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The bulk properties of nodal-line materials have been an important research topic in recent years. In this
paper, we study the orbital magnetic susceptibility and the Hall conductivity of nodal-line materials using the
formalism with thermal Green’s functions and find characteristic singular behaviors of them. It is shown that,
in the vicinity of the gapless nodal line, the orbital magnetic susceptibility shows a δ-function singularity and
the Hall conductivity shows a step-function behavior in their chemical potential dependencies. Furthermore,
these singular behaviors are found to show strong field-angle dependencies corresponding to the orientation of
the nodal line in the momentum space. These singular behaviors and strong angle dependencies will give clear
evidence for the presence of the nodal line and its orientation and can be used to experimentally detect nodal-line
materials.
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I. INTRODUCTION

Topological semimetals in three-dimensional space have
been extensively studied both theoretically and experimen-
tally in the field of topological materials science [1,2]. They
consist of mainly three kinds of phases: Weyl semimetals
[3–10], Dirac semimetals [11–18], and nodal-line semimetals
[19–36]. Weyl semimetals have gapless points (Weyl points)
in the momentum space and linear dispersion around the
gapless points. These gapless points are monopoles of the
Berry curvature and always appear in pairs with opposite
chirality. Dirac semimetals also have gapless points (Dirac
points) with linear dispersion, but the linear dispersive bands
are doubly degenerated, like two overlapping Weyl points.
In this case, the Dirac points must exist on high-symmetry
lines in the momentum space and they are protected by some
crystalline symmetry such as rotational symmetry. The third
kind of the topological semimetals or the nodal-line semimet-
als that we study in this paper differ from Weyl or Dirac
semimetals in that the gapless points are connected to a line
(nodal line) in the three-dimensional momentum space. This
nodal line is also protected by a crystalline symmetry or,
if spin-orbit interactions are negligible, by time-reversal and
space-inversion symmetries.

To confirm topological nature, angle-resolved photo-
emission spectroscopy (ARPES) experiments have been a
strong tool, which enables us to detect the surface states char-
acteristic of the topological materials. For example, the Fermi
arc [7,37–39], which is one of the characteristic phenom-
ena in Weyl semimetals, has been observed experimentally.
The presence of the Fermi arc is topologically protected
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by the chirality of Weyl points. In contrast, there are no
topologically protected surface states in the nodal-line
semimetals in the strict sense. Although the presence of drum-
head surface states [19,40,41] has been reported, they are
not topologically protected [26,42,43]. The symmetries that
guarantee the nodal lines are generally no longer present on
the surface, and thus the drumhead surface states can depend
on the surface configuration and the surface parameters, and
even can be pushed out to the bulk spectrum by tuning the
surface parameters. Therefore, the bulk properties for detect-
ing the nodal lines, which do not rely on the surface states, are
strongly demanded.

Quantum oscillations [28,44–46] such as the Shubnikov-de
Haas (SdH) oscillations are a good experimental tool for this
purpose. By observing the SdH oscillation and its phase offset,
we can determine the dimensionality of the Fermi surface and
the pocket type, usual parabolic dispersive pocket or singular
linear dispersive pocket. The phase offsets are closely related
to the formation of the Landau level in the high-magnetic
field region [47,48]. Although a detailed analysis is gener-
ally required to explicitly know the bulk dispersion [49–51],
the analysis of quantum oscillations and their field angular
dependence is a powerful tool for investigating the features
of topological semimetals such as the structure of the Fermi
surface and the structure of gapless points [28,44].

In the present paper, as alternative good bulk measure-
ments, we study orbital magnetic susceptibility χ and Hall
conductivity σxy, which enable us to confirm the existence of
the nodal lines and to determine their directions in the momen-
tum space. It is expected that χ and σxy will have characteristic
angle dependencies: They will behave quite differently when
the magnetic field is perpendicular to the plane formed by the
nodal-line ring and when the magnetic field is parallel to the
plane.
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FIG. 1. (a) Coordinate system used in the present paper and
nodal line (red line) in the three-dimensional momentum space. The
magnetic field B is assumed to be parallel to the kz axis, and the nodal
line is lying on the gray plane. (b) Band dispersion on the kx-k‖ plane
when k⊥ = 0. The nodal line (red line) is the intersection between
the two parabolic bands (red and blue bands).

There have been some theoretical studies on the mag-
netic susceptibility for the nodal-line semimetals [35,52–54].
However, the previous calculations assumed the local Weyl-
type linear dispersion of two-dimensional momentum space
at each point on the nodal line and obtained the total magnetic
susceptibility approximately by integrating the local suscepti-
bility along the nodal line. As a result, a δ-function singularity
has been observed when the magnetic field is parallel to the
nodal line. In the present paper, we obtain χ exactly using
the formalism with thermal Green’s functions. Our result is
consistent with the previous studies concerning the δ-function
singularity, but we find that there are additional contribu-
tions in χ that is, interestingly, very similar to the orbital
magnetic susceptibility in three-dimensional massive Dirac
electron systems.

The Hall conductivity in the weak magnetic field has been
less understood compared with the magnetic susceptibility
or the quantum oscillations. Only recently the quantum Hall
effect due to the drumhead surface states has been discussed
[55,56]. We will show that the Hall conductivity also demon-
strates a characteristic chemical potential dependence in the
vicinity of the energy of the Dirac point, depending on the
magnetic field direction.

This paper is organized as follows: In Sec. II, we intro-
duce a model Hamiltonian to describe nodal-line materials.
In Sec. III, we calculate the orbital magnetic susceptibility
and its field-angle dependence. In Sec. IV, we calculate the
Hall conductivity in weak magnetic fields and its field-angle
dependence. In Sec. V, we give interpretations to the charac-
teristic behavior of the obtained results by comparing them
with the case of 2D Dirac electron systems.

II. HAMILTONIAN OF NODAL-LINE MATERIALS

In this section, we introduce a model Hamiltonian to de-
scribe nodal-line materials. We assume that the spin-orbit
coupling is negligible and construct a k · p perturbation
Hamiltonian, which hosts a ring-shape nodal line. The sim-
plest Hamiltonian is given with two orbitals and the nodal line
lies in a two-dimensional plane in the momentum space as
shown in Fig. 1. We fix the magnetic field in the z direction

and assume that the angle between the kz axis and the normal
vector of the plane formed by the nodal line is φ. Then, the
Hamiltonian is given as

Hk = (
ak2

x + bk2
‖ − �

)
σz + νk⊥σx, (1)

where a, b, ν, and � are positive constants, σx and σz are Pauli
matrices, and k‖ and k⊥ are defined as(

k‖
k⊥

)
=
(

cos φ sin φ

− sin φ cos φ

)(
ky

kz

)
. (2)

The eigenvalues of this Hamiltonian are

E± = ±
√(

ak2
x + bk2

‖ − �
)2 + ν2k2

⊥ = ±εk. (3)

Gapless points appear on the points where E+ = E− is satis-
fied, whose conditions are given by k⊥ = 0 and ak2

x + bk2
‖ =

�. A ring-shape nodal line exists on the two-dimensional
plane with k⊥ = 0 as shown in Fig. 1.

The present model (1) is an extension of the previous
model [20–22,41] with arbitrary angles relative to the mag-
netic field. It has been proposed for a low-energy effective
Hamiltonian in several materials such as Cu3ZnN [21], Ca3P2

[41], TaTlSe2 [40], and CaAgX (X=P, As) [24,32].
In the following sections, we calculate the orbital magnetic

susceptibility χ and the Hall conductivity σxy analytically
using the thermal Green’s functions. The thermal Green’s
function of the model (1) is obtained as

G(k, iεn) = [iεn − Hk + μ]−1

= 1

D
{(iεn + μ)σ0 + Akσz + Bkσx}, (4)

in a matrix form, where μ is the chemical potential, σ0 is the
2 × 2 identity matrix, Ak = ak2

x + bk2
‖ − �, Bk = νk⊥, D =

(iεn + μ)2 − A2
k − B2

k, and εn is the Matsubara frequency,
εn = (2n + 1)πkBT (n ∈ Z). The energy eigenvalues are now

written as ±εk = ±
√

A2
k + B2

k.

III. ORBITAL MAGNETIC SUSCEPTIBILITY

The research of orbital magnetic susceptibility has a long
history since Landau and Peierls [57–65]. In particular, the
problem of the large diamagnetism in Bi1−xSbx was resolved
by Fukuyama and Kubo [59] by considering the interband
effect of the magnetic field. Then Fukuyama developed a
general formula of the orbital susceptibility per volume [60]:

χ = e2

h̄2

kBT

V

∑
n

∑
k

Tr[GγxGγyGγxGγy], (5)

where the spin degree of freedom has been included, e is the
electron charge (e < 0), V is the volume of the system, G :=
G(k, iεn) is an abbreviation of the thermal Green’s function,
and γx and γy are velocity operators in the x and y direction,
respectively. The Fukuyama’s formula (5) is quite general
and it has been applied to graphene [66], bismuth [67,68],
and the Kane-Mele model [69]. In particular, for graphene,
the δ-function singularity is reproduced, which was originally
found by McClure [70]. This δ-function singularity will be
used later. It is to be noted that, in contrast to the previous
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studies [52,53], it is not necessary to use the Landau levels,
which are not always obtained analytically.

When we apply the formula (5) to the present model, the
thermal Green’s function is given in Eq. (4) and the velocity
operators are given by

γx = ∂Hk

∂kx
= 2akxσz, (6)

γy = ∂Hk

∂ky
= 2bk‖ cos φσz − ν sin φσx. (7)

Note that ∂/∂ky = cos φ∂/∂k‖ − sin φ∂/∂k⊥.
By substituting Eqs. (4), (6), and (7) into Eq. (5), we find

that the orbital magnetic susceptibility becomes

χ = χ⊥ cos2 φ + χ‖ sin2 φ, (8)

with

χ⊥ = e2

h̄2 kBT
∑

n

√
ab

ν

∫
d p

(2π )3

32p2
x p2

‖
D2

×
(

1 + 8A2
p

D
+ 8A4

p

D2

)
, (9)

χ‖ = e2

h̄2 kBT
∑

n

√
a

b
ν

∫
d p

(2π )3

8p2
x

D2

(
− 1 + 8A2

p p2
⊥

D2

)
,

(10)

where px = √
akx, p‖ = √

bk‖, p⊥ = νk⊥, and now Ap =
p2

x + p2
‖ − �. The term proportional to sin φ cos φ has a k‖-

antisymmetric integrand and thus vanishes.
It is straightforward to perform the Matsubara summation

and the p integral in χ⊥ using cylindrical coordinates, p2 =
p2

x + p2
‖. At absolute zero (T = 0), we obtain

χ⊥ =
⎧⎨
⎩

− 1
6π2

e2

h̄2

√
ab�
ν

ln 2�
�

, |μ| � �,

− 1
6π2

e2

h̄2

√
ab�
ν

ln 2�

|μ|+
√

μ2−�2
, |μ| � �,

(11)

where � is a cut-off energy. The details of the derivation are
shown in Appendix A. We find that the orbital susceptibil-
ity is constant for |μ| � �, while its value decreases as |μ|
increases from |μ| = � as shown in Fig. 2. This chemical
potential dependence is the same as that of three-dimensional
Dirac electron such as bismuth [66,68,71].

Similarly, the orbital susceptibility χ‖ for T = 0 is calcu-
lated as follows:

χ‖ =
{− 1

12π2
e2

h̄2 ν
√ a

b ln
(

2�
�

)+ χ ′, |μ| � �,

− 1
12π2

e2

h̄2 ν
√ a

b ln 2�

|μ|+
√

μ2−�2
, |μ| � �,

(12)

with

χ ′ = − 1

3π

e2

h̄2 ν�

√
a

b
δ(μ). (13)

Figure 2 shows the obtained orbital magnetic susceptibility
as a function of chemical potential μ for several choices of
the angle φ (φ = π

2 , 5π
12 , · · · , π

12 , 0 from top to bottom). For
convenience, χ is normalized with

χu = − 1

12π2

e2

h̄2 ν

√
a

b
ln

(
2�

�

)
, (14)

FIG. 2. φ dependence of the orbital magnetic susceptibility. The
nodal-line orientations for each φ are shown in the inset.

which is the constant value of χ‖ in 0 < |μ|/� < 1. In the
inset, the corresponding nodal-line orientations are shown. In
particular, according to Eq. (8), the amplitude of the delta
function χ ′ at μ = 0 decreases as φ goes from π/2 (χ‖) to
0 (χ⊥). This strong angle dependence of the magnetic suscep-
tibility will give clear evidence for the presence of the nodal
line and its orientation.

At finite temperature, χ ′ shows a characteristic temperature
dependence:

χ ′ = − 1

12π

e2

h̄2 ν�

√
a

b

1

kBT

1

cosh2 μ

2kBT

, (15)

instead of the δ-function peak [see Eq. (A3)].
The singularity near μ = 0 is similar to that obtained

in the two-dimensional massless Dirac electron systems
[66,70,72,73], which will be discussed in detail in Sec. V. As
shown in Eqs. (11) and (12), there are additional contributions
in χ , which depend on the cut-off energy �. This behavior, in
particular the cut-off energy dependence, is exactly the same
as the orbital magnetic susceptibility in three-dimensional
massive Dirac electron systems [59,66]. The origin of this
behavior will be also discussed later.

IV. HALL CONDUCTIVITY

For studying the Hall conductivity, we use the microscopic
formalism from Refs. [74,75], in which the conductivity is
expressed using the retarded current-current correlation as

σxy = lim
ω→0

ie2

ω
�R

xy(ω), (16)

035113-3



TATEISHI, KÖNYE, MATSUURA, AND OGATA PHYSICAL REVIEW B 104, 035113 (2021)

In the linear order of the magnetic field B, �R
xy(ω) is obtained

by analytic continuation from [74,75]

�xy(iωλ) = − 2i|e|B kBT

h̄4V

∑
n,k

Tr[γxG+γyGγxGγyG

− γxG+γyG+γxG+γyG], (17)

where the spin degree of freedom has been included, G+ ≡
G(k, iεn + iωλ) and ωλ = 2πλkBT with λ being an integer is a
Matsubara frequency representing the external frequency. The
iωλ = h̄ω + iη substitution is made and the η → 0 limit is
taken at the end.

In the eigenstate basis the Hall conductivity can be ex-
pressed as

σxy = −2B
|e|3
h̄4V

∑
k

∑
a,b,c,d

γ x
daγ

y
abγ

x
bcγ

y
cdCabcd , (18)

Cabcd = − lim
ω→0

kBT

ω

∑
n

G+
a Gd (GbGc − G+

b G+
c ), (19)

where γ x
da represents the matrix element of γx between the dth

and ath band and the thermal Green’s function of the ath band
is given by

Ga(k, iεn) = 1

iεn − εa(k) + μ + i�a(k, iεn)
. (20)

For the transport properties, we need a finite scattering rate
�a(k, iεn), so that we use the eigenstate basis for σxy in
contrast to the case of χ in the previous section. In the
present model, we have only two bands and ε1(k) = −εk and
ε2(k) = εk. For the scattering rate we assume the simplest
approximation where

�a(k, ε) = sgn(Im(ε))�, (21)

where � is constant.

A. Weak-scattering limit

In the lowest order of the scattering rate (�) the Hall con-
ductivity can be expressed as [74,75] (in the weak-scattering

limit this is the same as the Hall conductivity expressed using
the Boltzmann transport theory)

σ B
xy = 2

|e|3τ 2B

h̄4V

∑
k

∂εk

∂kx

{
∂εk

∂kx

∂2εk

∂ky
2 − ∂εk

∂ky

∂2εk

∂kx∂ky

}

×{ f ′(εk) − f ′(−εk)}, (22)

where f (ε) is the Fermi distribution function defined by
f (ε) = 1/(e(ε−μ)/kBT + 1), and τ is the mean scattering time
(� = h̄/2τ ). The subleading-order term with respect to the
scattering rate is written in terms of the Berry curvature and
orbital magnetic moment, but it vanishes in the present time-
reversal symmetric case [75]. Note that, as is well known
in the case of graphene [66,76], this weak-scattering limit is
valid for |μ| � � because we will have contributions in the
order of �/μ in the small μ region. The effect of finite � in
the small μ region will be discussed in the next subsection.

Using εk =
√

A2
k + B2

k and ∂/∂ky = cos φ∂/∂k‖ −
sin φ∂/∂k⊥, the Hall conductivity becomes

σxy = σ B
xy⊥ cos2 φ + σ B

xy‖ sin2 φ, (23)
with

σ B
xy⊥ = 2

|e|3τ 2B

h̄4

√
ab

ν

∫
d p

(2π )3
{ f ′(εp) − f ′(−εp)}8p2

xA3
p

ε3
p

,

σ B
xy‖ = 2

|e|3τ 2B

h̄4

√
a

b
ν

∫
d p

(2π )3
{ f ′(εp) − f ′(−εp)}4p2

xA2
p

ε3
p

,

(24)

where εp =
√

A2
p + p2

⊥ . As in the orbital magnetic susceptibil-
ity in the previous section, the term proportional to sin φ cos φ

has a k‖-antisymmetric integrand and thus vanishes.
At zero temperature, f ′(εp) is explicitly written with the δ

functions as

−δ(εp − μ) = − μθ (μ)√
μ2 − A2

p

[
δ
(

p⊥ −
√

μ2 − A2
p

)
+ δ

(
p⊥ +

√
μ2 − A2

p

)]
, (25)

where θ (μ) is the Heviside function, i.e., θ (μ) = 1 for μ > 0 and 0 otherwise. Using the cylindrical coordinates and x = p2 − �

as in the case of orbital magnetic susceptibility, we obtain at T = 0

σ B
xy⊥ = −2

|e|3τ 2B

π2h̄4

√
ab

ν

sgn(μ)

μ2

∫ ∞

−�

dx
x3(x + �)θ (μ2 − x2)√

μ2 − x2

=
{− 3

2
b

ν2�
σuμ

2sgn(μ), |μ| � �,

− 3
2

b
ν2�

σu
[
μ2
{

π
2 + arctan

(
�√

μ2−�2

)}+ �
9

(
7 + 2�2

μ2

)√
μ2 − �2

]
sgn(μ), |μ| � �,

(26)

and

σ B
xy‖ = −|e|3τ 2B

π2h̄4 ν

√
a

b

sgn(μ)

μ2

∫ ∞

−�

dx
x2(x + �)θ (μ2 − x2)√

μ2 − x2

=
⎧⎨
⎩

−σusgn(μ), |μ| � �,

−σu
[{

π
2 + arctan

(
�√

μ2−�2

)}+ 1
3

(
4 − �2

μ2

)√μ2−�2

�

]
sgn(μ), |μ| � �,

(27)
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FIG. 3. φ dependence of the Hall conductivity. The nodal-line
orientations for each φ are shown in the inset.

where σu is defined as

σu = |e|3τ 2B

2π h̄4 ν�

√
a

b
. (28)

Figure 3 shows the obtained Hall conductivity as a func-
tion of chemical potential μ for some choices of the angle
φ (φ = π

2 , 5π
12 , · · · , π

12 , 0 from left top to bottom, and from
right bottom to top). In the inset, the corresponding nodal-line
orientations are shown. For a material with a fixed μ, this
strong angle dependence of σxy will give clear evidence for
the presence of the nodal line and its orientation.

When the magnetic field is parallel to the nodal line (σxy‖,
or φ = π/2), the obtained Hall conductivity is constant at
0 < |μ|/� < 1, but flips its sign at μ = 0 (violet line in
Fig. 3). This behavior is similar to the two-dimensional mass-
less Dirac electron systems [66], which will be discussed in
detail below. The step size at μ = 0 is 2σu.

For example, if we choose the parameters as ν/h̄ 
 1.0 ×
106 m/s, � = 0.5 eV, τ = 1.0 × 10−13 s, a transfer integral
t = 1.5 eV, and a lattice constant L = 5.0 Å, then b can
be estimated as b ∼ L2t

2 = 1.875 × 10−19 eV m2 and as a
result σu becomes σu/B 
 4.5 × 105 m−3 kg−2 s5 A3. In this
assumption, the radius of the nodal line is roughly 0.26π .

On the other hand, when the magnetic field is perpendic-
ular to the nodal plane (σxy⊥, or φ = 0), the obtained Hall
conductivity is approximately proportional to −μ2sgn(μ).
This behavior will be also discussed later.

At finite temperature, f ′(εp) has finite width spread of
about kBT and it smears the step-function singularity.

B. Effect of finite scattering near μ = 0

As mentioned in the previous section, the weak-scattering
limit is valid for |μ| � �. To obtain precisely the effects of
the scattering rate in the small chemical potential region, we
have to evaluate the Hall conductivity in Eqs. (16) and (17) at
finite � numerically. At zero temperature, the obtained Hall

FIG. 4. � dependence of the Hall conductivity. Violet lines and
red lines represent the cases of φ = π/2 and φ = 0, respectively.

conductivity can be expressed as (see Appendix B)

σxy⊥ = σu
b�

ν2
I⊥(μ̃, �̃), (29)

σxy‖ = σuI‖(μ̃, �̃), (30)

where �̃ = �/�, μ̃ = μ/�, and I⊥/‖ are dimensionless in-
tegrals in x and p⊥. Their explicit expressions are shown in
Appendix B. We evaluated these double integrals numerically
and the results are shown in Fig. 4. For general φ, the Hall
conductivity is given by Eq. (23). The explicitly plotted fig-
ures are shown in Appendix C.

As we can see at |μ| � � we recover the analytic results of
the previous section. At small chemical potentials the scat-
tering rate does not really affect σxy⊥ in the perpendicular
case. On the other hand, for the parallel case (σxy‖), we see
a bump appearing in the plateau for small chemical potentials.
The bump expands with increasing scattering rates. This result
for the parallel case is very similar to the result obtained for
graphene in Ref. [66], which will be discussed in the next
section in detail.

At finite temperature, the bump would be suppressed due
to the smearing effect.

V. INTERPRETATION OF THE CHEMICAL POTENTIAL
DEPENDENCIES OF χ AND σxy

A. The parallel case (φ = π/2)

As shown in the previous sections, when the magnetic field
is parallel to the plane where the nodal line exists, the chem-
ical potential dependence of χ‖ has a δ-function singularity
and σxy‖ behaves like a step function. So let us consider this
case first.

In this case (φ = π/2), the Fermi surfaces at μ = �/2 on
the kz = 0 plane are shown in Fig. 5(a), which are the two sep-
arated rings. These rings are the cross-sections of two linear
dispersive bands and they enclose the nodal line [Fig. 5(b)].
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FIG. 5. Fermi surfaces at μ = �/2 and band dispersions on the
kz = 0 (a) Fermi surface at μ = �/2 (blue surface) and the nodal
line (red line) for the case of φ = π/2. The green and yellow lines
represent the Fermi surfaces on the kz = 0 plane. (b) Band dispersion
on the kz = 0 plane. The red points represent the cross-sections of
the nodal line, and the Fermi surfaces are shown by green and yellow
lines at E = μ = �/2 on the kz = 0 plane. (c) Fermi surface at μ =
�/2 (blue surface) and the nodal line (red line) for the case of φ = 0.
The green and yellow lines represent the Fermi surfaces on the kz = 0
plane. (d) Band dispersion on the kz = 0 plane. The red line is the
nodal line and the cross sections on E = μ are shown by green and
yellow lines, which represent the Fermi surfaces on kz = 0.

Therefore, it is natural to interpret the chemical potential
dependencies of χ‖ and σxy‖ in terms of the two-dimensional
massless Dirac electron systems, as was discussed in the
previous studies on the magnetic susceptibility [35,52–54].
In the present paper, we can compare the results obtained
approximately by integrating the local susceptibility along the
nodal line with the exact value obtained in this paper.

The two-dimensional massless Dirac electron system, or a
model for graphene, is described by a Hamiltonian

H = γxkxσx + γykyσy. (31)

In this model the orbital magnetic susceptibility has a δ-
function singularity [66,70,72,73]

χ2D
Dirac = −e2γxγy

3π h̄2 δ(μ), (32)

and the Hall conductivity behaves as [66].

σ 2D
Dirac = −|e|3τ 2B

2π h̄4 γxγysgn(μ), (33)

FIG. 6. Nodal line (red line) of the φ = π/2 case and locally
defined 2D Dirac cone (gray cones).

where the spin degrees of freedom has been taken into ac-
count. [Note that σ 2D

Dirac can be understood from the classical
form σxy,classical = −neff |e|3τ 2B/m2

eff as follows. In the Dirac
electron system, neff = 2πk2

F, while meff can be assumed to
satisy kF/meff = γx or γy (= constant), which means that meff

is proportional to kF. Therefore, if we substitute neff = 2πk2
F

and m2
eff = k2

F/γxγy in σxy,classical, we obtain Eq. (33).] In this
section, we do not consider the bump appearing in the plateau
for μ ∼ 0 (see Fig. 5), which will be understood similarly with
this plateau value.

Note that Eqs. (32) and (33) are for the two-dimensional
systems and we need to transform them into contributions
of the nodal line in the three-dimensional systems. Assume
that there are Nc-independent layers of Dirac electron systems
stacked three-dimensionally, each layer being separated by a
distance c. Then the total magnetic susceptibility and the total
Hall conductivity per volume become (using the length of the
c axis Lc = Ncc)

χ3D
Dirac = Nc

Lc
χ2D

Dirac = χ2D
Dirac

c
,

σ 3D
Dirac = Nc

Lc
σ 2D

Dirac = σ 2D
Dirac

c
. (34)

In this case, the length of the (straight) nodal line in the
three-dimensional momentum space is 2π/c. Therefore, the
contributions of the nodal line per length should be

χ3D
nodal/length = χ2D

Dirac

2π
, σ 3D

nodal/length = σ 2D
Dirac

2π
. (35)

In the present model, the nodal line forms an oval ring in
the kx-kz plane, and a point on the nodal line is expressed as
(see Fig. 6)

(k0x, k0y, k0z ) =
(√

�

a
cos θ, 0,

√
�

b
sin θ

)
. (36)

In the two-dimensional momentum space perpendicular to this
nodal line, the band dispersion looks like a two-dimensional
Dirac cone and thus the Hamiltonian is approximately written
like Eq. (31) with properly chosen momenta. Actually, in
the vicinity of the above point, by choosing (k0x + δkx, k0y +
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δky, k0z + δkz ), the energy eigenvalues become

E± = ±
√

(2ak0xδkx + 2bk0zδkz )2 + ν2(δky)2. (37)

Therefore, we can see that the coefficients of k in Eq. (31), γx

and γy, are given as

γx = 2
√

�
√

a cos2 θ + b sin2 θ, γy = ν. (38)

The axis of the Dirac cone, which is normal to the two-
dimensional momentum space, is

t = 1√
a cos2 θ + b sin2 θ

(−
√

b sin θ, 0,
√

a cos θ ), (39)

which is the tangent vector of the nodal line. Therefore, the
angle η between the magnetic field and the Dirac cone axis is

cos η =
√

a cos θ√
a cos2 θ + b sin2 θ

. (40)

Now let us evaluate χ‖ by integrating the contribution of
the nodal line, χ3D

nodal/length, along the nodal line. Since the
tangent vector t is not parallel to the magnetic field (‖ z),
the effective magnetic field is B cos η. Furthermore, since the
induced magnetic moment is also parallel to t , we should
integrate the z component of this magnetic moment. The line
integral along the nodal line using√

�

ab

√
a cos2 θ + b sin2 θ dθ, (41)

leads to

Mz =
∫ 2π

0
χ3D

nodal/length cos2 ηB

√
�

ab

√
a cos2 θ + b sin2 θ dθ

= −
∫ 2π

0

e2

3π2h̄2 δ(μ)ν�

√
a

b
B cos2 θdθ

= − e2

3π h̄2 δ(μ)ν�

√
a

b
B. (42)

This exactly reproduces the obtained result χ ′ in Eq. (13).
We can see that the same argument holds for the Hall

conductivity. As in the case of the magnetic susceptibility, the
effective magnetic field is B cos η. Furthermore, the induced
Hall current jeff is not parallel to the x axis as shown in
Fig. 6. Therefore, we need to integrate jx = jeff cos η along
the nodal line. As a result, we have the similar line integral as
in Eq. (42):

〈 jx〉 =
∫ 2π

0
σ 3D

nodal/length cos2 ηEy

√
�

ab

√
a cos2 θ + b sin2 θ dθ

= −
∫ 2π

0

|e|3τ 2B

2π2h̄4 sgn(μ) ν�

√
a

b
Ey cos2 θdθ

= −|e|3τ 2B

2π h̄4 sgn(μ) ν�

√
a

b
Ey. (43)

This exactly reproduces the step of σ B
xy‖ at μ = 0, i.e., σu

obtained in the previous section.
The above arguments show that the δ-function singularity

in χ‖ and the plateau region in σxy‖ can be understood in terms
of the nodal line. However, there is an additional contribution

in χ‖, which depends on the energy cut-off. Since the two-
dimensional massless Dirac electron system has only the δ-
functional singularity, this additional contribution can not be
understood only from the nodal line. This will be due to the
band dispersion that has not been taken into account in the
two-dimensional massless Dirac model.

As for σxy‖, in the region of |μ|/� > 1, the Hall conduc-
tivity is no longer constant and it decreases when μ > � and
increases when μ < −�. This is because the two rings of
the Fermi surface touch each other at μ/� = ±1 and they
become a single large ring in |μ|/� > 1. The single large ring
encloses two Dirac points and thus the non-trivial property of
the nodal line is not captured.

B. The perpendicular case (φ = 0)

The behavior of χ⊥ [Eq. (11)] that is the same as the orbital
magnetic susceptibility of bismuth can be understood from
its Landau levels. In the present case, the energy eigenvalue
under the magnetic field can be obtained analytically as E =
±Ej,k⊥ with

Ej,k⊥ =
√{

2|e|√abB

h̄

(
j + 1

2

)
− �

}2

+ ν2k2
⊥, (44)

where j = 0, 1, · · · is the Landau level index. The grand
potential is expressed as

� = −2kBT
|e|BL2

2π h̄

∑
±,k⊥

∞∑
j=0

ln{1 + e−β(±Ej,k⊥ −μ)}, (45)

where the prefactor |e|BL2/2π h̄ represents the degeneracy of
each Landau level. In the small magnetic field region, the
summation over the Landau level j can be estimated by using
the Euler-MacLaurin expansion for a smooth function F (λ)
and for a large N :

1

N

n2∑
j=n1

F
( j

N

)
=
∫ n2+1/2

N

n1−1/2
N

F (λ)dλ

+ 1

24N2

{
F ′
(

n1 − 1
2

N

)
− F ′

(
n2 + 1

2

N

)}

+ O

(
1

N3

)
, (46)

where we can assume N = 1/B and x = B j. Then, after some
algebra, we obtain the grand potential � as

� = −2kBT
|e|L2

2π h̄

∑
±,k⊥

[ ∫ ∞

0
ln{1 + e−β(±E (x,k⊥ )−μ)}dx

± B2

24

2|e|�√
ab

kBT h̄
√

�2 + ν2k2
⊥

f (±
√

�2 + ν2k2
⊥)

]
, (47)

with E (x, k⊥) =
√

(2|e|√abx/h̄ − �)2 + ν2k2
⊥. The first term

in Eq. (47) represents the grand potential at B = 0. From the
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second term, we obtain

χ = −∂2�

∂B2

= e2L2

6π h̄2

∑
±,k⊥

⎡
⎣± �

√
ab√

�2 + ν2k2
⊥

f (±
√

�2 + ν2k2
⊥)

⎤
⎦,

(48)

When we perform the k⊥ integral at T = 0, we reproduce the
result in Eq. (11).

For bismuth, we have Landau levels as [68]

EBi
j,k⊥ =

√
�2 + 2|e|γxγyB

h̄

(
j + 1

2
+ σz

2

)
+ γ 2

z k2
⊥, (49)

where σz takes values ±1. Although there are some dif-
ferences between the present case and bismuth, the Euler-
MacLaurin expansion gives a similar grand potential in both
cases, which leads to our results that χ⊥ in the present model
has the same μ dependence as the orbital magnetic suscep-
tibility in bismuth. The main reason for this coincidence is
that the magnetic susceptibility is determined by the term
F ′((n1 − 1/2)/N ) in Eq. (46) that is related to the first Landau
level with j = 0, and that the energy of the first Landau level
is
√

�2 + γ 2
x k2

z + O(B) in both cases of the present case and
bismuth.

Next we discuss σxy⊥ in Fig. 3. Its μ dependence is sim-
ply explained by the structure of the Fermi surface. In the
weak scattering limit, i.e., in the semiclassical picture, the
Hall effect is discussed within a two-dimensional momentum
space perpendicular to the magnetic field. At the same time,
at zero temperature only the contributions from the Fermi
surface are to be taken into account. Therefore, the structure
of the intersection of the Fermi surface and kz = const. plane
determines the behavior of the Hall conductivity. For φ = 0,
the Fermi surfaces on a kz = const. plane are two concentric
rings [Fig. 5(c)]. These concentric rings are the cross-sections
of two parabolic bands and they do not enclose the nodal line
[Fig. 5(d)]. Therefore, this Fermi surface structure gives the
free-electron-like Hall conductivity as shown in the red line in
Fig. 3.

To make more quantitative interpretation, let us
use again the classical Hall conductivity σxy,classical =
−neff |e|3τ 2B/(mx,effmy,eff ). In the present case, we can
assume mx,eff = h̄2/2a and my,eff = h̄2/2b and that neff is
estimated from the volume of the Fermi surface. Let us
consider the case with 0 < μ < �. In this case the yellow
line in Fig. 5(d) is the electron Fermi surface and the green
line is the hole Fermi surface. Taking into account the k⊥
direction, neff that is electron density minus hole density
becomes

neff = 2

(2π )3

∫ μ

ν

− μ

ν

dk⊥
∫

dkxdk‖

×
[
θ
(√

μ2 − ν2k2
⊥ − Ak

)
− θ

(
Ak −

√
μ2 − ν2k2

⊥
)]

= 1

4π2

∫ μ

ν

− μ

ν

dk⊥

×
⎡
⎣� +

√
μ2 − ν2k2

⊥√
ab

−
� −

√
μ2 − ν2k2

⊥√
ab

⎤
⎦

= μ2

4πν
√

ab
, (50)

where θ (x) is the Heviside step function and Ak = ak2
x +

bk2
‖ − �. The first term corresponds to the electron density

and the second term to the hole density. Substituting of neff

into σxy,classical, we obtain

σxy,classical = −|e|3τ 2B

π h̄4

√
ab

ν
μ2

(
= 2

b

ν2�
σuμ

2

)
, (51)

which reproduces the μ2 dependence of the exactly obtained
result σxy⊥ in Eq. (26). The difference exists only in the
numerical prefactor, 3/2 → 2.

Similarly, for the case with μ > �, we obtain

neff = 1

4π2

∫ μ

ν

− μ

ν

dk⊥

[� +
√

μ2 − ν2k2
⊥√

ab

−
� −

√
μ2 − ν2k2

⊥√
ab

θ
(
� −

√
μ2 − ν2k2

⊥
)]

= 1

4π2ν
√

ab

{
μ2

(
π

2
+ tan−1 �√

μ2 − �2

)

+�
√

μ2 − �2

}
. (52)

From this neff , σxy⊥ in Eq. (26) is reasonably reproduced.

C. Effect of energy fluctuation of nodal line

Generally, the energy of the Dirac point can fluctuate along
the nodal line. In this case, we expect that the chemical poten-
tial dependencies in Figs. 2 and 3 will be smeared out. For
example, the delta function peak in χ will change to have
a finite width. Even in this case, we can detect the angle
dependencies of physical quantities due to the nodal line as
long as the energy fluctuation of the Dirac point is not too
large compared with the bandwidth.

VI. SUMMARY

We have calculated the chemical potential dependence and
magnetic field-angle dependence of the orbital magnetic sus-
ceptibility and the Hall conductivity in nodal-line materials.
These quantities show characteristic singular behaviors in the
chemical potential dependence, which is attributed to the non-
trivial gapless structure of the bulk band dispersion. They also
show a strong field-angle dependence corresponding to the
orientations of the nodal line. These results allow us to detect
the presence of nodal lines and to determine their orientations
in the momentum space using bulk properties that are inde-
pendent of the surface state.
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APPENDIX A: MATSUBARA SUMMATION AND MOMENTUM INTEGRALS IN ORBITAL MAGNETIC SUSCEPTIBILITY

Using cylindrical coordinates, the susceptibility χ⊥ in Eq. (9) is expressed as

χ⊥ = e2

h̄2 kBT
∑

n

1

2π2

√
ab

ν

∫ ∞

−∞
d p⊥

∫ ∞

−�

dx
(x + �)2

(x2 + y2)2

{
1 − 8x2

x2 + y2
+ 8x4

(x2 + y2)2

}

= − e2

h̄2 kBT
∑

n

1

2π2

√
ab

ν

∫ ∞

−∞
d p⊥

�

3(�2 + y2)

= − 1

2π2

e2

h̄2

√
ab

ν

∮
dz

2π i
f (z)

∫ ∞

−∞
d p⊥

�

3(z2 − p2
⊥ − �2)

= 1

2π2

e2

h̄2

√
ab

ν

∫ ∞

−∞
d p⊥

�

6εz
{ f (εz ) − f (−εz )}, (A1)

where x = p2 − �, y2 = −(iεn + μ)2 + p2
⊥, εz =

√
�2 + p2

⊥, and f (z) is Fermi distribution function defined by f (z) =
1/(e(z−μ)/kBT + 1), respectively. At T = 0, the p⊥ integral leads to Eq. (11).

Similarly, the susceptibility of χ‖ is calculated as

χ‖ = e2

h̄2 kBT
∑

n

ν

2π2

√
a

b

∫ ∞

−∞
d p⊥

∫ ∞

−�

dx
x + �

(x2 + y2)2

{
−1 + 8x2 p2

⊥
(x2 + y2)2

}

= e2

h̄2 kBT
∑

n

ν

2π2

√
a

b

∫ ∞

−∞
d p⊥

{
−y2 − p2

⊥
2y4

+ p2
⊥(y2 − �2)

6y2(�2 + y2)2
+ �(y2 − p2

⊥)

2y4

∫ ∞

�

dx

x2 + y2
− π�(y2 − p2

⊥)

2y5

}
. (A2)

The last term of Eq. (A2) becomes

χ ′ ≡ − e2

h̄2 kBT
∑

n

ν

2π2

√
a

b

∫ ∞

−∞
d p⊥

π�(y2 − p2
⊥)

2y5

= − e2

h̄2 kBT
∑

n

ν

2π2

√
a

b

2π

3

�

ε2
n

= − 1

3π

e2

h̄2 ν

√
a

b

∮
dz

2π i
f (z)

�

z2

= ν�

3π

e2

h̄2

√
b

a
f ′(0). (A3)

At T = 0, χ ′ gives a δ-function singularity because f ′(0) = −δ(μ).
The remaining terms of Eq. (A2) can be integrated as

χ‖ − χ ′ = 1

2π2

e2

h̄2 ν

√
a

b

∫ ∞

−∞
d p⊥

∑
±

⎡
⎣ p2

⊥ f ′(±εz )

12ε2
z

∓ p2
⊥
(
ε2

z + �2
)

f (±εz )

12ε3
z �

2
± �

∫ ∞

�

dx

√
x2 + p2

⊥ f
(±

√
x2 + p2

⊥
)

4x4

⎤
⎦

= 1

24π2

e2

h̄2 ν

√
a

b

∫ ∞

−∞
d p⊥

⎡
⎣ εz

�2
{− f (εz ) + f (−εz )} + 3�

∫ ∞

�

dx

√
x2 + p2

⊥
x4

{
f
(√

x2 + p2
⊥
)

− f
(
−
√

x2 + p2
⊥
)}⎤⎦.

(A4)

At T = 0, the p⊥ and x integral lead to Eq. (12).
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APPENDIX B: MATSUBARA SUMMATION FOR THE
FINITE SCATTERING RATE CASE

We calculate the Hall conductivity in Eqs. (16) and (17) at
finite � numerically. The Matsubara summation is evaluated
by transforming the summation to an integral using the Fermi
distribution function [75,77]:

σ⊥
xy = 2

|e|3B

h̄2V

∑
k

32a2bk2
x Re

[∫
dε

2π i
f ′(ε)Ak

(
1

2D2
R

+ 2A2
k

3D3
R

− ε2 + �2 + A2
k − B2

k

D2
RDA

)]
,

σ ‖
xy = 2

|e|3B

h̄2V

∑
k

16a2k2
x ν

2Re

[∫
dε

2π i
f ′(ε)

(
1

2D2
R

+ 2A2
k

3D3
R

− ε2 + �2 + A2
k − B2

k

D2
RDA

)]
, (B1)

where DR = (ε + i�)2 − A2
k − B2

k and DA = (ε − i�)2 −
A2

k − B2
k.

At zero temperature the integration can be done ana-
lytically using f ′(ε) = −δ(ε − μ). Then we use cylindrical
coordinates and integrate the azimuth variable analytically.
For the remaining two integrals we make the expressions
dimensionless and get

σxy⊥ = σu
b�

ν2
I⊥(μ̃, �̃), σxy‖ = σuI‖(μ̃, �̃), (B2)

where �̃ = �/�, μ̃ = μ/�, and

I⊥ = − 64

3π2
μ̃�̃5

∫ ∞

−1
dK

∫ ∞

−∞
dk

g‖(μ̃, �̃, K, k)

h(μ̃, �̃, K, k)
, (B3)

I‖ = − 32

3π2
μ̃�̃5

∫ ∞

−1
dK

∫ ∞

−∞
dk

g⊥(μ̃, �̃, K, k)

h(μ̃, �̃, K, k)
, (B4)

g⊥ = K (K + 1)
[
3(k2 + K2 + �̃2)2 + 2(−3k2 + 5K2 + 3�̃2)

× μ̃2 + 3μ̃4
]
,

g‖ = g⊥/K,

h = [
(k2 + K2 + �̃2)2 − 2(k2 + K2 − �̃2)μ̃2 + μ̃4

]3
,

(B5)

with K = x/� and k = p⊥/�.
Note that the same expression can be achieved starting

from Eq. (17). The matrix elements of the velocity operators
can be expressed as

Tr[γxQaγyQbγxQcγyQd ], (B6)

where Qa are the projection operators of the Hamiltonian. The
projection operators can be calculated using the Frobenius
covariant [78,79]:

Qa =
∏

b
a �= b

H − Eb

Ea − Eb
. (B7)

In the present model there are only two bands with ±εk.

APPENDIX C: DETAILED FIELD-ANGLE DEPENDENCE
FOR THE FINITE-SCATTERING RATE CASE

Also for the Hall conductivity for the finite-scattering
rate case, we find that the sin φ cos φ proportional term
vanishes in the integral and thus the Hall conductivity
becomes

σxy = σxy⊥ cos2 φ + σxy‖ sin2 φ. (C1)

Figure 7 shows the obtained Hall conductivity as a function
of chemical potential μ for some choices of the angle φ (φ =
π
2 , 5π

12 , · · · , π
12 , 0) and for three scattering rates (a) � = 0.1,

(b) � = 0.05, and (c) � = 0.01. The corresponding nodal-line
orientations are shown in the right.

FIG. 7. φ dependence of the Hall conductivity for the finite scat-
tering rate cases, (a) � = 0.1, (b) � = 0.05, and (c) � = 0.01. The
nodal-line orientations for each φ are shown in the right.

035113-10



CHARACTERISTIC SINGULAR BEHAVIORS OF … PHYSICAL REVIEW B 104, 035113 (2021)

[1] A. Bernevig, H. Weng, Z. Fang, and X. Dai, J. Phys. Soc. Jpn.
87, 041001 (2018).

[2] M. Hirayama, R. Okugawa, and S. Murakami, J. Phys. Soc. Jpn.
87, 041002 (2018).

[3] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205
(2011).

[4] G. B. Halász and L. Balents, Phys. Rev. B 85, 035103 (2012).
[5] O. Vafek and A. Vishwanath, Annu. Rev. Condens. Matter Phys.

5, 83 (2014).
[6] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B.

Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang et al., Nat.
Commun. 6, 7373 (2015).

[7] S. Jia, S.-Y. Xu, and M. Z. Hasan, Nat. Mater. 15, 1140 (2016).
[8] B. Yan and C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337

(2017).
[9] A. Burkov, Annu. Rev. Condens. Matter Phys. 9, 359 (2018).

[10] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.
90, 015001 (2018).

[11] T. Kariyado and M. Ogata, J. Phys. Soc. Jpn. 80, 083704 (2011).
[12] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,

and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).
[13] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng,

X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).
[14] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B

88, 125427 (2013).
[15] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C.

Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin et al., Nat.
Commun. 5, 3786 (2014).

[16] Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D.
Prabhakaran, S. K. Mo, H. Peng, P. Dudin et al., Nat. Mater.
13, 677 (2014).

[17] S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B.
Büchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014).

[18] B.-J. Yang and N. Nagaosa, Nat. Commun. 5, 4898 (2014).
[19] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84,

235126 (2011).
[20] H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y.

Kawazoe, Phys. Rev. B 92, 045108 (2015).
[21] Y. Kim, B. J. Wieder, C.L. Kane, and A. M. Rappe, Phys. Rev.

Lett. 115, 036806 (2015).
[22] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Phys. Rev. Lett.

115, 036807 (2015).
[23] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Phys. Rev. B 92,

081201(R) (2015).
[24] A. Yamakage, Y. Yamakawa, Y. Tanaka, and Y. Okamoto,

J. Phys. Soc. Jpn. 85, 013708 (2016).
[25] G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T.

Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski
et al., Nat. Commun. 7, 1 (2016).

[26] C. Fang, H. Weng, X. Dai, and Z. Fang, Chin. Phys. B 25,
117106 (2016).

[27] M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez,
R. Sankar, M. Szlawska, S.Y. Xu, K. Dimitri, N. Dhakal, P.
Maldonado, P.M. Oppeneer, D. Kaczorowski, F. Chou, M.Z.
Hasan, and T. Durakiewicz, Phys. Rev. B 93, 201104(R) (2016).

[28] J. Hu, Z. Tang, J. Liu, X. Liu, Y. Zhu, D. Graf, K. Myhro, S.
Tran, C. N. Lau, J. Wei et al., Phys. Rev. Lett. 117, 016602
(2016).

[29] M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Nat.
Commun. 8, 14022 (2017).

[30] R. Kato, H. Cui, T. Tsumuraya, T. Miyazaki, and Y. Suzumura,
J. Am. Chem. Soc. 139, 1770 (2017).

[31] R. Kato and Y. Suzumura, J. Phys. Soc. Jpn. 86, 064705 (2017).
[32] D. Takane, K. Nakayama, S. Souma, T. Wada, Y. Okamoto,

K. Takenaka, Y. Yamakawa, A. Yamakage, T. Mitsuhashi, K.
Horiba et al., npj Quantum Mater. 3, 1 (2018).

[33] I. Tateishi and H. Matsuura, J. Phys. Soc. Jpn. 87, 073702
(2018).

[34] Y. Suzumura and A. Yamakage, J. Phys. Soc. Jpn. 87, 093704
(2018).

[35] Y. Suzumura, T. Tsumuraya, R. Kato, H. Matsuura, and M.
Ogata, J. Phys. Soc. Jpn. 88, 124704 (2019).

[36] I. Tateishi, Phys. Rev. Research 2, 043112 (2020).
[37] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.

Rev. B 83, 205101 (2011).
[38] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.

Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee et al., Science
349, 613 (2015).

[39] I. Belopolski, S.-Y. Xu, D. S. Sanchez, G. Chang, C. Guo, M.
Neupane, H. Zheng, C.-C. Lee, S.-M. Huang, G. Bian et al.,
Phys. Rev. Lett. 116, 066802 (2016).

[40] G. Bian, T. R. Chang, H. Zheng, S. Velury, S. Y. Xu, T. Neupert,
C.K. Chiu, S. M. Huang, D. S. Sanchez, I. Belopolski, N.
Alidoust, P.J. Chen, G. Chang, A. Bansil, H. T. Jeng, H. Lin,
M. Z. Hasan, Phys. Rev. B 93, 121113 (2016).

[41] Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder, Phys.
Rev. B 93, 205132 (2016).

[42] M. Kargarian, M. Randeria, and Y.-M. Lu, Proc. Natl. Acad.
Sci. U.S.A. 113, 8648 (2016).

[43] I. Tateishi, Phys. Rev. B 102, 155111 (2020).
[44] Z. J. Xiang, D. Zhao, Z. Jin, C. Shang, L. K. Ma, G. J. Ye, B.

Lei, T. Wu, Z. C. Xia, and X. H. Chen, Phys. Rev. Lett. 115,
226401 (2015).

[45] J. Hu, J. Liu, D. Graf, S. Radmanesh, D. Adams, A. Chuang, Y.
Wang, I. Chiorescu, J. Wei, L. Spinu et al., Sci. Rep. 6, 18674
(2016).

[46] G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang,
C. Xi, J. Yang, H. Du et al., Phys. Rev. B 93, 115414 (2016).

[47] C. M. Wang, H.-Z. Lu, and S.-Q. Shen, Phys. Rev. Lett. 117,
077201 (2016).

[48] H. Yang, R. Moessner, and L.-K. Lim, Phys. Rev. B 97, 165118
(2018).

[49] S. Wang, B.-C. Lin, A.-Q. Wang, D.-P. Yu, and Z.-M. Liao, Adv.
Phys.: X 2, 518 (2017).

[50] L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang,
and S. Y. Li, Phys. Rev. Lett. 113, 246402 (2014).

[51] C. Li, C. M. Wang, B. Wan, X. Wan, H.-Z. Lu, and X. Xie, Phys.
Rev. Lett. 120, 146602 (2018).

[52] M. Koshino and I. F. Hizbullah, Phys. Rev. B 93, 045201
(2016).

[53] G. P. Mikitik and Y. V. Sharlai, Phys. Rev. B 94, 195123 (2016).
[54] G. P. Mikitik and Y. V. Sharlai, Phys. Rev. B 97, 085122 (2018).
[55] R. A. Molina and J. González, Phys. Rev. Lett. 120, 146601

(2018).
[56] G.-Q. Zhao, W. Rui, C. Wang, H.-Z. Lu, and X. Xie,

arXiv:2004.01386.
[57] R. Peierls, Z. Phys. 80, 763 (1933).
[58] J. Hebborn, J. Luttinger, E. Sondheimer, and P. Stiles, J. Phys.

Chem. Solids 25, 741 (1964).
[59] H. Fukuyama and R. Kubo, J. Phys. Soc. Jpn. 28, 570 (1970).

035113-11

https://doi.org/10.7566/JPSJ.87.041001
https://doi.org/10.7566/JPSJ.87.041002
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevB.85.035103
https://doi.org/10.1146/annurev-conmatphys-031113-133841
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/nmat4787
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1143/JPSJ.80.083704
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1038/nmat3990
https://doi.org/10.1103/PhysRevLett.113.027603
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.7566/JPSJ.85.013708
https://doi.org/10.1038/ncomms10556
https://doi.org/10.1088/1674-1056/25/11/117106
https://doi.org/10.1103/PhysRevB.93.201104
https://doi.org/10.1103/PhysRevLett.117.016602
https://doi.org/10.1038/ncomms14022
https://doi.org/10.1021/jacs.6b12187
https://doi.org/10.7566/JPSJ.86.064705
https://doi.org/10.1038/s41535-017-0074-z
https://doi.org/10.7566/JPSJ.87.073702
https://doi.org/10.7566/JPSJ.87.093704
https://doi.org/10.7566/JPSJ.88.124704
https://doi.org/10.1103/PhysRevResearch.2.043112
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevLett.116.066802
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1103/PhysRevB.93.205132
https://doi.org/10.1073/pnas.1524787113
https://doi.org/10.1103/PhysRevB.102.155111
https://doi.org/10.1103/PhysRevLett.115.226401
https://doi.org/10.1038/srep18674
https://doi.org/10.1103/PhysRevB.93.115414
https://doi.org/10.1103/PhysRevLett.117.077201
https://doi.org/10.1103/PhysRevB.97.165118
https://doi.org/10.1080/23746149.2017.1327329
https://doi.org/10.1103/PhysRevLett.113.246402
https://doi.org/10.1103/PhysRevLett.120.146602
https://doi.org/10.1103/PhysRevB.93.045201
https://doi.org/10.1103/PhysRevB.94.195123
https://doi.org/10.1103/PhysRevB.97.085122
https://doi.org/10.1103/PhysRevLett.120.146601
http://arxiv.org/abs/arXiv:2004.01386
https://doi.org/10.1007/BF01342591
https://doi.org/10.1016/0022-3697(64)90186-6
https://doi.org/10.1143/JPSJ.28.570


TATEISHI, KÖNYE, MATSUURA, AND OGATA PHYSICAL REVIEW B 104, 035113 (2021)

[60] H. Fukuyama, Prog. Theor. Phys. 45, 704 (1971).
[61] Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. B 91, 214405

(2015).
[62] A. Raoux, F. Piéchon, J.-N. Fuchs, and G. Montambaux, Phys.

Rev. B 91, 085120 (2015).
[63] M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 84, 124708

(2015).
[64] M. Ogata, J. Phys. Soc. Jpn. 86, 044713 (2017).
[65] H. Matsuura and M. Ogata, J. Phys. Soc. Jpn. 85, 074709

(2016).
[66] H. Fukuyama, J. Phys. Soc. Jpn. 76, 043711 (2007).
[67] Y. Fuseya, M. Ogata, and H. Fukuyama, J. Phys. Soc. Jpn. 83,

074702 (2014).
[68] Y. Fuseya, M. Ogata, and H. Fukuyama, J. Phys. Soc. Jpn. 84,

012001 (2015).
[69] S. Ozaki and M. Ogata, Phys. Rev. Research 3, 013058 (2021).

[70] J. W. McClure, Phys. Rev. 104, 666 (1956).
[71] Y. Fuseya, M. Ogata, and H. Fukuyama, Phys. Rev. Lett. 102,

066601 (2009).
[72] S. G. Sharapov, V. P. Gusynin, and H. Beck, Phys. Rev. B 69,

075104 (2004).
[73] M. Koshino and T. Ando, Phys. Rev. B 81, 195431 (2010).
[74] H. Fukuyama, Prog. Theor. Phys. 42, 1284 (1969).
[75] V. Könye and M. Ogata, arXiv:2006.15882.
[76] A. Kobayashi, Y. Suzumura, and H. Fukuyama, J. Phys. Soc.

Jpn. 77, 064718 (2008).
[77] H. Bruus and K. Flensberg, Many-Body Quantum Theory in

Condensed Matter Physics: An Introduction (Oxford University
Press, Oxford, 2004).

[78] R. Horn, R. Horn, and C. Johnson, Topics in Matrix Analysis
(Cambridge University Press, Cambridge, 1994).

[79] J. Cserti and G. Dávid, Phys. Rev. B 82, 201405(R) (2010).

035113-12

https://doi.org/10.1143/PTP.45.704
https://doi.org/10.1103/PhysRevB.91.214405
https://doi.org/10.1103/PhysRevB.91.085120
https://doi.org/10.7566/JPSJ.84.124708
https://doi.org/10.7566/JPSJ.86.044713
https://doi.org/10.7566/JPSJ.85.074709
https://doi.org/10.1143/JPSJ.76.043711
https://doi.org/10.7566/JPSJ.83.074702
https://doi.org/10.7566/JPSJ.84.012001
https://doi.org/10.1103/PhysRevResearch.3.013058
https://doi.org/10.1103/PhysRev.104.666
https://doi.org/10.1103/PhysRevLett.102.066601
https://doi.org/10.1103/PhysRevB.69.075104
https://doi.org/10.1103/PhysRevB.81.195431
https://doi.org/10.1143/PTP.42.1284
http://arxiv.org/abs/arXiv:2006.15882
https://doi.org/10.1143/JPSJ.77.064718
https://doi.org/10.1103/PhysRevB.82.201405

