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Accelerating finite-temperature Kohn-Sham density functional theory with deep neural networks
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We present a numerical modeling workflow based on machine learning which reproduces the total energies
produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical
accuracy at negligible computational cost. Based on deep neural networks, our workflow yields the local density
of states (LDOS) for a given atomic configuration. From the LDOS, spatially resolved, energy-resolved, and in-
tegrated quantities can be calculated, including the DFT total free energy, which serves as the Born-Oppenheimer
potential energy surface for the atoms. We demonstrate the efficacy of this approach for both solid and liquid
metals and compare results between independent and unified machine-learning models for solid and liquid
aluminum. Our machine-learning density functional theory framework opens up the path towards multiscale
materials modeling for matter under ambient and extreme conditions at a computational scale and cost that is
unattainable with current algorithms.
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I. INTRODUCTION

Multiscale materials modeling [1] provides fundamental
insights into microscopic mechanisms that determine mate-
rials properties. A multiscale modeling framework operating
both near first-principles accuracy and across length and time
scales would enable key progress in a plethora of applica-
tions. It would greatly advance materials science research—in
gaining understanding of the dynamical processes inherent
to advanced manufacturing [2,3], in the search for superhard
[4] and energetic materials [5,6], and in the identification of
radiation-hardened semiconductors [7,8]. It would also pave
the way for generating more accurate models of materials
at extreme conditions including shock-compressed materials
[9,10] and astrophysical objects, such as the structure, dynam-
ics, and formation processes of the Earth’s core [11], and solar
[12–18] and extrasolar planets [19,20]. This requires faithfully
passing information from quantum mechanical calculations
of electronic properties on the atomic scale (nanometers and
femtoseconds) up to effective continuum material simulations
operating at much larger length and time scales. Atomistic
simulations based on molecular dynamics (MD) techniques
[21] and their efficient implementation [22] for large-scale
simulations on high-performance computing platforms are the
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key link. For atomic-scale systems, MD results can be directly
validated against quantum calculations. At the same time, MD
can be scaled up to the much larger scales on which the
continuum behaviors start to emerge (either micrometers or
microseconds, or even both [23]).

MD simulations require accurate interatomic potentials
(IAPs) [24]. Generating them based on machine-learning
(ML) techniques has only recently become a rapidly evolving
research area. It has already led to several ML-generated
IAPs such as AGNI [25], ANI [26], DPMD [27], GAP
[28], GARFfield [29], HIP-NN [30], SchNet [31], and SNAP
[32]. While these IAPs differ in their flavor of ML models,
for instance, nonlinear optimization, kernel methods, struc-
tured neural networks, and convolutional neural networks,
they all rely on accurate training data from first-principles
methods.

First-principles training data sets are commonly generated
with Kohn-Sham density functional theory (DFT) [33] and its
generalization to finite electronic temperature [34]. Due to its
balance between accuracy and computational cost, it is the
method of choice [35] for computing properties of molecules
and materials with close to chemical accuracy [36,37].

Despite its success [38], DFT is limited to the nanoscale
due to its computational cost which scales as the cube of the
system size. At the same time, the amount of data needed to
construct an IAP increases exponentially with the number of
chemical elements, thermodynamic states, phases, and inter-
faces [39]. Likewise, evaluation of thermodynamic properties
using DFT is computationally expensive, typically 105 to 106

core-hours for each point on a grid of temperatures and den-
sities [40]. Furthermore, fully converged DFT calculations at
low densities, very high temperatures, or near phase transi-
tions are considerably more difficult.
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FIG. 1. Illustration of the ML-DFT workflow listed in Table I. (a) The raw input data are generated from finite-temperature DFT
calculations for snapshots of atomic configurations, i.e., positions and chemical identities of atoms. (b) SNAP fingerprints in terms of
bispectrum components are generated for each of several million Cartesian grid points in the snapshot volume. (c) The trained ML-DFT
feed-forward neural network takes the input vector f composed of SNAP fingerprints for one Cartesian grid point and outputs the predicted
LDOS vector d at the grid point. (d) The primary output of the ML inference is the LDOS on a Cartesian grid which is used to compute (e) the
total energy based on Eq. (9). The embedded Fig. 6 displays our central result—the capability of a single ML-DFT model to predict the total
energy in both solid and liquid phases of aluminum with accuracy comparable to standard DFT.

Pioneering efforts in applying ML to electronic structure
calculations focus on mining benchmark databases generated
from experiments, quantum chemistry methods, and DFT
in order to train ML models based on kernel ridge regres-
sion and feed-forward neural networks. These efforts enabled
ML predictions of molecular properties [41–43] and crystal
structures [44]. Only limited efforts have gone into actually
speeding up DFT calculations by directly approximating the
solutions of the Kohn-Sham differential equations through
ML models. Prior work has focused on approximating the
kinetic energy functional using ML regression [45–47] and
deep-learning models [48]. Most recently, ongoing efforts
have demonstrated the usefulness of ML kernel techniques on
the electronic density [49] and feed-forward neural networks
on the density of states (DOS) [44,50,51] and the local density
of states (LDOS) [52] for creating computationally efficient
DFT surrogates.

In this work, we develop ML-DFT, a surrogate for DFT cal-
culations at finite electronic temperature using feed-forward
neural networks. We derive a representation of the Born-
Oppenheimer potential energy surface at finite electronic
temperature (Sec. II A) that lends itself to an implementation
within an ML workflow (Sec. II B). Using the LDOS as the
central quantity, ML-DFT enables us to compute the DFT
total free energy in terms of a single ML model (Sec. II B),
applicable to coupled electrons and ions not only under am-
bient conditions but also in liquid metals and plasmas. For
the sake of simplicity, we will refer to the DFT total free
energy as defined in Eq. (6) as total energy. Utilizing a gener-
alization of the SNAP bispectrum descriptors on a Cartesian
grid (Sec. II E), the feed-forward neural network of ML-DFT
(Sec. II F) is trained on DFT data (Sec. II C). Integrated quan-
tities such as the band energy and the total energy of an atomic
configuration at a given electronic temperature are in turn
computed based on the LDOS predicted by ML-DFT. Using
the LDOS in conjunction with the developed expression for
total energy avoids the need to introduce another ML model

to map densities to kinetic energies [49] and goes significantly
beyond prior ML efforts related to the LDOS [52]. ML-DFT
yields DFT-level accuracy, but comes at a negligible com-
putational cost by avoiding the O(N3) eigensolver step. We
demonstrate this for aluminum (Sec. III). Trained on atomic
configurations of aluminum at the melting point, a single
ML-DFT model yields accurate results (LDOS, electronic
density, band energy, and total energy) for both crystalline and
liquid aluminum. Notably, band energies and total energies
predicted by ML-DFT agree with the results of conventional
DFT calculations to well within chemical accuracy, which is
traditionally defined as 1 kcal/mol = 43.4 meV/atom. Hence,
ML-DFT meets all requirements to become the backbone of
the computational infrastructure needed for high-performance
multiscale materials modeling of matter under ambient and
extreme conditions (Sec. IV).

The ML-DFT workflow is illustrated in Fig. 1. It starts
with input data generated from finite-temperature DFT cal-
culations for a given atomic configuration [Fig. 1(a)]. SNAP
fingerprints are generated for each of several million Cartesian
grid points in the snapshot volume [Fig. 1(b)]. Given a SNAP
fingerprint as input, the trained ML-DFT feed-forward neural
network makes its prediction for the LDOS vector [Fig. 1(c)].
The primary output of the ML inference is the LDOS pre-
diction at each grid point [Fig. 1(d)]. Based on the predicted
LDOS, quantities such as the electronic density based on
Eq. (10), the DOS based on Eq. (13), and the total energy
based on Eq. (9) are computed [Fig. 1(e)].

II. METHODS

A. Born-Oppenheimer density functional theory at finite
electronic temperature

A suitable theoretical framework for computing thermo-
dynamic materials properties from first principles is within
the scope of nonrelativistic quantum mechanics in the Born-
Oppenheimer approximation [53]. Additionally we work
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within a formalism that takes the electronic temperature into
account. This becomes relevant when the scale of the elec-
tronic temperature becomes comparable to the first excitation
energy of the electronic system which is particularly relevant
for liquid metals and plasmas. In the given framework we,
hence, assume that the electrons find their thermal equilib-
rium on a time scale that is small compared to that of ionic
motion. The formal development and implementation of such
methodologies that couple electron and ion dynamics is an
area of active research [54–60].

More formally, consider a system of Ne electrons and Ni

ions with collective coordinates r = {r1, . . . , rNe} and R =
{R1, . . . , RNi}, where r j ∈ R3 refers to the position of the jth
electron, while Rα ∈ R3 denotes the position of the αth ion
of mass Mα and charge Zα . The physics in this framework is
governed by the Born-Oppenheimer Hamiltonian

ĤBO(r; R) = T̂ e(r) + V̂ ee(r) + V̂ ei(r; R) + V̂ ii(R), (1)

where T̂ e(r) = ∑Ne
j −∇2

j /2 denotes the kinetic energy

of the electrons, V̂ ee(r) = ∑Ne
j

∑Ne
k �= j |r j − rk|−1/2 the

electron-electron interaction, V̂ ei(r; R) = −∑Ne
j

∑Ni
α Zα|r j −

Rα|−1 the electron-ion interaction, and V̂ ii(R) =∑Ni
α

∑Ni
β �=α ZαZβ |Rα − Rβ |−1/2 the ion-ion interaction.

Note that we work within atomic units throughout, where
h̄ = me = e2 = 1, such that energies are expressed in hartrees
and length in Bohr radii.

Using the standard framework of quantum statistical me-
chanics [61], all thermodynamic equilibrium properties are
formally given in terms of the grand potential

�[�̂] = Tr(�̂�̂), (2)

which is defined as a statistical average over the grand canon-
ical operator �̂ = ĤBO − μN̂ − Ŝ/β, where N̂ denotes the
particle number operator, Ŝ the entropy operator, μ the chem-
ical potential, and 1/β = kBT , where kB is the Boltzmann
constant and T is the electronic temperature. Statistical av-
erages as in Eq. (2) are computed via the statistical density
operator �̂ = ∑

Ne, j wNe, j |�Ne, j〉〈�Ne, j | which is a weighted
sum of projection operators on the underlying Hilbert space
spanned by the Ne-particle eigenstates �Ne, j of ĤBO with
energies ENe, j and statistical weights wNe, j = exp[−β(ENe, j −
μNe)]/

∑
Ne, j exp[−β(ENe, j − μNe)]. The thermal equilib-

rium of a grand canonical ensemble is then defined as
that statistical density operator which minimizes the grand
potential. Further details on the grand canonical ensemble
formulation of a thermal electronic system can be found in
Refs. [62,63].

In practice, the electron-electron interaction complicates
finding solutions to �Ne, j and, hence, evaluating the grand
potential as defined in Eq. (2). Instead, a solution is found
in a computationally feasible manner within DFT [33] at fi-
nite electronic temperature [34,62,64]. Here, a formally exact
representation of the grand potential is given by

�[n] = TS[n] − SS[n]/β + U [n] + EXC[n]

+
∫

dr n(r; R)[vei(r; R) − μ] + V ii(R), (3)

where TS denotes the Kohn-Sham kinetic energy, SS the
Kohn-Sham entropy, U [n] the classical electrostatic interac-
tion energy, EXC the exchange-correlation free energy which
is the sum of the temperature-dependent exchange-correlation
energy and the interacting entropy, vei(r; R) = −∑

α Zα/|r −
Rα| the electron-ion interaction, and V ii the ion-ion interac-
tion. The grand potential in Eq. (3) is evaluated in terms of the
electronic density defined by

n(r; R) =
∑

j

f β (ε j ) |φ j (r; R)|2, (4)

where the sum runs over the Kohn-Sham orbitals φ j and
eigenvalues ε j that are obtained from the solving the Kohn-
Sham equations

[
−1

2
∇2 + vS(r; R)

]
φ j (r; R) = ε jφ j (r; R), (5)

where f β (ε j ) = (1 + exp[β(ε j − μ)])−1 denotes the Fermi-
Dirac distribution. The Kohn-Sham framework is constructed
such that a noninteracting system of fermions yields
the same electronic density as the interacting many-body
system of electrons defined by ĤBO. This is achieved
by the Kohn-Sham potential vS(r; R) = δU [n]/δn(r; R) +
δEXC[n]/δn(r; R) + vei(r; R) which includes all electron-
electron interactions on a mean-field level. While formally
exact, approximations to EXC are applied in practice either
at the electronic ground state [38] or at finite temperature
[65–67].

The key quantity connecting the electronic and ionic de-
grees of freedom is the total energy

ABO[n](R) = �0[n] + μNe. (6)

This expression yields the Born-Oppenheimer potential en-
ergy surface at finite electronic temperature, when it is
evaluated as a function of R. It provides the forces Fα =
−∂ABO(R)/∂Rα on the ions which are obtained from solving
for the instantaneous, grand potential in thermal equilibrium
�0[n] for a given atomic configuration R via Eq. (5). In doing
so, Eq. (6) enables us to time-propagate the dynamics of the
atomic configuration R, in its simplest realization, by solving
a Newtonian equation of motion,

Mα

d2Rα

dt2
= Fα. (7)

This can be further extended, for example, to take into account
the energy transfer between the coupled system of electrons
and ions by introducing thermostats [68,69].

Despite its powerful utility for predicting thermodynamic
and material properties on the atomic scale [36,37] and pro-
viding benchmark data for the parametrization of IAPs for use
in MD simulations [29], applying DFT becomes computation-
ally infeasible in applications towards the mesoscopic scale
due to the computational scaling of Eq. (5). The computational
cost for data generation explodes exponentially with the num-
ber of chemical elements, thermodynamic states, phases, and
interfaces [39] needed for the construction of IAPs.
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B. Machine-learning model of the total energy

We now reformulate DFT in terms of the LDOS which is
granted by virtue of the first Hohenberg-Kohn theorem [70].
We then replace the DFT evaluation of the LDOS with a
ML model for the LDOS in order to obtain all of the quan-
tities required to evaluate the total energy while avoiding the
computationally expensive solution of Eq. (5). The LDOS is
defined as a sum over the Kohn-Sham orbitals,

D(ε, r; R) =
∑

j

|φ j (r; R)|2 δ(ε − ε j ), (8)

where ε denotes the energy as a continuous variable, and δ(ε)
is the Dirac delta function. This enables us to rewrite Eq. (6)
as

ABO[D](R) = Eb[D] − SS[D]/β − U [D]

+EXC[D] − VXC[D] + V ii(R), (9)

where VXC[D] = ∫
dr n[D](r; R) δEXC[D]/δn[D](r; R) de-

notes the potential energy component of the exchange-
correlation (XC) energy [71].

The central advantage of this reformulation is that, by
virtue of Eq. (9), the total energy is expressed solely in terms
of the LDOS. We emphasize this by explicitly denoting the
functional dependence of each term on the LDOS.

Now let us turn to the individual terms in this expres-
sion. The ion-ion interaction V ii(R) is given trivially by the
atomic configuration. The Hartree energy U [D] = U [n[D]],
the XC energy EXC[D] = EXC[n[D]], and the potential XC
energy VXC[D] = VXC[n[D]] are all determined implicitly by
the LDOS via their explicit dependence on the electronic
density:

n[D](r; R) =
∫

dε f β (ε) D(ε, r; R). (10)

Likewise, the band energy

Eb[D] =
∫

dε f β (ε) ε D̄[D](ε; R) (11)

and the Kohn-Sham entropy

SS[D] = −
∫

dε { f β (ε) log[ f β (ε)]

+[1 − f β (ε)] log[1 − f β (ε)]}D̄[D](ε; R) (12)

are determined implicitly by the LDOS via their explicit de-
pendence on the DOS:

D̄[D](ε; R) =
∫

drD(ε, r; R). (13)

Equation (9) enables us to evaluate the total energy in terms
of a single ML model that is trained on the LDOS and can
predict the LDOS for snapshots unseen in training. This is
advantageous, as it has been shown that learning energies
from electronic properties, such as the density, is significantly
more accurate [49] than learning them directly from atomic
descriptors [45,72,73]. Furthermore, developing an ML model
based on the LDOS instead of the density avoids complica-
tions of prior models. For example, accuracy was lost due to
an additional ML model needed to map densities to kinetic en-
ergies or noise was introduced by taking gradients of the ML

kinetic energy models [46,47,74,75]. The two formulations
in Eqs. (6) and (9) are mathematically equivalent. However,
Eq. (9) is more convenient in our ML-DFT workflow where
we use the LDOS as the central quantity.

C. Data generation

Our initial efforts have focused on developing an ML
model for aluminum at ambient density (2.699 g/cc) and tem-
peratures up to the melting point (933 K). The training data for
this model were generated by calculating the LDOS for a set
of atomic configurations using the QUANTUM ESPRESSO elec-
tronic structure code [76–78]. The structures were generated
from snapshots of equilibrated DFT-MD trajectories for 256
atom supercells of aluminum. We calculated LDOS training
data for ten snapshots at room temperature, ten snapshots of
the crystalline phase at the melting point, and ten snapshots of
the liquid phase at the melting point.

Our DFT calculations used a scalar-relativistic, opti-
mized norm-conserving Vanderbilt pseudopotential (Al.sr-
pbesol.upf) [79] and the PBEsol exchange-correlation func-
tional [80]. We used a 100-Ry plane-wave cutoff to represent
the Kohn-Sham orbitals and a 400-Ry cutoff to represent
densities and potentials. These cutoffs resulted in a 200 ×
200 × 200 real-space grid for the densities and potentials, and
we used this same grid to represent the LDOS. The electronic
occupations were generated using Fermi-Dirac smearing with
the electronic temperature corresponding to the ionic temper-
ature. Monkhorst-Pack [81] k-point sampling grids, shifted
to include the � point when necessary, were used to sample
the band structure over the Brillouin zone. The DFT-MD
calculations that generated the snapshots used 2 × 2 × 2 k-
point sampling for the crystalline phase and 1 × 1 × 1 k-point
sampling for the liquid phase.

In contrast, the generation of the LDOS used 8 × 8 × 8
k-point sampling. The reason for this unusually high k-point
sampling (for a 256-atom supercell) was to help overcome a
challenge that arises when using the LDOS as the fundamental
parameter in a ML surrogate for DFT. For a periodic supercell,
the LDOS is given as

D(ε, r; R) = �−1
BZ

∫
BZ

dk
Ns∑
j

|φ jk(r; R)|2 δ(ε − ε jk), (14)

where the index j now labels the Kohn-Sham orbitals at a
particular k value, and the vector index k categorizes the
Kohn-Sham orbitals by their transformation properties under
the group of translation symmetries of the periodic supercell.
In particular,

φ jk(r; R) = u jk(r; R) exp(ik · r), (15)

where u jk(r; R) is some function with the same periodicity as
the periodically repeated atomic positions R.

In Eq. (14), the integral with respect to k is taken over
the first Brillouin zone (BZ), which has volume �BZ . If this
integral could be evaluated exactly, the resulting LDOS would
be a continuous function of ε with Van Hove singularities [82]
of the form

√
ε − ε′ or

√
ε′ − ε at energies ε′ that correspond

to critical points of the band structure ε jk. However, when this
integral is represented as a summation over a finite number of
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k points k1, . . . , kNk , as in the Monkhorst-Pack [81] approach
used in our calculations, it is necessary to replace the Dirac
delta function δ(ε − ε jk) appearing in Eq. (14) with a finite-
width representation δ̃(ε − ε jk). The LDOS used to train our
ML model is then obtained by evaluating

D(ε, r; R) = N−1
k

Nk∑
k

Ns∑
j

|φ jkk (r; R)|2 δ̃(ε − ε jkk ) (16)

on a finite grid of ε values. In our calculations, we use an
evenly spaced ε grid with a spacing of 0.1 eV, a minimum
value of −10 eV, and a maximum value of +15 eV. Hence, the
data for each grid point consist of a vector of 250 scalar values.
Kohn-Sham orbitals with eigenvalues significantly outside the
energy range where we evaluate the LDOS make negligible
contributions to the calculated LDOS values, and ideally we
would include a sufficient number Ns of the lowest Kohn-
Sham orbitals in Eqs. (14) and (16) to span this energy range.
However, due to memory constraints on our 8 × 8 × 8 k-point
DFT calculations, we were only able to calculate Ns = 576 or-
bitals. At ambient density, this provides an accurate LDOS up
to ε ≈ 10 eV, and the relevant Fermi levels are at μ ≈ 7.7 eV.
The tails of f β (ε) should be negligible above ε ≈ 10 eV
for T � 2500 K. At higher electronic temperatures, it would
become necessary to increase NS when generating the training
data in order to get an accurate LDOS over a wider energy
range.

The challenge mentioned above arises in the choice of the
δ function representation δ̃ and the k-point sampling scheme
k1, . . . , kNk for a given ε grid. If the function δ̃ is too wide, it
leads to systematic errors in the LDOS and derived quantities
such as the density, band energy, and total energy. However, if
δ̃ is too narrow or too few k points are used to sample the BZ,
then only a few values of ε jkk make substantial contributions
to the LDOS at each point on the ε grid, and there is a large
amount of noise in the resulting LDOS.

Figure 2 demonstrates these trade-offs for a Gaussian rep-
resentation δ̃(x) = exp (−x2/σ 2)/

√
πσ 2 by plotting the DOS

D̄[D](ε; R) in the upper panel and the error in the band energy
calculated from the DOS in the lower panel. The top panel
shows that using fewer k points or a narrower δ̃ leads to
unphysical noise in the calculated DOS, while the bottom
panel shows that using a wider δ̃ leads to an increasing error
in the band energy. The lower panel also shows that the noise
in the DOS that arises with a narrower δ̃ is reflected in an
increasing variability in the band energy error.

Since a larger k-point sampling allows a narrower δ̃ to
be used without introducing excessive noise into the LDOS,
we can minimize the errors in quantities calculated from the
LDOS by using as many k points as possible. In the LDOS
calculations used to train our ML model, we used 8 × 8 × 8
k-point sampling, which was the largest k-point sampling that
was computationally tractable for our 256-atom cells. We then
chose a Gaussian δ̃ with σ = 0.2 eV (indicated in the lower
panel of Fig. 2), which gives a relatively small and very con-
sistent error in derived quantities. For example, the average
error in the band energies calculated from the resulting LDOS
(relative to fully converged DFT) is −4.483 meV/atom when
the average is taken over all of our snapshots. The average
error becomes −4.466, −4.500, and −4.483 meV/atom when

FIG. 2. The DOS calculated for one of the 256-atom aluminum
snapshots at ambient temperature (298 K) using different Gaussian
smearing widths and k-point sampling schemes (top) and the error
in the band energy as a function of the Gaussian smearing width for
three different snapshots (bottom). In the upper panel, “1G Gaussian”
indicates results obtained from a Gaussian δ̃(x) with σ = 0.1 eV
(equal to the ε grid spacing), while “2G Gaussian” indicates that
σ = 0.2 eV (twice the ε grid spacing) was used. Results are shown
for 4 × 4 × 4 and 8 × 8 × 8 Monkhorst-Pack k-point sampling in the
upper panel, and 8 × 8 × 8 sampling in the lower panel.

the average is restricted to the 298 K, 933 K solid, and 933 K
liquid snapshots, respectively. These results show that the
error changes very little between different temperatures and
structures. These errors are also very consistent for different
structures at the same temperature and phase. In particular, the
root-mean-square variations in the errors are 0.004, 0.011, and
0.017 meV/atom for the 298 K, 933 K solid, and 933 K liquid
snapshots, respectively. Our choices for the ε grid spacing and
the width of the Gaussian broadening turn out to be similar to
those made in Ref. [51].

In electronic structure calculations, consistent errors in cal-
culated energies (for example, the errors due to incomplete
convergence with respect to the plane-wave cutoffs in tradi-
tional DFT calculations) are generally not a problem. Instead,
quantities of interest almost always involve the difference
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between two energies, and thus it is the variation of the errors
between different structures that affects actual results. With
the k-point sampling and the choice of δ̃ described above,
the errors differ by only about one-thousandth of the room-
temperature thermal energy, and such consistent errors are
very unlikely to impact quantities of interest. Furthermore,
these errors are independent of the errors introduced by using
ML to approximate the LDOS. In particular, a perfect ML
approximation would reproduce the results calculated from
the DFT LDOS (defined in the same manner as in the gen-
eration of our training data) rather than the results calculated
by exact DFT. Finally, we believe that further work will be
able to identify methods that use DFT to calculate even more
accurate LDOS training data with less computational effort
than our 8 × 8 × 8 k-point calculations. Some ideas include
Fourier interpolation of the Kohn-Sham bands and orbitals,
or an approach analogous to the tetrahedron method [83].
The remainder of this paper will focus on the effects of
approximating the LDOS with ML. In light of the above con-
siderations, errors will be quoted relative to results calculated
from the DFT LDOS rather than exact DFT.

D. Evaluation of energies from the local density of states

A key step in calculating the total energy defined in Eq. (9)
from the LDOS is the evaluation of several integrals in
Eqs. (10)–(12) that have the form

I =
∫

dε g(ε) D(ε), (17)

for some function g(ε). The evaluation of Eq. (17) poses a
challenge, because g(ε) changes rapidly compared to D(ε) in
several cases of interest. We provide a solution in terms of an
analytical integration, as illustrated in Appendix A. Given our
analytical integration technique, it is straightforward to evalu-
ate the total energy using Eq. (9) and the standard methods of
DFT in an accurate and numerically stable manner.

E. Fingerprint generation

We assume that the LDOS at any point in space can be
approximated by a function that depends only on the positions
and chemical identities of atoms within some finite neighbor-
hood of the point. In order to approximate this function using
ML, we need to construct a fingerprint that maps the neighbor-
hood of any point to a set of scalar values called descriptors.
On physical grounds, good descriptors must satisfy certain
minimum requirements: (i) invariance under permutation,
translation, and rotation of the atoms in the neighborhood and
(ii) continuous differentiable mapping from atomic positions
to descriptors, especially at the boundary of the neighborhood.
While these requirements exclude some otherwise appealing
choices, such as the Coulomb matrix [42], the space of physi-
cally valid descriptors is still vast. In the context of ML-IAPs,
the construction of good atomic neighborhood descriptors has
been the subject of intense research. Recent work by Drautz
[84] has shown that many prominent descriptors [28,32,72]
belong to a larger family that are obtained from successively
higher-order terms in an expansion of the local atomic density
in cluster integrals. The SNAP bispectrum descriptors [32]

that we use in this work correspond to clusters of three neigh-
bor atoms yielding four-body descriptors.

In contrast to prior work on ML-IAPs in which descrip-
tors are evaluated on atom-centered neighborhoods, here we
evaluate the SNAP descriptors on the same 200 × 200 × 200
Cartesian grid points at which we evaluated the LDOS train-
ing data [see Eq. (16) above]. For each grid point, we position
it at the origin and define local atom positions in the neigh-
borhood relative to it. The total density of neighbor atoms is
represented as a sum of δ functions in a three-dimensional
space:

ρ(r) = δ(0) +
∑

rk<R
νk
cut

fc
(
rk; Rνk

cut

)
wνk δ(rk ), (18)

where rk is the position of the neighbor atom k of element νk

relative to the grid point. The wν coefficients are dimension-
less weights that are chosen to distinguish atoms of different
chemical elements ν, while a weight of unity is assigned to the
location of the LDOS point at the origin. The sum is over all
atoms k within some cutoff distance Rνk

cut that depends on the
chemical identity of the neighbor atom. The switching func-
tion fc(r; Rνk

cut ) ensures that the contribution of each neighbor
atom goes smoothly to zero at Rνk

cut. Following Bartók et al.
[28], the radial distance rk is mapped to a third polar angle θ0

defined by

θ0 = θmax
0

rk

Rνk
cut

. (19)

The additional angle θ0 allows the set of points rk in the
three-dimensional (3D) ball of possible neighbor positions
to be mapped onto the set of points (θ, φ, θ0) on the unit
3-sphere. The neighbor density function can be expanded in
the basis of four-dimensional (4D) hyperspherical harmonic
functions U j ,

ρ(r) =
∞∑

j=0, 1
2 ,...

u j · U j (θ0, θ, φ), (20)

where u j and U j are rank (2 j + 1) complex square matri-
ces, u j are Fourier expansion coefficients given by the inner
product of the neighbor density with the basis functions U j of
degree j, and the · symbol indicates the scalar product of the
two matrices. Because the neighbor density is a weighted sum
of δ functions, each expansion coefficient can be written as a
sum over discrete values of the corresponding basis function

u j = U j (0) +
∑

rk<R
νk
cut

fc
(
rk; Rνk

cut

)
wνk U j (θ0, θ, φ). (21)

The expansion coefficients u j are complex valued and they are
not directly useful as descriptors because they are not invariant
under rotation of the polar coordinate frame. However, scalar
triple products of the expansion coefficients

Bj1 j2 j = u j1 ⊗ j1 j2 j u j2 · (u j )
∗ (22)

are real valued and invariant under rotation [28]. The symbol
⊗ j1 j2 j indicates a Clebsch-Gordan product of matrices of rank
j1 and j2 that produces a matrix of rank j, as defined in our
original formulation of SNAP [32]. These invariants are the
components of the bispectrum. They characterize the strength
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of density correlations at three points on the 3-sphere. The
lowest-order components describe the coarsest features of the
density function, while higher-order components reflect finer
detail. The bispectrum components defined here have been
shown to be closely related to the four-body basis functions
of the atomic cluster expansion introduced by Drautz [84].

For computational convenience, the LAMMPS implementa-
tion of the SNAP descriptors on the grid includes all unique
bispectrum components Bj1 j2 j with indices no greater than
Jmax. For the current study we chose Jmax = 5, yielding a
fingerprint vector consisting of 91 scalar values for each grid
point. The cutoff distance and element weight for the alu-
minum atoms were set to 4.676 Å and 1.0, respectively.

F. Machine-learning workflow and neural network model

Neural network models, especially deep neural networks,
are profoundly successful in numerous tasks, such as pa-
rameter estimation [85,86], image classification [87,88], and
natural language processing [89,90]. Moreover, neural net-
works may act as function approximators [91,92]. A typical
feed-forward neural network is constructed as a sequence of
transformations, or layers, with the form

v�+1
(n,1) = ϕ

(
W�

(n,m)v
�
(m,1) + b�

(n,1)

)
, (23)

where v�
(m,1) is the intermediate column vector of length m at

layer �, W�
(n,m) is a matrix of size n × m, b�

(n,1) is a bias vector
of length n, and v�+1

(n,1) is the next column vector of length
n in the sequence. The first and the last layers accept input
vectors, v0, and produce output predictions, vL, respectively.
There can be any arbitrary number L − 1 of hidden layers
constructed between the input layer and the output layer. After
each layer, a nonlinear activation unit ϕ transforms its input.
The composition of these layers is expected to learn complex,
nonlinear mappings.

Given a data set of Ns input vectors and target output
vectors, (v0, v̄L), we seek to find the optimal W � and b�,
∀� ∈ [0, L − 1], such that the neural network minimizes the
root-mean-squared loss between the neural network predic-
tions vL and targets v̄L. In this work, the network predicts
LDOS at each grid point using the SNAP fingerprint as in-
put. The specific feed-forward networks we consider have
input fingerprint vectors of length 91 scalar values and output
LDOS vectors of length 250 scalar values. The grid points are
defined on a uniform 200 × 200 × 200 Cartesian grid, or 8
million total points per snapshot.

Neural network models are created in two stages, training
and validation, using separate training and validation data
sets. The training phase performs gradient-based updates, or
backpropagation [92], to W � and b� using a small subset, or
minibatch, of column vectors in the training data set. Steps
taken in the direction of the gradient are weighted by a
user-provided learning rate (LR). Successive updates incre-
mentally optimize the neural network. An epoch is one full
pass through the training data set for the training phase. After
each epoch, we perform the validation phase, which is an
evaluation of the current model’s accuracy on a validation data
set. The training process continues alternating between train-
ing and validation phases until an early stopping termination

criterion [93] is satisfied. Early stopping terminates the learn-
ing process when the root-mean-squared loss on the validation
data set does not decrease for a successive number of epochs,
or patience count. Increasing validation loss indicates that the
model is starting to over-fit the training data set and will have
worse generalization performance if the training continues.

Next, the hyperparameters, which determine the neural
network architecture and optimizer specifications, must be
optimized to maximize model accuracy (and minimize loss).
Due to the limited throughput, we make the assumption that
all hyperparameters are independent. Independence allows the
hyperparameter tuning to optimize one parameter at a time,
greatly reducing the total rounds of training. We then ensure
local optimality of the hyperparameter minimizer by direct
search [94].

The ML-DFT model uses as input vectors the SNAP
fingerprints defined at real-space grid points. The target
output vectors of the ML-DFT model are the QUANTUM

ESPRESSO–generated LDOS vectors defined at the correspond-
ing real-space grid points. Importantly, each fingerprint and
LDOS vector is treated as independent of any other grid point.
Further, the training data may include multiple aluminum
snapshots, in which case the number of grid points is equal to
the number of snapshots times the number of grid points per
snapshot. No distinction is made in the model by grid points
belonging to separate snapshots. The validation snapshot is
always a full set of grid points from a single snapshot.

For inference, all remaining snapshots are used to test
the generalization of the ML-DFT model. Consider a single
snapshot where we wish to predict the total energy. At each
grid point, a SNAP fingerprint vector is used to predict an
LDOS vector. Using the steps in Sec. II D and Appendix A,
the full set of ML-predicted LDOS vectors produce a total
energy.

In summary, the ML-DFT training workflow is provided
in Table I. The ML-DFT models are built on top of the
PyTorch [95] framework and the NumPy [96] and Horovod
[97] packages. PyTorch provides the necessary infrastructure
for neural network construction and efficiently running the
training calculations on GPU machines. The NumPy package
contains many performant tools for manipulating tensor data,
and the Horovod package enables data-parallel training for
MPI-based scalability.

III. RESULTS

The difficulty of predicting the electronic structure of ma-
terials is strongly dependent on the diversity of local atomic
configurations considered in training and testing. During the
development stage of this work we focused on the relatively
simple case of solid aluminum at ambient temperature and
density (298 K, 2.699 g/cm3). We then turned our attention
to the more challenging case of solid and liquid aluminum
near the melting point (933 K, 2.699 g/cm3) and we present
results for that case here.

Specifically, we train and tune a collection of unique ML-
DFT models for each temperature. In the 298 K case, we train
a single model using one snapshot, validate on one snapshot,
and test on eight snapshots. At 933 K, we train eight models
with different combinations of liquid and solid snapshots as
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TABLE I. ML-DFT model training workflow.

(1) Training data generation
(i) Run MD simulation to obtain atomic configurations at a specific temperature and density.
(ii) Run QUANTUM ESPRESSO DFT calculation on the atomic configurations.
(iii) Perform QUANTUM ESPRESSO postprocessing of the Kohn-Sham orbitals to obtain the LDOS on the Cartesian grid.
(iv) Generate SNAP fingerprints on a uniform Cartesian grid from the atomic configurations.

(2) ML-DFT model training
(i) Training and validation set, ML model, and initial hyperparameter selection.
(ii) Normalization and standardization of the training data.
(iii) Train ML-DFT model to convergence.
(iv) Adjust hyperparameters for increased accuracy and repeat training for a new model.

(3) ML-DFT analysis
(i) Evaluate unseen test snapshots on trained and tuned ML-DFT models.
(ii) Calculate quantities of interest from the LDOS predicted by ML-DFT.

the training set. The first three cases use four training snap-
shots with either four liquid snapshots, four solid snapshots,
or two liquid and two solid snapshots. The second three cases,
similarly, use eight training snapshots with either eight liquid,
eight solid, or four liquid and four solid snapshots. Finally,
there are two models that use 8 or 12 training snapshots and
a validation set that includes both liquid and solid snapshots.
Each 933 K model created is then tested on the remaining
933 K snapshots. In order to study the variability in LDOS
between the three groups (298 K solid, 933 K solid, and 933 K
liquid), we reduce the dimensionality of the LDOS data sets
and study them using principal component analysis (PCA).

Further technical details on fingerprint generation, neural
network architecture, ML training, optimization of hyper-
parameters, and the variability in LDOS outputs are given
in Appendix B. We provide results for the ambient case in
Appendix C.

A. Local density of states predictions for solid and liquid
aluminum from ML-DFT

First we assess the accuracy of ML-DFT for spatially
resolved and energy-resolved quantities. To this end, Fig. 3
illustrates the DOS and its errors in the relevant energy range

from −5 to 10 eV, where the Fermi energy is at 7.689 eV in the
liquid and 7.750 eV in the solid phase. The DOS prediction is
computed from Eq. (13) using the ML-DFT predicted LDOS.
In both liquid (left) and solid (right) phases, the ML-DFT
model reproduces the DOS to very high accuracy. The illus-
tration of the errors (bottom panels) confirms the ML-DFT
model’s accuracy and shows the absence of any unwanted
error cancellation over the energy grid. Figure 3 also shows
that the Van Hove singularities [82] at and above ≈5 eV,
which show up strongly in the 298 K DOS in Fig. 2, are
noticeably smeared out by thermal fluctuations in the atomic
positions in the 933 K solid-phase DOS and essentially gone
in the 933 K liquid. Figure 4 shows the DFT target electronic
density versus the predicted electronic density for both liquid
(left) and solid (right) phases at each point on the Cartesian
grid. The frequency of the predicted results is indicated by
the marker color. The ML-DFT prediction is computed from
Eq. (10) using the ML-DFT predicted LDOS. The alignments
of the predictions along the diagonal exhibit small standard
deviations for the liquid and solid test snapshot. It illus-
trates how well the ML-DFT model reproduces the electronic
density in a systematic manner with high accuracy, despite the
fact that the electronic structure is qualitatively very distinct
in the solid and liquid phases of aluminum. Furthermore,

FIG. 3. Liquid (left) and solid (right) test snapshot DOS comparisons for the ML-DFT model trained on six liquid and six solid snapshots
at 933 K. The vertical lines indicate the Fermi energy which is 7.689 eV for the liquid snapshot and 7.750 eV for the solid snapshot.
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FIG. 4. Liquid (left) and solid (right) test snapshot electron density comparisons for the ML-DFT model trained on six liquid and six solid
snapshots at 933 K. The maximum absolute errors for the liquid and solid test snapshot are 0.00601 e−/Å3 and 0.00254 e−/Å3, respectively;
mean absolute errors are 0.000284 e−/Å3 and 0.000167 e−/Å3, respectively; and mean absolute percentage errors are 1.12% and 0.66%,
respectively. Marker color indicates the frequency.

maximum absolute errors for the liquid and solid test snap-
shot are 0.00601 e−/Å3 and 0.00254 e−/Å3, respectively.
The mean absolute errors are an order of magnitude lower at
0.000284 e−/Å3 and 0.000167 e−/Å3, respectively. The mean
absolute percentage errors are 1.12% and 0.66%, respectively.

B. Single-phase solid and liquid aluminum ML-DFT models

We demonstrate the errors in total energy and band energy
on models trained on data from the same phase, either solid
or liquid. Figure 5 and Table II show these results. When
training, validation, and test sets are all from the same phase,
either solid or liquid, the overall ML-DFT accuracy is very
high. The mean absolute error in the total energy for the
eight-snapshot liquid model is 9.31 meV/atom. Moreover, the
eight-snapshot solid model has a mean absolute error of 15.71
meV/atom. In both cases, the main contribution to the error is
due to the band energy error which is 5.21 meV/atom in the

FIG. 5. Band energy comparisons for ML-DFT models trained
on either eight liquid or eight solid snapshots at 933 K. The red line
divides the ten liquid (left) and ten solid (right) snapshots consid-
ered. The ML-Liquid training snapshots are snapshots 0–7 and the
validation snapshot is snapshot 8. The ML-Solid training snapshots
are snapshots 10–17 and the validation snapshot is snapshot 18.

liquid test set and 13.37 meV/atom in the solid. Both models
have a similar mean absolute percentage error, 0.01% in the
liquid model and 0.03% in the solid model.

However, training on a single phase results in poor pre-
dictive accuracy for the phase unseen in training, as is shown
clearly in Fig. 5 and Table II. For the ML-DFT model trained
on eight liquid snapshots, the mean absolute total energy
error in the solid test set rises to 111.41 meV/atom. For the
model trained on eight solid snapshots, the mean absolute total
energy error in the liquid test set rises to 123.29 meV/atom.
Again, the major contribution to the error stems from the band
energy which is 113.40 meV/atom in the solid test set and
139.96 meV/atom in the liquid.

C. Hybrid liquid-solid aluminum ML-DFT models

In Fig. 6 and Table II we demonstrate our central result,
a single ML-DFT model that is capable of yielding accurate
results for both liquid and solid aluminum at a temperature of
933 K with accuracy sufficient for meaningful atomistic simu-
lations of electronic, thermodynamic, and kinetic behavior of
materials. Using the hyperparameters listed in Table III, the
most accurate dual-phase hybrid ML-DFT model was trained
using six liquid and six solid snapshots (snapshots 0–5 and
10-15) as the training data set and one solid and one liquid
snapshot (snapshots 6 and 16) as a validation set. This ML-
DFT model achieves state-of-the-art ML accuracy for all test
snapshots considered.

Overall, Table II summarizes the total energy [Eq. (9)] and
band energy [Eq. (11)] errors for each of the eight ML-DFT
models. Training and validation sets determine the specific
ML-DFT model and the test sets are used to measure the
model’s ability to generalize to liquid or solid phase snap-
shots.

Most notably, our overall most accurate hybrid ML-DFT
model predicts the total energy over both solid and liquid
phases with a mean absolute error of 13.04 meV/atom in the
solid test set and 31.60 meV/atom in the liquid test set, as
illustrated in Fig. 6 and listed in bold in the last two rows of
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TABLE II. Band energy and total energy test errors from different ML-DFT models inferred for aluminum snapshots at 933 K. The training
set consists of snapshots in liquid or solid states. When trained, validated, and tested on the same phase, either liquid (highlighted in blue) or
solid (highlighted in red), the overall ML-DFT accuracy is very high. The training on a single phase results in poor predictive accuracy for
the phase unseen in training, as expected. In contrast, our main result, the hybrid ML-DFT model, predicts the total energy over both solid
and liquid phases with accuracy sufficient for meaningful atomistic simulations (highlighted in green). Maximum Absolute errors (Max. AE),
mean absolute error (MAE) and mean absolute percentage error (MAPE) are shown.

Band energy Total energy

Training set Max. AE MAE MAPE Max. AE MAE MAPE
(Validation set) Test set (meV/atom) (meV/atom) (%) (meV/atom) (meV/atom) (%)

4 liquid 5 liquid 13.57 9.80 0.0994 12.39 7.13 0.0113
(1 liquid) 10 solid 113.50 100.84 1.0067 106.62 91.54 0.1452
8 liquid 1 liquid 5.21 5.21 0.0529 9.31 9.31 0.0148
(1 liquid) 10 solid 126.69 113.40 1.1320 125.07 111.41 0.1768
4 solid 10 liquid 142.63 126.99 1.2875 142.95 126.78 0.2015
(1 solid) 5 solid 13.15 8.44 0.0843 14.45 9.81 0.0156
8 solid 10 liquid 158.25 139.96 1.4190 153.45 123.29 0.1959
(1 solid) 1 solid 13.37 13.37 0.1336 15.71 15.71 0.0249
2 liquid + 2 solid 8 liquid 73.76 62.14 0.6299 57.34 48.47 0.0770
(1 solid) 7 solid 37.26 28.22 0.2816 41.53 29.50 0.0468
4 liquid + 4 solid 6 liquid 67.28 58.23 0.5906 61.29 51.37 0.0816
(1 solid) 5 solid 25.33 16.16 0.1613 26.98 15.11 0.0240
4 liquid + 4 solid 5 liquid 36.84 28.54 0.2896 28.39 21.33 0.0339
(1 liquid + 1 solid) 5 solid 44.94 37.19 0.3711 47.30 38.57 0.0612
6 liquid + 6 solid 3 liquid 21.34 17.11 0.1737 15.76 13.04 0.0207
(1 liquid + 1 solid) 3 solid 39.33 33.56 0.3354 39.23 31.60 0.0501

Table II. In comparison with the single-phase ML-DFT mod-
els in Fig. 5, the hybrid ML-DFT model is able to generalize
to both liquid and solid snapshots. This is adequate to resolve
the solid-liquid total energy difference (110 meV/atom) and
is approaching the 5 meV/atom accuracy of the best ML-IAPs
used in large-scale MD simulations [98].

Furthermore, the sensitivity of ML-DFT towards the vol-
ume of training data is also assessed in Table II. Reducing the
training data set to only two liquid and two solid snapshots
degrades the accuracy for both the band and total energies as
expected. While the mean absolute error of 29.50 meV/atom
in the solid phase is about the same as in the larger training set,
the error in the liquid phase rises to 48.47 meV/atom. This
emphasizes the fact that a desired accuracy in the ML-DFT

model can be approached systematically by increasing the
volume of training data.

Interestingly, in Fig. 6, the training snapshots do not nec-
essarily have the lowest error as might be expected. The band
and total energy errors for training snapshot 0, for example,
are slightly larger than the errors for test snapshots 8 and
9. For the solid snapshots, both training snapshots (10–15)
and test snapshots (17–19) have very similar errors in both
the band energy and total energy. Similar observations can
be made for Fig. 5. A greater number of liquid and solid test
snapshots will only further refine the statistics of the ML-DFT
model accuracy. Future investigations will include both sensi-
tivity analysis and thorough validation of the ML-DFT model,
particularly in the context of large-scale MD simulations.

TABLE III. Optimized hyperparameters for the 298 K and 933 K models.

Model parameter 298 K model 933 K models

Fingerprint length 91 91
Fingerprint scaling Element-wise standardization Element-wise standardization
LDOS length 250 250
LDOS scaling Max normalization Max normalization
Optimizer Adam Adam
Minibatch size 1000 1000
Learning rate (LR) 1 × 10−5 5 × 10−5

LR schedule 4 epochs 4 epochs
Early stopping 8 epochs 8 epochs
Max layer width 800 4000
Layers 5 5
Activation function LeakyReLU LeakyReLU
Total weights 1.62 × 106 3.34 × 107
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FIG. 6. Band energy (left) and total energy (right) comparisons for the ML-DFT model trained on six liquid and six solid snapshots at
933 K. The red line in each figure divides the ten liquid (left) and ten solid (right) snapshots considered. The ML-Hybrid training snapshots
are snapshots 0–5 and 10–15 and the validation snapshots are snapshots 6 and 16.

IV. DISCUSSION

In the present work, we establish an ML framework that
eliminates the most computationally demanding and poorly
scaling components of DFT calculations. Once trained with
DFT results for similar systems, it can predict many of the
key results of a DFT calculation, including the LDOS, DOS,
density, band energy, and total energy, with good accuracy.
After training, the only input required by the model is the
atomic configuration, i.e., the positions and chemical iden-
tities of atoms. We have been able to train a single model
that accurately represents both solid and liquid properties of
aluminum. The ML-DFT model is distinct from previous ML
methodologies, as it is centered on materials modeling in
support of accurate MD-based predictions for the evolution of
both electronic and atomic properties. We represent materials
descriptors (such as the LDOS) on a regular grid as opposed to
basis functions [49] and use a specific formulation in terms of
the LDOS to reconstruct the total energy. Our approach also
generalizes to nonzero electronic temperatures in a straight-
forward way, which allows it to be easily applied to materials
at extreme conditions.

Furthermore, the very recently published work [52]
stopped short of demonstrating that the ML-predicted LDOS
can be utilized to accurately calculate energies and forces
needed to enable MD calculations. Further work on comput-
ing accurate forces of materials under elevated temperatures
and pressures will follow, as well as a detailed exploration
of ML-DFT’s accuracy when scaled to O(104) atoms, well
beyond the reach of standard DFT.

ACKNOWLEDGMENTS

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective tech-
nical results and analysis. Any subjective views or opinions
that might be expressed in the paper do not necessarily rep-
resent the views of the U.S. Department of Energy or the

U.S. Government. This work was partly funded by the Cen-
ter for Advanced Systems Understanding (CASUS) which is
financed by the German Federal Ministry of Education and
Research (BMBF) and by the Saxon State Ministry for Sci-
ence, Art, and Tourism (SMWK) with tax funds on the basis of
the budget approved by the Saxon State Parliament. We thank
Warren Davis and Joshua Rackers for helpful conversations
and Mitchell Wood for visualizing the SNAP fingerprint grid.

APPENDIX A: ANALYTICAL EVALUATION OF DERIVED
QUANTITIES FROM THE LOCAL DENSITY OF STATES

Consider the numerically challenging integral in Eq. (17).
When g = f β (ε), this integral gives the electronic density and
the total number of electrons, when g = ε f β (ε) the result is
the band energy, and when g = gS ≡ β−1{ f β (ε) log[ f β (ε)] +
[1 − f β (ε)] log[1 − f β (ε)]} we obtain the entropy contribu-
tion to the energy. When D(ε) = D̄[D](ε; R), Eq. (17) results
in a scalar quantity, and we can evaluate the total number of
electrons, the band energy, or the entropy contribution to the
total energy. Alternatively, when D(ε) = D(ε, r; R), Eq. (17)
results in a field that depends on the position r with the
electronic density being the most important result.

Our ML model gives us D(εi ) evaluated on a grid of energy
values εi. We will extend D(εi) to a D(ε) defined for all ε

between ε0 and εN by linear interpolation. This allows us to
perform the required integrals analytically. It is necessary to
treat these integrals carefully because f β (ε) changes rapidly
compared to D(ε) for many systems of interest. In particular,
f β (ε) changes from one to zero over a few kBT , while the
spacing of the εi grid is several times kBT at room tempera-
ture. In order to evaluate these integrals analytically, we can
use the representation of f β (ε) and gS (ε) in terms of the
polylogarithm special functions Lin(x),

f β (x) = 1 + Li0(−ex ), (A1)

gS (x) = β−1[−x Li0(−ex ) + Li1(−ex )], (A2)

where x = β(ε − μ). It is useful to define a series of integrals
giving moments of f β and gS with respect to ε − μ and evalu-
ate these integrals using integration by parts and the properties
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FIG. 7. Variance of the first and second principal component
scores for each group of snapshots, 298 K solids, 933 K solids,
and 933 K liquids. Each group contains ten snapshots. The boxes
enclose the second and third quartiles, and the whiskers indicate the
minimum and maximum values.

of Lin(x). In particular, the relationship

d Lin(−ex )

dx
= Lin-1(−ex ) (A3)

is useful. The required integrals are

F0 ≡ β−1
∫

dx f β (x)

= β−1[x + Li1(−ex )], (A4)

F1 ≡ β−2
∫

dxx f (x)

= β−2

[
x2

2
+ x Li1(−ex ) − Li2(−ex )

]
, (A5)

F2 ≡ β−3
∫

dxx2 f (x)

= β−3

[
x3

3
+ x2 Li1(−ex ) − 2x Li2(−ex ) + 2 Li3(−ex )

]
,

(A6)

S0 ≡ β−1
∫

dxgS (x)

= β−2[−x Li1(−ex ) + 2 Li2(−ex )], (A7)

S1 ≡ β−2
∫

dxxgS (x)

= β−3[−x2 Li1(−ex ) + 3x Li2(−ex ) − 3 Li3(−ex )].

(A8)

Quantities of interest with the form of Eq. (17) can then be
evaluated as a weighted sum over the DOS or LDOS evaluated
at the energy grid points

I =
∑

i

wiD(εi), (A9)

where the weights wi are given by

wi = [I0(εi+1) − I0(εi )]

[
1 + εi − μ

εi+1 − εi

]

+ [I0(εi ) − I0(εi−1)]

[
1 − εi − μ

εi − εi−1

]

− I1(εi+1) − I1(εi )

εi+1 − εi
+ I1(εi) − I1(εi−1)

εi − εi−1
. (A10)

When D(ε) = D̄[D](ε; R), I0 = F0, and I1 = F1, we obtain
I = Ne, the total number of electrons in the system. The Fermi
level μ is then adjusted until Ne is equal to the total number of
valence electrons in the system (i.e., the system is charge neu-
tral). When I0 = F1 and I1 = F2, we obtain I = Eb[D] − μNe,
and we can easily obtain the band energy Eb[D] by adding
μNe. When I0 = S0 and I1 = S1, we obtain I = −β−1SS[D],
the entropy contribution to the energy. Finally, when D(ε) =
D(ε, r; R), I0 = F0, and I1 = F1, we obtain n[D](r), the elec-
tronic density. Given these quantities, it is straightforward to
evaluate the total (free) energy using Eq. (9) and the standard
methods of DFT.

TABLE IV. Timings in different steps contributing to the total evaluation of KS-DFT quantities based on neural network inference. The
reported times are averaged over the inference of ten snapshots. The focus of this work which is to infer LDOS using the ML inference is
shown in bold.

Time (s), Time (s),
Step 298 K model 933 K model Optimization notes

Generate fingerprint vectors from atomic positions 2909.75 2908.12 LAMMPS used only in serial mode, speedup
possible by using parallelization

Load modules 0.36 0.36
Infer LDOS from neural network 18.72 53.94 Only a single GPU was used
Integrate LDOS to DOS 1.57 1.44
Determine Fermi level 2.23 2.40
Integrate LDOS to density 1282.39 1277.66 Integration unoptimized and in serial
Evaluate total energy contributions from DOS 0.96 0.99
Evaluate total energy contributions from density 87.50 87.17 QUANTUM ESPRESSO used only in serial mode,

speedup possible by using parallelization
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TABLE V. Band energy and total energy test errors from the ML-DFT models inferred for aluminum snapshots at 298 K. Maximum
Absolute errors (Max. AE), and mean absolute error (MAE) are shown.

Band energy Total energy

Training set Max. AE MAE Max. AE MAE
(validation set) Test set (meV/atom) (meV/atom) (meV/atom) (meV/atom)

1 solid 8 solid 3.82 2.48 5.60 3.07
(1 solid)

APPENDIX B: MACHINE-LEARNING MODEL DETAILS

The 298 K systems include ten snapshots of SNAP finger-
print and QUANTUM ESPRESSO LDOS data. At 933 K, there
are ten snapshots of liquid aluminum and ten snapshots of
solid aluminum. For the fingerprints and LDOS data, each
snapshot uses the same uniform Cartesian real-space grid
(200 × 200 × 200 = 8 × 106 points). Each snapshot, includ-
ing both SNAP fingerprint and LDOS data, is 20.7 gigabytes.

We observe that the 933 K ML-DFT models require a
greater amount of training data. Furthermore, the optimized
298 K model requires approximately 1.6 million weights,
whereas the 933 K models require 33.4 million weights. The
larger training set and greater model complexity can be at-
tributed to greater LDOS variability at the higher temperature.

To facilitate comparing LDOS variability between the
three groups (298 K solid, 933 K solid, and 933 K liquid), the
dimensionality of the LDOS data sets was reduced using PCA.
Because of the large amount of data (30 × 8 × 106 samples
by 250 energy levels), PCA was performed incrementally
using the scikit-learn PYTHON package [99]. The resulting
first principal component explained approximately 81.7%
of the variance in the LDOS, and the second explained an
additional 7.9%.

The variance of the first two principal component scores
was calculated for each of the 30 snapshots. Figure 7 shows
these variances grouped by snapshot temperature and phase.
The 933 K liquid snapshots are seen to possess the highest
variance, followed by the 933 K solid snapshots. The 298 K
solid snapshots have the lowest variance.

We perform a sequence of hyperparameter tunings once for
each temperature using the optimization strategy described
in Sec. II F. The final 933 K models are trained using the
same hyperparameters. Further accuracy may be obtainable
once training throughput is increased and multiple, indepen-
dent hyperparameter optimizations are made possible. The
optimized ML-DFT model parameters are given in Table III.
Scaling of the input and output data prior to training is
critical to ML-DFT model accuracy. We perform an element-
wise standardization to mean zero and standard deviation
1 for the fingerprint inputs. For example, we standardize
the first scalar of all fingerprint vectors in the training set,
then we standardize the second scalar of all fingerprints,
and so on. For the LDOS outputs, we perform a normaliza-
tion using the maximum LDOS value of the entire training
data set.

The hyperparameter convergence for the 298 K and 933 K
models required 48 and 23 training iterations, respectively.
Once the 298 K case was optimized, using those optimized
hyperparameters as the 933 K optimization’s initial iterate
greatly accelerated convergence resulting in fewer training
iterations. Within an iteration, the 298 K model requires 93
epochs. For the eight-snapshot 933 K cases, the single-phase
models, either liquid or solid, required just 39–50 epochs to
converge. Comparatively, the final hybrid liquid-solid model
required 101 epochs to converge.

Due to the large quantity of training data in the 933 K case
(12 training + 2 validation snapshot × 20.7 gigabytes), the
required training strategy for single-node machines is to lazily

FIG. 8. Band energy (left) and total energy (right) comparisons for the ML-DFT model trained on one solid snapshot at 298 K. The training
and validation snapshot are snapshot 0 and 1, respectively.
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FIG. 9. DOS comparison for a test snapshot using the ML-DFT model trained on snapshots at 298 K. The vertical line indicates the Fermi
energy which is 7.797 eV.

load the snapshots into memory each epoch. This strategy is
needed for machines where the CPU memory is insufficient
and allows ML-DFT to train on any arbitrary number of
snapshots. All ML-DFT models have been trained on a single
node with one NVIDIA Tesla GPU. The 298 K network, with
only one training and one validation snapshot, does not need
to lazily load snapshots, and so each epoch requires approx-
imately 151 s. For the 933 K networks, the total runtime of
a single epoch with 12 training snapshots is approximately
76 min. With a sufficient number of nodes, we are able to stage
each training snapshot on an independent node to alleviate
the lazy loading data movement penalty completely. Future
performance improvements to the workflow will target this
bottleneck chiefly.

Finally, ML-DFT inference requires only 54 s to obtain
a full grid of LDOS predictions for one snapshot. A full
overview of the computational time required for each individ-
ual step of inference is given in Table IV. Apart from neural
network inference, the major time contributions to overall in-
ference time stem from the calculation of fingerprint vectors,
LDOS integration, and evaluation of density dependent terms.
Parallelization and/or optimization is possible for these cal-
culation steps, with drastic speedups to be expected. Once the
cost of creating a ML-DFT model is sufficiently amortized,
the computational speedup relative to standard DFT becomes
quite stark.

APPENDIX C: SOLID ALUMINUM AT AMBIENT
TEMPERATURE AND PRESSURE

We consider modeling of the ambient temperature and
pressure aluminum systems as a base case for all future work
and experiments. Future investigations of the grid-based ML-
DFT model, such as an extensive exploration of alternative
ML models, fingerprints, LDOS formulations, and nonalu-
minum systems, should use this baseline in terms of ML
accuracy and computational performance.

In Table V and Fig. 8, we demonstrate that the 298 K model
is able to achieve the highest and most consistent accuracy
of all models considered in this work. Using a single train-
ing snapshot and a single validation snapshot, the ML-DFT
model is able to achieve a mean absolute band energy error
of 2.48 meV/atom and mean absolute total energy error of
3.07 meV/atom. Furthermore, the 298 K model surpasses
the 5 meV/atom accuracy for the most accurate ML-IAPs
in large-scale MD simulations [98]. Figure 9 illustrates the
predicted DOS in comparison to the reference DOS at 298 K.
It confirms our model approximates the DOS with high accu-
racy. Figure 9 also shows how well the ML model resolves the
van Hove singularities in the DOS which are more pronounced
at 298 K than at 933 K. We believe this confirms the high
accuracy achieved by our ML model. The low variability, seen
in Fig. 7, is more easily exploited by ML-DFT’s grid-based
approach relative to the 933 K cases.
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