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Constitutive relations and adiabatic invariants for electromagnetic waves
in a dynamic Lorentz medium
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Constitutive relations for Lorentz media with a time-varying density of oscillators and a time-varying intrinsic
frequency of oscillators are derived ab initio. For an electromagnetic wave propagating in a dynamic Lorentz
medium, combinations of the wave energy and frequency (adiabatic invariants) that are conserved during slow
time variations of the medium are obtained. If the oscillator density varies, the invariants differ from the known
ones for nondispersive dielectrics and plasmas and have a different form for increasing and decreasing oscillator
densities. In both cases, however, they predict that the frequency shift is accompanied by a decrease of the wave
energy. If the intrinsic frequency varies, the invariant coincides with the one for a nondispersive dielectric and
predicts the wave amplification and attenuation with the increase and decrease of the frequency, respectively. It is
also shown that a medium with a decreasing density of oscillating dipoles cannot be described by a time-varying
dielectric permittivity ε(t ) even in the nondispersive limit.
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I. INTRODUCTION

Electromagnetic phenomena in dynamic media have
gained renewed interest in recent years as a platform for test-
ing fundamental physics effects [1–3] and developing novel
devices of active photonics and plasmonics [4–8]. An attrac-
tive feature of dynamic media is the possibility to convert the
frequency of electromagnetic radiation without the need to
fulfil any phase-matching conditions, contrary to the nonlinear
optical techniques [9–12]. Using time as a new degree of free-
dom allows one also to convert bulk radiation into localized
modes [13–16] and vice versa [17–19] without any spatial
modulation of the medium. Dynamic media are energetically
active, exchanging energy with electromagnetic waves even in
the absence of ordinary loss or gain mechanisms [20–22].

Understanding the peculiarities of electromagnetic phe-
nomena in dynamic media has been mainly based on the
models of a nondispersive material with a time-varying dielec-
tric permittivity [11,23–26] and plasma with a varying density
of free particles (a dispersive material) [27–31]. These mod-
els cannot account for the electromagnetic wave interaction
with atomic (molecular) resonances in a dynamic medium.
Meanwhile, such resonances can play an important role, in
particular, in dynamic metamaterials with externally acti-
vated meta-atoms [6] or in a mixture of chemically reacting
molecules [32].

Recently [33], a time-variant Lorentz medium was pro-
posed as a model of resonant dynamic media (transformation
of an electromagnetic wave in a suddenly created Lorentz
medium was considered for the first time in Ref. [34]). The
Lorentz medium represents a real material as a collection of
classical oscillators with intrinsic frequency. In this model,
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the electron (a particle of a small mass) is bound to the
nucleus (a much heavier particle) by a springlike force. An
applied electric field acts as a driving force that sets the
electron into oscillating motion. The corresponding oscilla-
tions of the dipole moment generate electromagnetic fields.
In Refs. [33–35], the idealistic case of a steplike increase
in time of the oscillator density was treated by using initial
conditions on the density jump. To study a more realistic
situation when the medium varies on a timescale comparable
to or even longer than the wave period, a constitutive relation
of such a medium is required.

In this paper, we derive constitutive relations for a dy-
namic Lorentz medium whose oscillator density increases or
decreases in time according to an arbitrary law and also for
a medium with an arbitrarily varying intrinsic frequency of
the oscillators. In contrast to recent papers [36,37] in which
a (time-invariant) Lorentz medium with a negative oscillator
strength was used as a model of an active material with a
population inversion (gain), we consider the classical Lorentz
medium with no population inversion. In the gainless medium,
there can be no instabilities similar to those in Refs. [36,37].
By using the obtained constitutive relations, we study the
energetics of an electromagnetic wave in a slowly varying
Lorentz medium. In particular, we derive adiabatic invariants,
i.e., combinations of the wave frequency and energy that are
conserved during slow time variations of the medium. Adia-
batic invariants are a useful tool for studying wave modulation
in temporally dynamic systems. They allow one to find the
change in the wave energy (and therefore the wave amplitude)
directly from the frequency shift.

Previously, adiabatic invariants were obtained for the
waves in time-varying nondispersive dielectrics [20–22],
isotropic and magnetized plasmas [22,30,38], and surface
waves guided by time-varying plasma slabs [39] and graphene
sheets [40]. The adiabatic invariants obtained here for a
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Lorentz medium with a time-varying oscillator density differ
from the known invariants but agree with them in the limits
of very high and very low frequency. These invariants have
a different form in the cases of increasing and decreasing
oscillator density. In both cases, however, they predict that
frequency shift is accompanied by a decrease of the wave
energy. For a Lorentz medium with a time-varying intrinsic
frequency of the oscillators, the invariant coincides with the
one for a nondispersive dielectric and predicts the wave am-
plification and attenuation with the increase and decrease of
the frequency, respectively.

II. LORENTZ MEDIUM WITH A GROWING
OSCILLATOR DENSITY

Let us start by considering the electromagnetic properties
of a Lorentz medium with the density of the oscillators grow-
ing over time.

A. Constitutive relations

We assume that the oscillator density grows in time accord-
ing to an arbitrary function N (t ). The response of an oscillator
to a driving electric field E(t ) is determined by the equation

d2p
dt2

+ �2
0p = e2

m
E, (1)

where e and m are the electron charge and mass; p = −eξ is
the dipole moment of the oscillator, with ξ being the electron
displacement; and �0 is the intrinsic oscillator frequency. The
oscillators are assumed to appear with zero displacement ξ

and zero velocity v = dξ/dt , i.e.,

p(t = t̃ ) = 0, dp/dt (t = t̃ ) = 0, (2)

where t̃ denotes the instant of time at which an oscillator
appears. Equation (1) with initial conditions (2) can be inte-
grated for an arbitrary time dependence of the driving field
E(t ) [41]:

p(t ) = e2

m�0
Im

∫ t

t̃
E(t ′)ei�0(t−t ′ )dt ′ (3)

(Im means the imaginary part). The polarization P(t ) of the
medium at an instant t can be represented as

P(t ) =
∫ t

−∞

dN (t̃ )

dt̃
p(t, t̃ )dt̃, (4)

where p(t, t̃ ) is the dipole moment at instant t of an oscillator
appearing at instant t̃ . According to Eq. (4), the polarization
P(t ) is a superposition of contributions from the oscillators
appearing at different instants of time −∞ < t̃ < t . In other
words, there exists a multistream motion of the oscillators in
the medium.

By substituting Eq. (3) into Eq. (4) and integrating
by parts, with the assumption that N (−∞) = 0, one can
obtain

P(t ) = e2

m�0
Im

∫ t

−∞
N (t̃ )E(t̃ )ei�0(t−t̃ )dt̃ . (5)

Taking into account that E(t ) is a real physical field, Eq. (5)
can also be presented in the form

P(t ) = e2

m�0

∫ t

−∞
N (t̃ )E(t̃ ) sin �0(t − t̃ )dt̃ . (6)

Equations (5) and (6) represent the integral forms of the
constitutive relation of a Lorentz medium with growing os-
cillator density. For practical use, however, it is convenient to
reduce them to a differential form. Differentiating Eq. (5) or
Eq. (6) twice with respect to t yields

∂2P
∂t2

+ �2
0P = �2

p(t )

4π
E, (7)

where a partial derivative is used to account for the possible
spatial dependence of E and P and the parameter

�p(t ) =
√

4πe2N (t )/m (8)

is analogous to the plasma frequency of freely moving elec-
trons.

It should be emphasized that the constitutive relations
Eqs. (5)–(7) are valid for an arbitrary law of the oscillator
density growth, including abrupt and slow density variations.
In particular, integrating Eq. (7) twice over the infinitely small
time of a density jump, one can obtain the conditions of
continuity of P and ∂P/∂t at the jump, which were derived
earlier from physical assumptions [33–35].

B. Adiabatic invariant

Now let us consider an electromagnetic wave propagat-
ing in a Lorentz medium with a growing oscillator density.
Assuming the growth rate is much smaller than the wave
frequency, the electric (Ex) and magnetic (Hy) fields of the
wave may be written in a quasimonochromatic form,{

Ex(z, t )
Hy(z, t )

}
=

{
E (t )
H(t )

}
eiϕ(t )−ikz, (9)

with slowly varying frequency ω(t ) = dϕ/dt and amplitudes
E (t ) and H(t ). The wave number k is conserved due to the
translational invariance of the medium. The wave evolves in
time adiabatically following the time variations in the oscil-
lator density. Its frequency and field amplitudes can change
substantially on timescales longer than the period 2π/ω.

To find the wave evolution, we use the Maxwell equations

ikEx = 1

c

∂Hy

∂t
, (10a)

ikHy = 1

c

∂Ex

∂t
+ 4π

c
Jx, (10b)

where the current density Jx = ∂Px/∂t and c is the speed of
light.

The system of Eqs. (10) and (7) can be reduced to a single
fourth-order differential equation for the electric field,

∂4Ex

∂t4
+ (�2

0 + �2
p + c2k2)

∂2Ex

∂t2
+ 2

d�2
p

dt

∂Ex

∂t

+
(

d2�2
p

dt2
+ �2

0c2k2

)
Ex = 0. (11)
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FIG. 1. Adiabatic frequency shift in a Lorentz medium with
growing oscillator density. (a) As the density parameter �p increases,
the dispersion curves ω(k) shift apart from the resonance frequency
�0. The wave number k remains unchanged, while the frequency ω

shifts downward for the lower curve and upward for the upper curve.
(b) The frequencies of the lower and upper curves as functions of �p

for two values of ck/�0.

We substitute Ex in the quasimonochromatic form (9) into
Eq. (11) and apply the Wentzel-Kramers-Brillouin (WKB)
method.

By neglecting all derivatives of slowly varying quanti-
ties, such as E (t ), ω(t ), and �p(t ), we obtain a zeroth-order
approximation that determines the evolution of the wave fre-
quency,

ω4 − (
�2

0 + �2
p + c2k2

)
ω2 + �2

0c2k2 = 0. (12)

Equation (12) coincides with the dispersion equation for po-
laritons in a stationary oscillator medium [33–35], but with
�p and ω taken as slow functions of time. Two positive roots
of Eq. (12), 0 < ω1 < ω2, which are given by

ω2
1,2 = q ∓

√
q2 − �2

0c2k2, q = (
�2

0 + �2
p + c2k2

)
/2,

(13)

correspond to the lower and upper dispersion curves in
Fig. 1(a) and describe the waves propagating in the +z di-
rection. Two negative roots −ω1,2 correspond to the waves
propagating in the −z direction [the dispersion curves for
ω < 0 are not shown in Fig. 1(a)]. Only one of the four roots,
which coincides with the frequency of the initial wave in
the beginning of the medium time variations, is of interest.
The other three roots correspond to new waves that can, in
principle, be generated by the initial wave due to medium
nonstationarity. Since, however, the amplitudes of these waves
are proportional to dN/dt [38,39,42] and therefore small in
a slowly varying medium, these waves are neglected in the
standard WKB approximation. The initial wave evolves adia-
batically following �p(t ) [Figs. 1(a) and 1(b)].

In the first-order approximation, i.e., collecting the terms
proportional to the first time derivatives of E (t ), ω(t ), and
�2

p(t ), we obtain the first-order differential equation for the
amplitude E ,

2ω
(
ω4 − �2

0c2k2
)dE

dt
+ (

ω4 + 3�2
0c2k2

)
E dω

dt
= 0. (14)

In deriving Eq. (14), we related d�2
p/dt to dω/dt by using

Eq. (12). Equation (14) relates the change in the wave am-
plitude to the change in its frequency. To derive the adiabatic
invariant, i.e., a combination of the wave energy density and
frequency that is conserved in a dynamic medium, we supple-
ment Eq. (14) with the expression for the wave energy density
[35]

W = |E |2
4π

[
1 + c2k2

ω2
+ �2

p

ω2 + �2
0(

ω2 − �2
0

)2

]
. (15)

In Eq. (15), the first and second terms represent, respectively,
the energies of the electric and magnetic fields, whereas the
last term represents the polarization energy, i.e., the potential
and kinetic energies of the oscillators.

From Eqs. (14) and (15), by using the procedure described
in Ref. [38], one can obtain the desired adiabatic invariant of
the form

W
ω2 − �2

0

ω
= const. (16)

In the limit ω � �0, Eq. (16) expectedly reduces to the
well-known invariant for a plasma with a growing density of
free particles [22,30,39],

W ω = const. (17)

In the opposite limit ω � �0, Eq. (16) coincides with the
invariant for a nondispersive dielectric [20–22],

W/ω = const. (18)

Equation (16), including its asymptotic forms Eqs. (17)
and (18), predicts that the frequency shift is accompanied
by energy loss. Indeed, for the initial wave on the upper
dispersion curve in Fig. 1(a), i.e., with ω > �0, the wave
frequency ω increases [upward arrow in Fig. 1(a) and upper
curves in Fig. 1(b)] as the oscillator density grows. According
to Eq. (16), it leads to a decrease of W . For the wave on
the lower dispersion curve in Fig. 1(a), i.e., with ω < �0, the
wave frequency ω decreases [downward arrow in Fig. 1(a) and
lower curves in Fig. 1(b)] as the oscillator density grows, and
according to Eq. (16), W decreases as well. The relation of the
wave energy loss to the wave frequency shift is illustrated in
Fig. 2(a).

The mechanism of the energy loss can be attributed to
the excitation of natural oscillations in the medium at the
intrinsic frequency �0. The excitation of natural oscillations
was demonstrated for a steplike increase in the oscillator
density [35]. It was shown that the polarization components
of the initial and newly created oscillators move at �0 out
of phase, and therefore, the total polarization equals zero.
Although the oscillations at �0 do not manifest themselves
through any field, they can consume a substantial part of the
wave energy. Since a gradual growth of the oscillator density
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FIG. 2. Diagrams illustrating the relation of the wave energy
with the wave frequency according to the adiabatic invariants,
(a) Eq. (16) (increasing N) and (b) Eq. (25) (decreasing N). The
crosses and circles show the limiting relations given by Eqs. (17)
and (18).

may be represented as a series of small density steps, the loss
mechanism revealed in Ref. [35] can be extended to the case
under consideration.

III. LORENTZ MEDIUM WITH A DECREASING
OSCILLATOR DENSITY

Let us consider now the electromagnetic properties of a
Lorentz medium with an oscillator density decreasing in time.

A. Constitutive relations

We assume that the oscillator density decreases in time
according to an arbitrary function N (t ). Contrary to the above-
studied case of a growing oscillator density, in a medium with
a decreasing oscillator density there is no multistream motion
of the oscillators. Therefore, the current density can simply be
written as

J = N (t )
∂p
∂t

, (19)

with the dipole moment of an oscillator p determined by
Eq. (1). Thus, Eqs. (1) and (19) comprise the constitutive
relations for a Lorentz medium with a decreasing oscillator
density.

It is interesting to note that the commonly accepted relation
J = ∂P/∂t [22,33] is not valid for a Lorentz medium with a
decreasing oscillator density, i.e.,

J �= ∂P
∂t

, (20)

with P(t ) = N (t )p(t ). The reason can be explained as follows.
In the case of decreasing the oscillator density, the polariza-
tion P(t ) changes not only due to a change in p(t ), which is,

indeed, related to a current flow but also due to the withdrawal
of a part of the oscillating dipoles from creating the current.

B. Adiabatic invariant

Now let us derive an adiabatic invariant for an electromag-
netic wave of the quasimonochromatic form (9) propagating
in a medium with a decreasing oscillator density. For this
purpose, we reduce Eqs. (10), (19), and (1) to a single equation
for the only component of the dipole moment px,

∂4 px

∂t4
+(

�2
0+�2

p + c2k2
)∂2 px

∂t2
+d�2

p

dt

∂ px

∂t
+�2

0c2k2 px = 0.

(21)

Then, we substitute px in a quasimonochromatic form

px(z, t ) = p(t )eiϕ(t )−ikz (22)

with a slowly varying amplitude p(t ) into Eq. (21) and apply
the WKB method.

In the zeroth-order approximation, we arrive at the same
Eq. (12) for the wave frequency ω(t ) as in the case of growing
oscillator density. In the first-order approximation, we obtain

2ω
(
ω4 − �2

0c2k2
)d p

dt
+ (

3ω4 + �2
0c2k2

)
p

dω

dt
= 0. (23)

By using Eq. (1), the electric field amplitude E (t ) can be
related to the dipole moment amplitude p(t ) as E = p(�2

0 −
ω2)m/e2. This allows expressing the wave energy density (15)
through |p|2 as

W = m2|p|2
4πe4

[(
1 + c2k2

ω2

)(
ω2 − �2

0

)2 + �2
p

(
ω2 + �2

0

)]
.

(24)

Multiplying Eq. (23) by p∗ and using Eq. (24), we obtain the
desired adiabatic invariant in the form

W
ω

ω2 − �2
0

= const. (25)

The invariant (25) differs from Eq. (16) derived in Sec. II.
In the limit ω � �0, Eq. (25) reduces to Eq. (18), which is
the known invariant for a decaying plasma [30,39]. In the
opposite limit ω � �0, Eq. (25) reduces to Eq. (17). By using
Eq. (25), Fig. 1(a) (with reversed directions of the arrows),
and Fig. 1(b), one can conclude that frequency shift is again
accompanied by energy loss [Fig. 2(b)]. The loss is due to
removing part of the oscillators, together with their energy,
from the oscillatory motion.

IV. LORENTZ MEDIUM WITH A TIME-VARYING
INTRINSIC FREQUENCY

Let us consider now a dynamic Lorentz medium with a
constant density of the oscillators (N = const) but with a time-
varying intrinsic frequency �0(t ) of an oscillator.
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FIG. 3. The frequencies of the higher- and lower-frequency
modes as functions of �0 for two values of �p.

A. Constitutive relation

The dipole moment of an oscillator is now determined by
the equation

d2p
dt2

+ �2
0(t )p = e2

m
E. (26)

Multiplying Eq. (26) by a constant density of the oscillators N
yields the constitutive relation

∂2P
∂t2

+ �2
0(t )P = �2

p

4π
E. (27)

Equation (27) is valid for an arbitrary law of the intrinsic
frequency variation �0(t ). Further, we apply it to study an
adiabatic wave evolution in the medium with a slowly varying
�0(t ).

B. Adiabatic invariant

We reduce the system of Eqs. (10) and (27) to a single
equation for the polarization Px,

∂4Px

∂t4
+ (

�2
0 + �2

p + c2k2
)∂2Px

∂t2
+ 2

d�2
0

dt

∂Px

∂t

+
(d2�2

0

dt2
+ �2

0c2k2
)

Px = 0, (28)

and apply the same WKB approach as in Secs. II B and III B.
In the zeroth-order approximation, the wave frequency ω

is again determined by Eq. (13) but with a time-varying fre-
quency �0, rather than �p. From Fig. 3, the frequencies of
both higher- and lower-frequency modes grow with �0.

In the first-order approximation, we obtain an equation for
a slowly varying amplitude P (t ) of Px,

2ω(ω2 − c2k2)
[
(ω2 − c2k2)2 + �2

pc2k2
]dP

dt

+ [
(ω2 − c2k2)3 − �2

pc2k2(3ω2 + c2k2)
]
P dω

dt
= 0, (29)

that, by also using Eq. (24) with p = P/N , leads to the adi-
abatic invariant (18). Here, this invariant is universal, i.e.,
applicable to both an increase and decrease of �0(t ) for any
ratio of ω and �0, contrary to the case of varying �p(t )
(Secs. II and III).

FIG. 4. The wave energy vs the wave frequency for a nondisper-
sive Lorentz medium with a time-varying dipole density N (t ) (solid
lines) in comparison to the ε(t ) model (dashed line). The arrows
show the directions of motion along the curves from the initial wave
point with frequency ω0 and energy W0.

For a decreasing intrinsic frequency �0(t ), the wave fre-
quency also decreases (Fig. 3), and according to the invariant
(18), the wave energy decreases as well. The energy is, evi-
dently, lost due to the negative work done by the external force
when changing the oscillator parameters to decrease �0.

For growing �0(t ), however, the growth of the wave fre-
quency (Fig. 3) is accompanied by an increase in the wave
energy, which can be attributed to positive work of the external
force. Earlier [11,21,22,24,25], the wave amplification in a dy-
namic medium was predicted in the model of a nondispersive
dielectric. Here, we extend the result to a dispersive dynamic
medium, such as a Lorentz medium with a varying intrinsic
frequency. An example of such a medium is the structures
with time-modulated distributed capacitance, such as an array
of subwavelength spaced varactors modulated by an rf bias
[4,5,43,44].

V. DISCUSSION OF THE NONDISPERSIVE LIMIT

The commonly accepted model of a nondispersive dynamic
dielectric is based on the constitutive relation [11,20–23]

D = ε(t )E, (30)

which relates the electric displacement D = E + 4πP to the
electric field E by means of a time-varying dielectric per-
mittivity ε(t ). Equation (30) is widely used in the current
literature [1,5,26,45,46]. For an electromagnetic wave in a
medium with a slowly varying function ε(t ), both increasing
and decreasing, using Eq. (30) leads to the adiabatic invariant
in the form of Eq. (18) with W = ε|E |2/(2π ) [20–22]. Impor-
tantly, for a decreasing ε(t ) the wave frequency ω(t ) increases
according to the dispersion equation

c2k2 − ω2(t )ε(t ) = 0 (31)

(k = const), and Eq. (18) indicates that the wave energy W (t )
increases as well (Fig. 4).

The model of a Lorentz medium can be reduced to that of a
nondispersive dielectric by omitting the oscillator inertia term
d2p/dt2 in Eqs. (1) and (26). For a growing oscillator density
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N (t ), this simplifies the constitutive relation (7) to the form

P = �2
p(t )

4π�2
0

E (32)

and leads to Eq. (30) with

ε(t ) = 1 + �2
p(t )/�2

0. (33)

The general adiabatic invariant (16) reduces to Eq. (18), which
predicts energy loss with the growth of ε(t ) and decrease of
ω(t ) (Fig. 4).

In the case of a decreasing oscillator density N (t ), however,
Eq. (32), and therefore Eq. (33), cannot be used, as we dis-
cussed in Sec. III A for the general case. Instead, one should
rather use Eq. (19), which, neglecting the inertia, simplifies to
the form

J = �2
p(t )

4π�2
0

∂E
∂t

. (34)

Equation (34) cannot be reduced to Eq. (30). Therefore, even a
nondispersive medium with a density of inertialess dipoles de-
creasing in time cannot be described by dielectric permittivity
ε(t ). For such a medium, the general adiabatic invariant (25)
reduces to Eq. (17), which predicts, taking into account the
growth of ω(t ), a decrease of the wave energy W (t ), contrary
to the prediction of the ε(t ) model (Fig. 4).

Thus, in accord with the general theory (Secs. II B and
III B), there can be no wave amplification in a nondispersive
medium with nonstationarity due to a time-varying dipole
density N (t ), both increasing and decreasing.

For a Lorentz medium with N = const and �0(t ), the
nondispersive approximation [ω(t ) � �0(t )] reduces the con-
stitutive relation (27) to Eq. (30) with

ε(t ) = 1 + �2
p/�

2
0(t ), (35)

which is valid for both increasing and decreasing func-
tion �0(t ). The adiabatic invariant remains in the form of
Eq. (18). Thus, one can conclude that nonstationarity due to
a time-varying intrinsic frequency �0(t ) is the most adequate
mechanism for the constitutive relation (30).

VI. CONCLUSION

To conclude, we have derived constitutive relations for a
Lorentz medium with a time-varying oscillator density and
for a medium with a time-varying intrinsic frequency of the
oscillators. By using these relations, we have obtained adi-
abatic invariants for an electromagnetic wave in a dynamic
Lorentz medium. The adiabatic invariants for a medium with
a time-varying oscillator density differ from the invariants
known for nondispersive dielectrics and plasmas. These adia-
batic invariants have a different form in the cases of increasing
and decreasing oscillator density, but in both cases they pre-
dict a decrease of the wave energy. For a Lorentz medium
with a time-varying intrinsic frequency of the oscillators, the
invariant coincides with the one for a nondispersive dielectric
and predicts the wave amplification and attenuation with the
increase and decrease of the frequency, respectively.

It was also shown that even for a nondispersive medium
consisting of inertialess dipoles the applicability of the com-
monly used constitutive relation D = ε(t )E depends on the
mechanism of the medium nonstationarity. In particular, this
relation is inapplicable to the medium with a time-decreasing
density of the dipoles. In this case, Eq. (34) should be used
instead.

The results obtained clarify the energetics of electromag-
netic wave transformation in natural and artificial slowly
time-variant media with intrinsic resonances and put limits
on the efficiency of the transformation. The considered case
of slow (on the scale of the wave period) time variations of
the medium parameters, such as the density of its structural
elements (molecules, meta-atoms) or the intrinsic frequency
of the element, is characteristic of the nonstationarity pro-
duced by chemical reactions [32] or electrical modulation of
meta-atoms [4,5,43,44,47].
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