p GF (46) into a product of two terms: the
one that contains three-particle spin correlations, and the other
that contains the population dynamics; viz. Eq. (47). To obtain
this equation, we explicitly set

Ĉ†
x̄1

= d̂†
nσ3

d̂†
jσ2

d̂mσ1 , Ĉȳ = d̂†
mσ ′′

1
d̂†

jσ ′′
2
d̂nσ ′′

1
, (A17a)

Ĉ†
ȳ = d̂†

nσ ′′
3
d̂†

jσ ′′
2
d̂mσ ′′

1
, Ĉx̄2 = d̂†

pσ ′
1
d̂rσ ′

2
d̂sσ ′

3
. (A17b)

As can be seen from the definition of Ĉȳ, we exploit the fac-
torization of the many-body states only in the spin-sector. The
equal-time 2h-1p correlators in Eq. (47) are further computed
with the help of Wick’s theorem:

〈Ĉ†
ȳ Ĉx̄2〉 = 〈d̂†

nσ ′′
3
d̂†

jσ ′′
2
d̂mσ ′′

1
d̂†

pσ ′
1
d̂rσ ′

2
d̂sσ ′

3
〉 = δσ ′′

1 σ ′
1
ρ>

mp

×{
δσ ′′

2 σ ′
2
δσ ′′

3 σ ′
3
ρ<

r jρ
<
sn − δσ ′′

2 σ ′
3
δσ ′′

3 σ ′
2
ρ<

rnρ
<
s j

}
.

(A18)

APPENDIX B: SOME NONEQUILIBRIUM IDENTITIES

According to the Langreth rules [24], we have

χ< = χ0,< + χR · w · χ0,< + χ< · w · χ0,A, (B1)

where quite generally the R/A-components are defined in
terms of the ≶-components,

AR(t, t ′) = +θ (t − t ′){A>(t, t ′) − A<(t, t ′)},
AA(t, t ′) = −θ (t ′ − t ){A>(t, t ′) − A<(t, t ′)}.

Regrouping the terms in Eq. (B1), we obtain

χ< · (δ − w · χ0,A) = (δ + χR · w) · χ0,<. (B2)

Now realize with the help of the RPA,

(δ − w · χ0,A) · (δ + w · χA)

= δ − w · [χ0,A − χA] − w · [χ0,A · w · χA]︸ ︷︷ ︸
=[χA−χ0,A]

= δ.

Using this identity in Eq. (B2), we obtain

χ< = (δ + χR · w) · χ0,< · (δ + w · χA). (B3)
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