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Crystalline solutions of the Kohn-Sham equations in the fractional quantum Hall regime
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A Kohn-Sham density functional approach has recently been developed for the fractional quantum Hall effect,
which maps the strongly interacting electrons into a system of weakly interacting composite fermions subject
to an exchange-correlation potential as well as a density-dependent gauge field that mimics the “flux quanta”
bound to composite fermions. To get a feel for the role of various terms, we study the behavior of the self-
consistent solution as a function of the strength of the exchange-correlation potential, which is varied through an
ad hoc multiplicative factor. We find that a crystal phase is stabilized when the exchange-correlation interaction
is sufficiently strong relative to the composite-fermion cyclotron energy. Various properties of this crystal are
examined.
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I. INTRODUCTION

The Kohn-Sham (KS) density functional theory (DFT)
treats an interacting electronic system by mapping it into
a system of noninteracting electrons moving in an ef-
fective single-particle KS potential [1]. The validity of
the KS scheme relies on the assumption of the form of
the universal Hohenberg-Kohn energy functional, or the
exchange-correlation (XC) functional, the search for which
has motivated extensive studies. Despite the success of DFT,
for example at the level of local density approximation (LDA),
its application to strongly interacting systems has been chal-
lenging and requires more sophisticated treatments [2–5].

The system of interest to us is the fractional quantum
Hall effect (FQHE) [6], which occurs when electrons in two
dimensions are subjected to a strong perpendicular magnetic
field, which quenches their kinetic energy and as a result
enhances the effects of Coulomb interaction. Very few papers
[7–12] have been written applying DFT to the FQHE since
its discovery over the past four decades. The difficulty of
applying DFT to FQHE traces back to the KS DFT mapping
into noninteracting electrons, because the noninteracting sys-
tem here possesses a large degeneracy. That can be seen by
considering the canonical Hamiltonian that describes the bulk
of the FQHE sample:

HLLL = Vee =
N∑

i< j

e2

ε|ri − r j | . (1)

Here N electrons have been taken to be confined in the lowest
Landau level (LLL), as appropriate in the limit of very large
magnetic fields. The quantity ε is the dielectric constant of
the host material. In Eq. (1), the external potential due to a
neutralizing background has been suppressed, and the con-
stant kinetic energy of the LLL has been dropped. In the
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absence of interaction, the ground state for free electrons
has a large degeneracy that counts all the possible ways of
occupying N of the Nφ Landau level (LL) orbitals, where Nφ is
the single-particle degeneracy of the LLL. The switching-on
of the interaction leads to correlated ground states at certain
special values of the filling factor ν = N/Nφ . These correlated
ground states are very complicated linear superpositions of
the large number of basis functions, such that the average
occupation of each single particle orbital is fractional (equal to
ν = N/Nφ). In the KS DFT treatment of the FQHE, mapping
the problem into free electrons in a KS potential is equivalent
to replacing Vee by VKS in the Hamiltonian of Eq. (1). The
main point is that the KS solution picks out a single Slater
determinant, which is insufficient to describe the FQHE state.
In fact, the KS solution can only be a nonuniform state that
locally describes an integer quantum Hall effect, rather than
a state in which each LL orbital has a fractional occupation.
This physics has been illustrated in Fig. 1. In the DFT liter-
ature, two different directions have been developed to treat
strong correlation effects: the improvement of XC and the re-
placement of the Slater determinant in the Kohn-Sham system
by a multiconfiguration function [5]. In the FQHE, one can
imagine addressing this issue with the help of an XC energy
that has cusps at certain densities [7,8]; Ref. [7] implements
an ensemble average over successive iterations to produce, on
average, fractional occupation of LL orbitals.

We circumvent this problem by mapping interacting elec-
trons into an auxiliary system of noninteracting composite
fermions [12], referred to as the KS∗ system below when-
ever it is necessary to differentiate it from the standard KS
system of noninteracting electrons. Composite fermions (CFs)
[13–15], often thought of as the bound state of electrons and
an even number (2p) of flux quanta [see Fig. 1(c)], are the
emergent weakly-interacting particles of the FQHE. In partic-
ular, the FQHE of electrons is the integer quantum Hall effect
of CFs. The advantage of this method is that the integrally
occupied orbitals of composite fermions represent fractionally
occupied levels of electrons. The KS∗ equation for composite
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FIG. 1. Schematic illustration of our KS approach for the FQHE.
(a) The real system under consideration, taken to be at 1/3-filling
in an external confining potential Vext . In the bulk, each orbital is
occupied, on average, by 1/3 of an electron. The fractional occu-
pation is illustrated by the partial coloring of the otherwise empty
circles that represent unoccupied orbitals. (b) The KS spectrum of an
auxiliary problem of noninteracting electrons in a KS potential VKS,
with the renormalized LLs illustrated by purple lines. The orbitals
are either fully occupied or empty. (c) The occupation configuration
of the auxiliary system of emergent composite fermions (shown as
electrons plus two flux quanta) in the composite-fermion Landau
level (called � level) spectrum. The integer quantum Hall effect of
CFs in a KS∗ potential V ∗

KS can reproduce the uniform density of the
real system in (a). The DFT treatment in this paper maps the real
system of FQHE to an auxiliary system in (c).

fermions has been derived in a way analogous to the standard
formulation in the KS scheme of DFT.

It is important in the CF DFT to incorporate properly the
nonlocal gauge interaction between CFs, which arises due
to the attached fluxes. The long-range nature of the gauge
interaction is crucial for capturing the topological properties
of the FQHE. An advantage of CF DFT is that it simplifies
the modeling of the XC energy. Like in any DFT method, the
exact form of the XC enengy of CFs is not known and must
be approximated. However, since CFs are weakly interacting,
it is reasonable to assume that their XC energy is a smooth
function of density within an LDA. (This corresponds to an
XC energy for electrons that has cusps at the Jain fillings
[7,8,16].) Applications of the CF DFT scheme have obtained
not only the ground-state density and energy, but also the
topological properties of the excitations [12], including their
fractional charge and fractional braiding statistics, which are
robust against the specific choice of the XC potential [17].

The goal of the present work is to investigate the behav-
ior of the solution as a function of the strength of the XC
potential. The XC potential of composite fermions should be
dependent on the quantum well width and LL mixing, but the
dependence is likely to be complex, and we have not studied
it here. Instead, we vary the strength of the XC potential

through an ad hoc multiplicative factor. To allow for most
general solutions we implement the CF DFT in a manner that
does not impose any symmetry on the solutions. (In Ref. [12],
we had applied CF DFT to a rotationally symmetric system,
while assuming, for the convenience of numerical calculation,
that the solution also has a rotational symmetry.) Our primary
finding is that the liquid state of composite fermions, which
occurs for weak XC potentials, yields to a crystal phase when
the magnitude of the XC potential is raised relative to the CF
cyclotron energy.

One may ask to what extent our study applies to realistic
systems. It is possible that a given choice of the XC potential
may correspond to some interaction between electrons, but we
have not made any attempt to identify the latter. Our results in
this paper are to be viewed at a qualitative level. Previous stud-
ies have considered, in a variational calculation, transitions
between liquid and crystal states of composite fermions as a
function of the filling factor or Landau level mixing [18,19].
It is plausible that increasing the strength of the XC potential
enhances mixing between the Landau levels of composite
fermions, called � levels (�L), and thus causes crystallization
in the same fashion as LL mixing has been shown to do
[19]. There is an important difference, however. Those studies
compared energies of liquid and crystal states of composite
fermions carrying different numbers of vortices. In our current
study, we assume that the state is always described in terms of
a given species of composite fermions (which will be assumed
to be composite fermions carrying two quantized vortices
below). In other words, the liquid and the crystal in our paper
are states of the same species of composite fermions. It is
therefore unclear how our results relate to previous studies or
to experiments.

The plan of the paper is as follows. In Sec. II we review
the Kohn-Sham equations. In Sec. III we explain in detail
how to numerically solve the Kohn-Sham equations using a
finite difference method on a square lattice. As an application
of our method, in Sec. IV, we study the ground-state density
as a function of the strength of the XC energy. The effects
of temperature, weak disorder, the form of XC energy, and
system size are also considered. We summarize our findings
in Sec. V.

II. KS∗ EQUATIONS FOR COMPOSITE FERMIONS

We consider the following Hamiltonian of a FQHE system
in a 2D x-y plane with an external potential Vext:

H = Tee + Vee + Vext, (2)

where Tee = ∑N
i=1

1
2mb

(p + e
c A)2 is the kinetic energy oper-

ator, mb is the band mass of electrons and A is the vector
potential due to a uniform external magnetic field B = Bez =
∇ × A(r) along the z direction.

Following the magnetic-field DFT (BDFT) [20–22], the
total energy functional Etot of the FQHE system can be ex-
pressed as a functional of the ground-state density ρ(r) as

Etot[ρ] = EK[ρ] + Exc[ρ] + EH[ρ] +
∫

d2rVext (r)ρ(r). (3)
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Here the Hartree energy EH[ρ] takes the standard form:

EH(ρ) = 1

2

∫
d2rd2r′ ρ(r)ρ(r′)

ε|r − r′| . (4)

In order to study the FQHE in the LLL, throughout this paper
we have defined the noninteracting kinetic energy functional
to be EK[ρ] ≡ 1

2 h̄ωB
∫

d2rρ(r) = N
2 h̄ωB, where ωB = eB

mbc is
the cyclotron frequency. The electron XC energy functional
Exc is defined by Eq. (3). It can be equivalently defined
through a constrained search formalism [23,24]

Exc[ρ] ≡ min
�→ρ(r)

〈�|Tee + Vee|�〉 − EK[ρ] − EH[ρ], (5)

which is further simplified by using 〈�LLL|Tee|�LLL〉 =
N
2 h̄ωB in the LLL:

Exc[ρ] = min
�LLL→ρ(r)

〈�LLL|Vee|�LLL〉 − EH[ρ], (6)

where the many-body wave function �LLL searches for an
energy minimum of Vee within the LLL Hilbert space. We
adopt Eq. (6) in what follows.

The above formulation is the standard version of the
Hohenberg-Kohm theorem. Here Exc depends on the external
magnetic field B in the BDFT formalism, but is otherwise a
universal functional of density that does not depend on the
external potential.

We next construct an auxiliary KS∗ system of CFs (rather
than electrons), which is not typical of the standard KS
scheme, but is within the formulation of the generalized KS
scheme [25] and the concepts of the standard KS scheme
apply as usual. We imagine that there exists a reference sys-
tem that consists of noninteracting CFs, whose ground-state
density is the same as the ground-state density of the FQHE
system and is expressed as the sum of the contribution from
the occupied KS orbitals as

ρ(r) =
∑

α

cα|ψα (r)|2, (7)

where cα is the occupation number of the KS orbital labeled
by α. We then define the “noninteracting” kinetic energy
T ∗

s [ρ] of CFs as

T ∗
s [ρ] =

∑
α

〈ψα|T ∗|ψα〉, (8)

where the kinetic energy operator T ∗ of CFs is

T ∗ = 1

2m∗

(
p + e

c
A∗(r; [ρ])

)2

. (9)

The important physics of CFs is incorporated through the
density-dependent effective vector potential A∗(r), or effec-
tive magnetic field B∗, through

∇ × A∗(r) = B∗(r)ez = [B − 2ρ(r)φ0]ez. (10)

As in the standard KS scheme, a further connection between
the FQHE system and the KS system of CFs is made by
rewriting Exc as

Exc[ρ] = T ∗
s [ρ] + E∗

xc[ρ], (11)

which also defines E∗
xc[ρ] as the XC energy of CFs. To clarify,

despite the absence of the kinetic energy of electrons, the
kinetic energy of CFs arises from Coulomb interaction and

is included as part of Exc[ρ]. In Ref. [12], the CF XC energy
was approximated in LDA as

E∗
xc(ρ) = ς

∫
d2r[aν1/2 + (b − f /2)ν + g]ρ(r), (12)

with parameters a = −0.78, b = 0.28, f = 0.33, g = −0.050
in units of e2

εlB
, and ν(r) = 2π l2

Bρ(r) is the local filling factor,

where lB =
√

h̄c
eB is the magnetic length. The parameter ς will

be used to control the strength of the XC potential; ς = 1
corresponds to the choice in Ref. [12]. The first term aν1/2

in E∗
xc is chosen to match with the known classical value of

the energy of the Wigner crystal in the limit ν → 0 [26],
and the coefficients for higher orders of ν are chosen to fit
the electronic XC energies that are obtained using trial wave
functions at the Jain fillings ν = n/(2n + 1). This XC form
is suited for the filling factor range 1/3 < ν < 1/2, but we
will use it uncritically for arbitrary filling factors below. The
value of g gives a constant energy offset and does not affect
the KS orbitals or the ground-state densities. (We note the a
similar multiplicative factor to tune the strength of the XC
potential has been used in other contexts, for example for a
model hydrogen molecule [27].)

Minimization of Etot is achieved by variation with respect
to the KS orbitals, which leads to the KS∗ equation:

H∗ψα (r) = [T ∗ + VH(r) + Vext (r) + V ∗
xc(r) + V ∗

T (r)]ψα (r)

= εαψα (r), (13)

where the Hartree potential takes the standard form

VH(r) = e2

ε

∫
d2r′ ρ(r′)

|r − r′| . (14)

The CF XC potential is obtained through V ∗
xc(r) ≡ δE∗

xc/δρ(r)
as

V ∗
xc(r) = ς

[
3
2 aν1/2(r) + (2b − f )ν(r) + g

]
. (15)

In the KS potential experienced by the CFs, there is a nonstan-
dard term V ∗

T that is defined as

V ∗
T (r) =

∑
α

cα〈ψα| δT ∗

δρ(r)
|ψα〉, (16)

which comes from the density-dependence of the vector po-
tential A∗ inside the kinetic energy operator T ∗ of CFs. This
term is typically much smaller than the other terms in the KS
potential. In particular, the effect of V ∗

T is irrelevant for the
topological properties [12,17]. It is worth emphasizing that
while the kinetic energy operator of electrons, Tee, is absent
in the KS∗ equation, the kinetic energy of CFs enters the KS∗
equation, and incorporates the nonperturbative effect of the
Coulomb interaction.

At finite temperatures, {cα} and the chemical potential μ

are determined by

cα = 1

1 + exp[(εα − μ)/kBτ ]
, (17)

N =
∑

α

cα. (18)

The occupation number cα reduces to either 0 or 1 in the limit
of zero temperature.
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III. NUMERICAL PROCEDURE FOR SOLVING
THE KOHN-SHAM EQUATIONS

In this section, we outline the numerical procedure adopted
to find the KS solutions. We show how the finite-difference
method is implemented on a discretized lattice. We also dis-
cuss the algorithm applied in successive iterations to achieve
convergence.

A. Choice for the magnetic vector potential A∗

We consider a rectangular 2D system of sides Lx and
Ly. We discretize the system into a lattice and label each
lattice point as r = (x, y), where x = iax, y = jay, with i =
1, 2, . . . , Nx and j = 1, 2, . . . , Ny and the lattice constants
are ax = Lx/Nx and ay = Ly/Ny, respectively. This allows a
discretization of the physical quantities.

The effective magnetic field for CFs is given by

B∗(r) = B∗(r)ez = [1 − 2ν(r)]Bez, (19)

which is equivalent to Eq. (10). In order to write down the KS
Hamiltonian explicitly, we pick the symmetric gauge for the
bound flux of CFs. The vector potential A∗(r) reads

A∗(r) =
∫

d2r′ B∗(r′)
2π |r − r′|2 ez × (r − r′)

=
∑
r′ 
=r

B∗(r′)axay

2π |r − r′|2 (y′ − y, x − x′). (20)

The sum over r′ extends over all space. This choice sat-
isfies the Coulomb gauge condition ∇ · A∗ = 0, which can
be checked explicitly and implies the commutation relation
[p, A∗] = 0.

B. The discretized Hamiltonian

The discretized form of the KS Hamiltonian is straight-
forward. We show here the form explicitly for the VT term,
which is nonstandard and also the most complex. We proceed
as follows:

VT(r) =
∑

α

cα〈ψα| 1

2m∗
δ
(
p′ + e

c A∗(r′)
)2

δρ(r)
|ψα〉 (21)

=
∑

α

cα〈ψα| e

m∗c

δA∗(r′)
δρ(r)

·
(

p′ + e

c
A∗(r′)

)
|ψα〉 (22)

= h̄eB

2m∗c

∑
α

cα

∫
d2r̄′ ψ∗

α (r̄′)
[

ȳ − ȳ′

|r̄′ − r̄|2
(
−i

∂

∂ x̄′ +Ā∗
x (r̄′)

)

+ x̄′ − x̄

|r̄′ − r̄|2
(

−i
∂

∂ ȳ′ + Ā∗
y (r̄′)

)]
ψα (r̄′), (23)

where 〈ψα|O(r′)|ψα〉 ≡ ∫
d2r′ ψ∗

α (r′)O(r′)ψα (r′), r̄ = r/lB,
and Ā∗ = eA∗lB/c. In Eq. (22), (p′ · δA∗(r′ )

δρ(r) ) = 0 is used, which
can be checked explicitly by noticing that

∂

∂x′
δA∗

x (r′)
δρ(r)

= − ∂

∂y′
δA∗

y (r′)

δρ(r)
= 2φ0

π

(y − y′)(x′ − x)

|r′ − r|4 , (24)

where we have used

δ[B∗(r′)]/δρ(r) = −2φ0δ(r − r′), (25)

and

δA∗(r′)
δρ(r)

= φ0

π |r′ − r|2 (y′ − y, x − x′). (26)

The conversion h̄eB
2m∗c = 0.0010 e2

αm∗ εlB
is used in our numerical

calculation, where αm∗ relates the CF mass to the electron
mass me by m∗ = αm∗

√
B[T ]me. We take αm∗ = 0.08, which

is a good approximation for theoretical transport gaps [14].
The Hartree potential is calculated using a lattice version

of Eq. (14). For the diverging term with r = r′ in the discrete
sum, we replace it by the self energy of a uniformly distributed
charge on a plaquette of size ax × ay centered around r.

In this paper, we consider an external potential Vext gener-
ated by a uniform positive background charge inside a circular
region around the origin. For a system of N electrons, the
background charge density is chosen as ρb = νb

2π l2
B

with a

radius Rb =
√

2N
νb

lB, where νb is the average ion filling fac-
tor νb = 2π l2

Bρb. We make sure that the rectangle Lx × Ly is
chosen to be large enough so as to comfortably enclose the
electron system.

C. Numerical procedure for iterations

We obtain the self-consistent solution of Eq. (13) using
the following iterative procedure. (i) We start with an input
density ρin. (ii) We obtain T ∗ and V ∗

KS(r) on the left-hand side
of Eq. (13), diagonalize the Hamiltonian to obtain the KS∗

orbitals, and determine the output density ρout = ∑
α cα|ψα|2

according to Eqs. (7), (17), and (18). Note that we work
with a fixed particle number, and therefore need to adjust
the chemical potential suitably in each iteration. (iii) The
relative difference �N

N between the input and output ρ, where
�N = ∫ |ρin − ρout|d2r, is the absolute difference. We accept
ρout as converged if the relative differences between any
of the two output densities for 2000 successive iterations
satisfy �N

N < 0.001. We assume that this ensures that the
solution is stable and not altered by further iterations. We
find that the energy also converges when the above criterion
is satisfied. (iv) If ρ has not converged, we prepare new
input density ρin by mixing some output density into the
previous input: ρin → ηρin + (1 − η)ρout, where the mixing
coefficient is η � 0.9. The choice of η close to one helps
avoid the so-called occupation sloshing, which can occur due
to the large degeneracy in our system [28]. We iterate the
process until convergence is reached. It is worth mentioning
that the calculation of VT requires the information of the
KS orbitals. VT is set to zero in the initial input, but in later
iterations, it is necessary to also mix the input and output VT

in the same way as the mixing of density in each iteration in
order to ensure convergence. We always start at a sufficiently
high temperature, where convergence is straightforward, and
slowly go to lower temperatures, while using the converged
density of the previous temperature as the input.

The KS Hamiltonian needs to be updated in each iteration.
We notice that a direct calculation of the A∗, VT, and VH terms
on each lattice site using for-loops can be time consuming.
To increase efficiency, we have utilized the convolution al-
gorithm that is available in the Intel® Math Kernel Library
(MKL) to calculate these terms. For the diagonalization of the
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Hamiltonian, we use the Feast algorithm [29], which is also
available in the MKL. In the self-consistency loop, we sup-
plement the Feast routine with KS orbitals from the previous
iteration as the initial low energy subspace to speed up the
diagonalization. In this paper, the typical system we consider
has N = 40, Lx = Ly = 35, Nx = Ny = 210. The correspond-
ing Hamiltonian is a sparse matrix with a dimension of 44100.
With η = 0.95, the convergence takes several thousand to
tens of thousands of iterations depending on whether the
converged density is liquid-like or crystal-like. Liquid-like
solutions are largely uniform in the bulk and converge quickly.
In contrast, crystal-like solutions require a significantly larger
number of iterations for convergence, in order to adjust the
position and shape of the crystalline sites. The corresponding
computation time can range from half a day for liquid to one
week for crystal solutions, respectively, for the above typical
system size in a single cluster node with 10 cores.

IV. RESULTS

The validity of our DFT results depends on the accuracy of
the choice of the XC energy for CFs. We restrict the approxi-
mation of E∗

xc to the level of LDA and the form of XC energy
in Eq. (12) is obtained by fitting to the ground-state energies of
the uniform systems in the filling factor range 1/3 < ν < 1/2,
which is the range where composite fermions carrying two
flux quanta are relevant. Since the CFs are weakly interact-
ing, it is reasonable to use a smooth fitting curve for the
XC energy, although there has been no study of the exact
constraints [30,31] on the proper choice of the CF XC energy.
Equation (12) is not unique and a different form has been
applied in Ref. [11]. These slightly different fitting forms do
not influence the ground-state energy as well as the topolog-
ical properties when the system is in the filling factor range
1/3 < ν < 1/2. However, we will use this form for the XC
energy uncritically for all filling factors, and all of our results
are subject to this approximation.

An important point for our discussion below is that the
form of the exact E∗

xc also depends on various physical factors
[16]. For example, one possible factor is LL mixing, which is
absent in the theoretical limit of very strong magnetic fields
but is relevant for typical magnetic fields and can be quite
significant. With LL mixing, one can reformulate the problem
in terms of electrons still residing in the LLL but with an
effective interaction, which is less repulsive than the Coulomb
interaction at short distances. A similar correction arises due
to finite width of the quantum well. In principle, one then
needs to evaluate the CF cyclotron energy and CF XC energy
for the effective interaction, which is likely to change the
relative importance of the two terms. We have not made a
realistic determination of these effects.

We will tune the strength of the XC energy E∗
xc in Eq. (12)

by varying ς . Notice that E∗
xc is negative, so the XC potential

increases in magnitude when ς > 1. We refer to ζ � 1 and
ζ � 1 as the strong and weak XC energy limits, respectively.

A. Appearance of a crystal phase

We consider a problem with rotational symmetry by choos-
ing the external potential to be generated by a uniform positive

charge in a circular region around the origin, as explained in
Sec. III C. The ground-state densities for a system of N = 40
are shown in Figs. 2(a)–2(d) for certain choices of ς . The
corresponding density of states (DOS) is shown in Figs. 2(e)–
2(h). Here we assume a small temperature of kBτ = 0.01 e2

εlB
,

which is less than 10% of the cyclotron gap of �Ls and is
useful for finding converged solutions. (Temperature depen-
dence of KS solutions is discussed later.) In the weak XC
energy limit (ς = 0), the ground-state density of electrons
almost perfectly screens the background density, due to the
dominance of the Hartree term and the external potential. The
spectrum of the KS solutions shows the formation of �Ls,
where the positions of the lowest two �Ls can be seen from
the two peaks in the DOS plot in Fig. 2(e).

In order to obtain a smooth curve for DOS, we have re-
placed the δ(E − εi ) in the standard definition of DOS, ρE =∑

i δ(E − εi ) (where εi is the eigenvalue of KS orbitals sorted
by ε1 < ε2 < . . ., increasing with i), by a Gaussian to define:

ρE =
∑

i

exp[−(E − εi )
2/σ 2]/

√
2πσ, (27)

where σ = 0.008 e2

εlB
throughout this paper. The discrete points

of {εi} can be seen from the plot of the cumulative state count

N (E ) =
∫ E

−∞

∑
i

δ(E ′ − εi )dE ′. (28)

When ς = 1 in Eq. (12), the total density shows stronger
oscillations near the edge but still respects a rotational sym-
metry. In particular, the density profile near the edge of the
system first shoots up before it comes down to zero, which
is also seen in results from exact diagonalization (ED) in
a rotationally symmetric system [32]. For the stronger XC
potential of ς = 1.5, the bulk becomes a crystal; the absence
of a crystal at the boundary is a finite-temperature effect, as
discussed below. The system fully crystalizes when ς = 2.
The formation of crystalline structures breaks the rotational
symmetry of the system, which is allowed in our numerical
method where no symmetry is assumed. (In contrast, the
calculations in Ref. [12] choose the angular momentum as
a good quantum number and reduce the 2D system to ef-
fectively a 1D system along the radial direction; the results
therein are rotationally symmetric by construction regardless
of the strength of the XC potential or the choice of the CF
mass. Rotational symmetry is also imposed in the ED cal-
culation in the disk geometry [32].) The results are stable
and driven by the XC energy. We discuss in Appendix A
that our results, in particular the appearance of a crystal
phase, are not a numerical artifact of discretization and lattice
configuration.

B. Nature of the crystal phase

The competition between the correlated Wigner crystal
state and the liquid state has been studied theoretically in
many articles [19,33–39]. In particular, Ref. [19] studies the
role of LL mixing and finds that the FQHE liquid yields to
a crystal when the LL mixing is large. However, there is an
important difference between the crystal found in that study
and that in our study. In Ref. [19], the n/(2n + 1) FQHE liquid
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FIG. 2. The ground-state density (ρ) and the density of states (DOS) of KS∗ orbitals for a system of N = 40 electrons with average filling
ν = 1/3 at temperature kBτ = 0.01 e2

εlB
. The system size is Lx = Ly = 35 lB, and Nx = Ny = 210. Panels (a)–(d) depict how the density varies as

a function of the exchange-correlation (XC) potential, whose strength is tuned by the prefactor ς ; these panels correspond to ς = 0, 1, 1.5, 2.
The density is quoted in units of (2π l2

B )−1. The FQHE liquid evolves into a crystal with increasing XC energy. Panels (e)–(f) show the
corresponding density of states, ρE . The cumulative state count N (E ) gives the number of Kohn-Sham orbitals below energy E . Only the
lowest 85 orbitals are shown. The dashed line marks the location of the Fermi energy. All the energies are in units of e2

εlB
.

of composite fermions carrying two vortices freezes into an
electron crystal with increasing LL mixing near ν = 1/3. In
our study, on the other hand, the solutions can be interpreted
as a CF crystal of composite fermions carrying two vortices
[38,39]. The interpretation in terms of a CF crystal is natural
because the solution satisfies the CF relation between the den-
sity and effective magnetic field in a self-consistent fashion.
Nonetheless, it ought to be stressed that the density obtained
in our solution is, in principle, the density of electrons, and
thus it is also a crystal of electrons, albeit a correlated one.
(As seen in Refs. [18,19], the density profiles for electron and
CF crystals are very similar, differing only in the shape of
the localized wave packets on each lattice site; the CF crystal
builds correlations between the zero point fluctuations of the
neighboring sites.)

The Wigner crystallization of a system of 2D electrons
in a circularly symmetric confining potential has been stud-
ied in Ref. [37]. They find that crystallization occurs in two
stages: first in the radial ordering, and then in the angular
ordering. The situation is similar to our findings, though we
have CF crystals rather than electron crystals. We calculate
the evolution of variances in bulk density along the radial
and the azimuthal directions respectively as we increase ς

(results not shown). For a small ς (ς < 1), both variances
remain negligible in the liquid phase. When ς is larger than
a threshold value, the radial variance first increases signifi-
cantly; beyond a greater threshold, the azimuthal variance also
increases abruptly. This indicates a two-stage crystallization
in our results.

It is interesting to ask if our crystal is an example of the
so-called Hall crystal [40–42], which is the quantum Hall
effect counterpart of the putative supersolid phase of 4He
atoms. Because our crystal is a correlated crystal of composite
fermions, it may appear to be a promising candidate for the
Hall crystal phase. One feature that may distinguish the Hall

crystal from the Wigner crystal is that, in the former, the
number of particles per unit cell is not necessarily an integer
[43]. We find, for all cases we have studied, that the number
of crystal sites in our KS solution at the smallest temperature
is equal to the number of composite fermions (which also
justifies the term crystal rather than a charge density wave).
Another character of the Hall crystal is that, similarly to the
Hall liquid state, it hosts chiral edge states. We find that for our
crystal, there are no gapless edge states; this is indicated by the
presence of a gap at the chemical potential. We thus conclude
that our crystal phase is generically not a Hall crystal, but we
do not rule out the possibility that the Hall crystal state could
be stabilized for some forms of the XC energy.

C. Effects of temperature, disorder, form of XC
interaction, and system size

We ask how temperature influences the density in our
calculation. Figure 3 depicts the evolution of a system with
ς = 1.5 as a function of temperature. At the lowest tempera-
ture of kBτ = 0.001 e2

εlB
, the system is crystalline (panel d). As

the temperature is raised, the system melts from the edge into
the bulk and becomes a liquid-like state when kBτ = 0.1 e2

εlB
,

which is approximately the value of the �L gap (≈0.11 e2

εlB
),

as can be seen from the DOS plot in Fig. 3(e). It has been
proposed that the re-entrance of a solid state can occur in
certain parameter regimes when the temperature of a liquid
state is raised [36]; we have not explored that physics in our
calculations.

Next, we test the stability of the results against a weak
disorder. We consider onsite disorder by adding to the external
potential a term

∑
i δVext (ri ), where Vext (ri ) is randomly cho-

sen according to a uniform distribution in the range [−W,W ],
where W is the strength of disorder. In the ν = 1/3 state, we
find that both the liquid and the crystal states largely remain
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FIG. 3. The temperature dependence of the ground-state density (ρ) and the density of states (DOS) of KS∗ orbitals for a system with
N = 40 particles at average filling ν = 1/3. We choose the XC potential with ς = 1.5. The density is quoted in units of (2π l2

B )−1. The panels
(a)–(d) correspond to temperatures kBτ = 0.1, 0.05, 0.02, 0.001 in units of e2

εlB
. The panels (e)–(f) show the corresponding density of states

and the cumulative state count for Kohn-Sham solutions in (a)–(d). Only the lowest 100 orbitals are shown. Other parameters are the same as
those in Fig. 2.

unaffected for a disorder strength of up to W = 0.01 e2

εlB
, al-

though we expect that the phase boundary will be slightly
modified by disorder [35].

One may ask how the detailed form of the XC
energy/potential influences the results. For that we
consider another form of the XC energy E∗′

xc =
ς

∫
d2r[−0.61ν0.39 − 0.165ν]ρ(r), which gives an XC

potential V ∗′
xc = ς (−0.85ν0.39 − 0.33ν). (These forms are

different approximations for the exact energies in the range
1/3 < ν < 1/2, but have significant differences outside this
range.) The qualitative behavior, namely a liquid for small ς

and a crystal at large ς is also seen for the new XC potential.
However, the phase boundaries are different; for example,
the low-temperature KS solution is a crystal for V ∗′

xc with
ς = 1. (We note that both forms of XC energy produce a
uniform liquid state in the bulk for ς = 1 when the system is
constrained to be rotationally symmetric [12].)

We have also investigated the behavior as a function of the
system size. Away from the transition region, we find that
the nature of the ground state is not sensitive to the system
size. This is illustrated in Fig. 4. Here, the qualitative features
of the solution in Fig. 2(c) are retained in smaller systems.
For the systems with the same number of particles in Fig. 4,
the solutions remain liquid-like for ς = 1 and crystal-like for
ς = 2 (results not shown).

V. CONCLUSIONS

We have studied how the strength of the XC potential for
composite fermions dictates their state. For this purpose we
develop a numerical procedure to solve the KS* equations
of CFs in a fashion that allows for crystalline solutions. Our
primary finding is that the state evolves from a liquid-like
state to a crystal-like state as the strength of XC energy
increases.

We mention again that our study is not to be taken as a
quantitative treatment of the physics of crystals in the FQHE

regime. A notable limitation is that we only consider states of
composite fermions carrying two vortices, and do not consider
the possibility of a crystal or a liquid of electrons, or of com-
posite fermions with a different number of attached vortices
(as might be relevant in regions of small densities).

An obvious direction for future study will be to build better
XC potentials that apply to a larger range of filling factors
and also include the effects of finite thickness and Landau
level mixing. It is possible that the strength of the XC energy
of composite fermions relative to their cyclotron energy may
also depend on the filling factor, which may be relevant to

FIG. 4. The ground-state density ρ for particle numbers N =
5, 10, 15, 20, 25, 30 with ς = 1.5 and a uniform background charge
of νb = 1/3. The qualitative features of a crystalline structure in the
bulk and a liquid-like ring along the edge are consistent with those
in the large system of N = 40 shown in Fig. 2(c). We have used
Lx = Ly = 30 lB, Nx = Ny = 180, kBτ = 0.01 e2

εlB
. Other parameters

are the same as those in Fig. 2.
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FIG. 5. This figure shows the wave functions of single-particle Kohn-Sham (KS) orbitals for ς = 1, 1.5, 2. For each value of ς , we show
eight orbitals of increasing energy, with state indices i = 1, 9 . . . , 57. The numbers in the parenthesis represent the pair (ς, i). The height and
color in the plot represent the magnitude and phase of the KS orbitals, respectively. The broken rotational symmetry in these orbitals indicates
that angular momentum Lz is no longer a good quantum number. In the liquid-like phase in (a)–(h), the expectation value of Lz (which can
be estimated from the number of phase windings over the azimuthal angle) is positively correlated with the average radius of an orbital. This
correlation is absent in the crystal-like phases, where KS orbitals are delocalized over a few crystalline peaks. We choose the background
charge at νb = 1/3, N = 40 and kBτ = 0.01 e2

εlB
. Other parameters are the same as those in Fig. 2.

the formation of a crystal at low fillings. The improvement
of the XC potential for composite fermions will require a care-
ful treatment of gauge flux induced interaction. As a result,
the techniques in the standard DFT method, for example, the
exact exchange formalism [44–46], which has also recently
been used for the integer quantum Hall effect [47], may not
be readily applicable for systems of composite fermions. It
would be interesting to apply the DFT method to study the
edge structure, the effect of disorder and/or anisotropy, spin
physics, screening, and of fractional quantum Hall effect in
mesoscopic devices.
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APPENDIX: DISCUSSION OF NUMERICAL
STABILITY OF THE RESULTS

In exact diagonalization studies, the ground state of FQHE
in the disk geometry is assumed to be an eigenstate of angular

momentum, which therefore is rotationally symmetric. The
liquid or crystal nature of the ground state can be seen by
studying the structure of the pair correlation function [39].
However, once the rotational symmetry is spontaneously bro-
ken, the system can pick one of the infinitely many possible
ground-state configurations that no longer preserves angular
momentum as a good quantum number. These configura-
tions are related to each other by a rotation around the
origin. Ideally this is expected to be the case for our KS
solutions. (We refer the readers to Ref. [48] for discussions
of symmetry-breaking solutions in DFT calculations.) How-
ever, our choice of the square open boundary and our lattice
discretization effectively break the rotational symmetry. We
discuss in this Appendix various numerical tests to show that
these do not affect the nature of the state in an essential
manner.

We have examined the effect of the square open boundary.
We have found that adding a circular potential wall of infinite
height that is internally tangent to the square boundary, or
expanding the size of the square boundary by a factor of two,
leaves the essential features of the solutions unchanged.

Discretization reduces the rotational symmetry of space
into a four-fold rotation C4 and the mirror reflection, which
are exact symmetries regardless of the lattice constant. Inter-
estingly, these symmetries can be broken in the KS solutions,
as is evident in the density plots of crystalline solutions [for
example, see Fig. 3(c)]. Even in the liquid solutions, the C4

symmetry is broken by the KS orbitals, as shown in Fig. 5.
In fact, the KS orbitals can form rather complex structures.
In the liquid-like phase, each KS orbital retains a ring-like
shape around the origin but no longer preserves the angular
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momentum as a good quantum number. In the crystal-like
phase, the KS orbitals typically do not respect any of the
symmetries. We note that the KS orbitals are delocalized over
several crystalline sites, hinting at a highly correlated nature
of the crystal.

We have tested that for any solution of the KS equation,
the densities related by the C4 or the mirror symmetries are
also valid solutions. Which of the degenerate solutions is
obtained depends on the initial input. Furthermore, for the
crystal phase, depending on the initial conditions, we can also
obtain solutions that are not related to one another by rotation,
suggesting the presence of many nearly degenerate solutions

in the continuum limit. Nonetheless, all of the solutions for a
given set of parameters are in the same phase.

We need to make sure that our lattice is fine enough
to capture the physics in the continuum limit. To reduce
the numerical expense, the results above are obtained with
a lattice resolution of ax = ay = lB/6. We have tested that
going to a resolution of lB/10 or lB/15 does not alter the
results appreciably. In the crystalline phase, the number of
nearly degenerate solutions increases as we go to finer lat-
tices, but for all cases that we have studied, going to a finer
lattice does not change the liquid or crystal nature of the
solution.
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