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Spin and anomalous Hall effects emerging from topological degeneracy
in the Dirac fermion system CuMnAs
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Orthorhombic CuMnAs has been proposed as an antiferromagnetic semimetal hosting nodal line and Dirac
points around the Fermi level. We investigate relations between the topological bands and transport phenomena,
i.e., the spin Hall effect and anomalous Hall effect, in orthorhombic CuMnAs with first-principles calculations
combined with a symmetry analysis of the magnetic structures and of the (spin) Berry curvature. We show the
nodal line gapped with spin-orbit coupling in CuMnAs dominantly generates large spin Hall conductivity in the
ground state. Although the magnetic symmetry in the ground state of CuMnAs forbids the finite anomalous Hall
effect, applied magnetic fields produce a significant anomalous component of the Hall conductivity with the
magnetic symmetry breaking. We identify that the dominant contribution to anomalous Hall components comes
from the further lifting of band degeneracy under external magnetic fields for the Bloch states generated with the
splitting of nodal lines by spin-orbit coupling near the Fermi energy.
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I. INTRODUCTION

Transport phenomena such as the anomalous Hall effect
(AHE) and spin Hall effect (SHE) had been discovered to
have a relation to the topological electronic band through the
Berry phase theory [1,2]. These phenomena in antiferromag-
netic (AFM) systems have essential advantages in comparison
with ferromagnetic (FM) systems since there is no unexpected
coupling at the interface and no perturbing stray field in the
devices due to their magnetization [3].

A large AHE in antiferromagnets has been confirmed
experimentally in Mn3Sn [4] and Mn3Ge [5], as predicted the-
oretically in the AFM states in Mn3Ir [6], Mn3Sn, and Mn3Ge
[7]. A microscopic mechanism of large AHE is attractive for
spintronics applications in enhancing the efficiency or replac-
ing conventional materials. We investigated relations between
the energy bands and the large AHE of metallic antiferromag-
nets Mn3AN (A = Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt) in
earlier work [8] and identified that the Berry curvature whose
size is small but spread widely around the Fermi surfaces in a
Brillouin zone (BZ) dominantly contribute to the anomalous
Hall conductivity (AHC) rather than the Berry curvature with
an extremely large intensity within the local regions around
the Weyl points. The presence of large Fermi surfaces thus
makes it difficult to distinguish the specific local contribution
of topological bands, such as nodal lines and Weyl/Dirac
points, to the transport quantities in these metallic magnetic
compounds. Therefore, a further investigation of semimetallic
magnetic compounds that have only small Fermi surfaces
is useful to understand the relation between the topological
bands and transport properties in complex magnetic systems,
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as was done for the large anomalous Nernst effect of magnetic
Weyl semimetals in recent studies of Co2MnGa and Co3Sn2S2

[9–12].
The SHE was theoretically investigated in nonmagnetic

compounds as well as magnetic transition metals [13,14] and
observed experimentally in metallic AFM compounds PtMn,
IrMn, PdMn, and FeMn by highlighting the role of spin-orbit
coupling (SOC) to the SHE [15]. The anisotropic property of
SHE, i.e., the difference in tensor components of the spin Hall
conductivity, in PtMn, IrMn, PdMn, FeMn [15], and ZrXY
(X = Si, Ge, Y = S, Se, Te) [16] leads to a possibility to
tune a large SHE by exploiting the change in the direction of
the electric fields. Besides the electric fields, magnetic fields
can control both the SHE and AHE by symmetry breaking.
Therefore, an investigation of the origin of SHE and AHE
with and without an external magnetic field can pave the way
to manipulate the transport phenomena in AFM systems.

The AFM orthorhombic CuMnAs was recently found
to be a good candidate for exploring spintronics applica-
tions with specific topological features such as topological
metal-insulator transitions and topological anisotropic magne-
toresistance with the presence of Dirac fermions [17–20]. We
further expect that an intensive investigation of the semimetal-
lic magnetic ground state of CuMnAs provides a deeper
understanding of the possible contribution from the Bloch
states related to the topologically protected degeneracy of the
transport phenomena. In this paper, we adopt the semimetallic
AFM states of CuMnAs as a platform to investigate the rela-
tions between topological bands, such as Dirac/Weyl points
and nodal lines, and the transport quantities of SHE and AHE.

The high-symmetric collinear-AFM order of CuMnAs for-
bids AHC from being finite due to the preserved symmetry
of the combined operation of spatial inversion P and time-
reversal T . However, as we discuss later, applied magnetic
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fields can induce anomalous components of the Hall conduc-
tivity by breaking the T P symmetry for the local structure
around the nodal line of the electronic bands in the BZ.

The organization of the paper is as follows. Section II
presents the method to perform the first-principles calcula-
tions and to calculate the spin Hall conductivity (SHC) and
anomalous Hall conductivity (AHC). Section III discusses the
symmetry aspects of AHE and SHE in CuMnAs with the gen-
eral relation of the spin Berry curvature. Then, Sec. IV gives
computed results about the stability of the AFM structures
and their electronic property, along with discussions of the
topological bands such as Dirac nodal lines in relation to the
AHE and SHE, including the effects of SOC and of exter-
nal magnetic fields. Finally, Sec. V contains a summary of
this work.

II. METHOD

To investigate the relations between specific band struc-
tures and transport properties, we study AHE and SHE with
the momentum-space Berry phase theory [21,22]. The AHC
σ A

αβ and SHC σ
S,γ

αβ are evaluated following the Kubo formula
[23,24],

σ A
αβ = −e2

h̄

∫
dk

(2π )3

∑
n

fn(k)�A
n,αβ (k), (1)

σ
S,γ

αβ = h̄

2e

e2

h̄

∫
dk

(2π )3

∑
n

fn(k)�S,γ

n,αβ (k), (2)

where n is the band index, α, β, γ = x, y, z (α �= β for the
AHC components), and fn(k) = θ (μ − εnk) is the occupation
factor determined from the eigenvalue of the Bloch states εnk

and the Fermi energy μ. �A
n,αβ (k) and �

S,γ

n,αβ (k) are the Berry
curvature and spin Berry curvature, respectively, defined as

�A
n,αβ (k) = −2h̄2 Im

∑
m �=n

vnm,α (k)vmn,β (k)

[εm(k) − εn(k)]2
, (3)

�
S,γ

n,αβ (k) = −4h̄

e
Im

∑
m �=n

jγnm,α (k) jmn,β (k)

[εm(k) − εn(k)]2
, (4)

where the velocity operator is calculated with the periodic part
of the Bloch states un(k) as

vnm,α (k) = 1

h̄

〈
un(k)

∣∣∣∣∂Ĥ (k)

∂kα

∣∣∣∣um(k)

〉
, (5)

with Ĥ (k) = e−ik·rĤeik·r, jβ = evβ is the charge current op-
erator, and ĵγα = 1

2 {ŝγ , v̂α} is the spin-current operator with
spin operator sγ . The (spin) Berry curvature is expected to
increase divergently around the band crossing point due to
the denominator of Eq. (3) [Eq. (4)]. As a result, the accurate
calculation of AHE (SHE) usually requires a dense k mesh
for the BZ integration of the (spin) Berry curvature in Eq. (1)
[Eq. (2)].

First-principles calculations for magnetic states without
an external magnetic field are performed with the QUANTUM

ESPRESSO package [25]. The generalized gradient approxi-
mation (GGA) in the parametrization of Perdew, Burke, and
Ernzerhof [26] is used for the exchange-correlation functional
and the pseudopotentials in the projector augmented-wave

FIG. 1. Energetically inequivalent magnetic structures of CuM-
nAs classified according to the multipole moments as magnetic (M)
dipoles, magnetic (M) quadrupoles, magnetic toroidal (MT) dipoles,
and magnetic toroidal (MT) quadrupoles following Ref. [35]. The ar-
rows on Mn atoms indicate the magnetic moments. Four manganese
atoms are marked as Mn1, Mn2, Mn3, and Mn4 for B1g(Mz ), on
which the magnetic alignments are listed in Table I.

method [27,28] are generated by PSLIBRARY [29]. We choose
kinetic cutoff energies 50 and 400 Ry for the plane-wave basis
set and charge density, respectively. Lattice constants were
taken from experimental values [20], which are a = 6.572 Å,
b = 3.861 Å, and c = 7.305 Å; the atomic positions are fully
relaxed with keeping the lattice constants. A k mesh of
9×15×9 is utilized to sample the first BZ with a Methfessel-
Paxton smearing width of 0.005 Ry to get the Fermi level. The
SHC in the absence of an external magnetic field is evaluated
with the PAOFLOW package [30].
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TABLE I. Classification of the magnetic structures with the ordering vector q = 0 in CuMnAs according to the symmetry-adapted
multipole [35] as well as the irreducible representations (irreps). Magnetic moment alignments for four manganese atoms are listed along
with the magnetic space group (MSG), magnetic point group (MPG), and the AHC tensor components (AHC) that can be finite under the
magnetic point groups which are also shown in Refs. [36,39].

IREP Multipole Magnetic moment alignment MSG MPG AHC

B3g Mx

⎛
⎜⎜⎝

Mn1 : 1.0 0.0 0.0
Mn2 : 1.0 0.0 0.0
Mn3 : 1.0 0.0 0.0
Mn4 : 1.0 0.0 0.0

⎞
⎟⎟⎠ Pnm′a′ m′m′m σyz

B2g My

⎛
⎜⎜⎝

Mn1 : 0.0 1.0 0.0
Mn2 : 0.0 1.0 0.0
Mn3 : 0.0 1.0 0.0
Mn4 : 0.0 1.0 0.0

⎞
⎟⎟⎠ Pn′ma′ m′m′m σzx

B1g Mz

⎛
⎜⎜⎝

Mn1 : 0.0 0.0 1.0
Mn2 : 0.0 0.0 1.0
Mn3 : 0.0 0.0 1.0
Mn4 : 0.0 0.0 1.0

⎞
⎟⎟⎠ Pn′m′a m′m′m σxy

Au Mu

⎛
⎜⎜⎝

Mn1 : −0.410228 0.000000 0.911982
Mn2 : −0.410228 0.000000 −0.911982
Mn3 : 0.410228 0.000000 0.911982
Mn4 : 0.410228 0.000000 −0.911982

⎞
⎟⎟⎠ Pn′m′a′ m′m′m′

Au Mv

⎛
⎜⎜⎝

Mn1 : 0.911982 0.000000 0.410228
Mn2 : 0.911982 0.000000 −0.410228
Mn3 : −0.911982 0.000000 0.410228
Mn4 : −0.911982 0.000000 −0.410228

⎞
⎟⎟⎠ Pn′m′a′ m′m′m′

B2u Mzx

⎛
⎜⎜⎝

Mn1 : −0.668816 0.000000 −0.743428
Mn2 : 0.668816 0.000000 −0.743428
Mn3 : −0.668816 0.000000 0.743428
Mn4 : 0.668816 0.000000 0.743428

⎞
⎟⎟⎠ Pnm′a mmm′

B3u Tx

⎛
⎜⎜⎝

Mn1 : 0.0 −1.0 0.0
Mn2 : 0.0 1.0 0.0
Mn3 : 0.0 −1.0 0.0
Mn4 : 0.0 1.0 0.0

⎞
⎟⎟⎠ Pn′ma mmm′

B2u Ty

⎛
⎜⎜⎝

Mn1 : 0.743428 0.000000 −0.668816
Mn2 : −0.743428 0.000000 −0.668816
Mn3 : 0.743428 0.000000 0.668816
Mn4 : −0.743428 0.000000 0.668816

⎞
⎟⎟⎠ Pnm′a mmm′

B1u Tz

⎛
⎜⎜⎝

Mn1 : 0.0 1.0 0.0
Mn2 : 0.0 1.0 0.0
Mn3 : 0.0 −1.0 0.0
Mn4 : 0.0 −1.0 0.0

⎞
⎟⎟⎠ Pnma′ mmm′

Ag Tu

⎛
⎜⎜⎝

Mn1 : 0.0 1.0 0.0
Mn2 : 0.0 −1.0 0.0
Mn3 : 0.0 −1.0 0.0
Mn4 : 0.0 1.0 0.0

⎞
⎟⎟⎠ Pnma mmm

B3g Tyz

⎛
⎜⎜⎝

Mn1 : 0.0 0.0 1.0
Mn2 : 0.0 0.0 −1.0
Mn3 : 0.0 0.0 −1.0
Mn4 : 0.0 0.0 1.0

⎞
⎟⎟⎠ Pnm′a′ m′m′m σyz

B1g Txy

⎛
⎜⎜⎝

Mn1 : −1.0 0.0 0.0
Mn2 : 1.0 0.0 0.0
Mn3 : 1.0 0.0 0.0
Mn4 : −1.0 0.0 0.0

⎞
⎟⎟⎠ Pn′m′a m′m′m σxy

The ELK code [31] and WANNIER90 [32] are used to in-
vestigate the magnetic field dependence of the magnetization,
AHE, and SHE under external magnetic fields. The 3p, 3d ,
and 4s orbitals of Cu, the 3s, 3p, 3d , and 4s orbitals of Mn,
the 3d , 4s, and 4p orbitals of As are treated as band states. The

4s, 3d orbitals for Cu and Mn atoms and 4s, 4p orbitals for As
atoms are included for the Wannier interpolation scheme us-
ing WANNIER90 to construct the realistic tight-binding models
obtained from the first-principles band structures [33]. Most
of the AHC and SHC values reach convergence within a few
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FIG. 2. Linear combinations of the magnetic-structure bases to
obtain the collinear-AFM states.

percent under the evaluation with a uniform k-point mesh of
180×280×180 and an adaptive k-mesh refinement [24,34] of
5×5×5 for absolute values of the (spin) Berry curvature larger
than 100 Å2. Some calculations, which need a larger k mesh,
will be noticed in Sec. IV.

III. SYMMETRY ASPECTS

Orthorhombic CuMnAs crystallizes in the space group
Pnma (No. 62), whose point group is D2h, and Cu, Mn, and
As are all located in the 4c site. Figure 1 shows the energeti-
cally inequivalent magnetic structures with the ordering vector
q = 0, classified according to the irreducible representations
(irreps) of the D2h point group, generated by the cluster multi-
pole expansion scheme of Ref. [35]. The generated magnetic
structures are consistent with the decomposition of the mag-
netic representation D(mag) of the 4c site in space group Pnma
into irreps as follows:

D(mag) = Ag ⊕ 2B1g ⊕ B2g ⊕ 2B3g

⊕ 2Au ⊕ B1u ⊕ 2B2u ⊕ B3u. (6)

We list magnetic moments on four manganese atoms, the
magnetic space group, magnetic point groups, and finite AHC
tensor components in Table I. The magnetic structures belong-
ing to the ungerade irrep with a subscript u are forbidden to
have a finite AHC since they preserve T P symmetry, which
imposes the vanishing of the Berry curvature at arbitrary k
points in the entire BZ [37,38].

The magnetic toroidal (MT) dipole B3u(Tx ) in Fig. 1, cor-
responding to a collinear AFM with the magnetic moment

TABLE II. Symmetry operators of magnetic point groups in the
Col-B3u, Col-Au, and Col-B2u structures.

Col-B3u Col-Au Col-B2u

E E E
C2x C2x C2y

PC2y C2y PC2x

PC2z C2z PC2z

TC2y T P TC2x

TC2z T PC2x TC2z

T P T PC2y T P
T PC2x T PC2z T PC2y

orientation along the y axis, was experimentally observed
[20]. We refer to this collinear-AFM structure as the Col-B3u

structure. The collinear AFM obtained by the linear combi-
nation of magnetic (M) quadrupoles Mu and Mv belonging to
Au irrep, referred to as Col-Au, has local magnetic moments
along the z axis. Another collinear AFM obtained by a linear
combination of M quadrupole Mzx and MT quadrupole Ty

belonging to B2u irrep, referred to as Col-B2u, has local mag-
netic moments along the x axis. Three magnetic structures,
Col-B3u, Col-Au, and Col-B2u, are illustrated in Fig. 2 and their
symmetry operators of the magnetic point groups are listed in
Table II.

To recognize the finite SHC tensor components as well as
to understand the relations of the spin Berry curvature with
magnetic symmetry operations, we provide a detailed analysis
of the constraint on the spin Berry curvature in k space for
some representative symmetries. Considering unitary symme-
try operators R and antiunitary symmetry operators A = T R
with their representation matrices D j for the charge current
and D js

for the spin current, respectively, we have relations for
the spin Berry curvature for the unitary operation as follows,

�
S,γ

n,αβ (Rk) =
∑

α′β ′γ ′
D js

αγα′γ ′ (R)D j
ββ ′ (R)�S,γ ′

n,α′β ′ (k), (7)

and for antiunitary operation,

�
S,γ

n,αβ (Ak) = −
∑

α′β ′γ ′
D js

αγα′γ ′ (A)D j
ββ ′ (A)�S,γ ′

n,α′β ′ (k). (8)

We list the relations of the reciprocal coordinate k and spin
Berry curvature under unitary and antiunitary transformations
for some symmetry operations of cubic, tetragonal, and or-
thorhombic structures in Table III.

As seen in the table, the spin Berry curvature keeps its sign
even under the spatial inversion P, the time-reversal T , and
T P symmetry. As a result, SHC components can be finite after
BZ integration in Eq. (2) even with these symmetries as for the
nonmagnetic state. In addition, spin Berry curvature cancels
out after BZ integration for most of the components under C2x,
C2y, C2z, or in conjunction of these symmetry operators with
T , P, or T P, leading to the vanishing of several components
of the SHC tensor. For example, we can derive the following
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TABLE III. Relations of the reciprocal coordinate k and spin Berry curvature under the unitary and antiunitary transformation for some
representative symmetries in the cubic, tetragonal, and orthorhombic systems. Cnμ, P, T indicate the n-fold rotation operator along the μ axis,
the spatial inversion, and the time-reversal operator, respectively. For example, �S,y

yy with [†] in the table means �S,y
yy (k′) = �S,x

xx (k) under the
C4z symmetry with k′ = (−ky, kx, kz ).

(a) For �S,x

k′ = Rk or Ak �S,x
xx �S,x

xy �S,x
xz �S,x

yx �S,x
yy �S,x

yz �S,x
zx �S,x

zy �S,x
zz

P (−kx, −ky, −kz ) �S,x
xx �S,x

xy �S,x
xz �S,x

yx �S,x
yy �S,x

yz �S,x
zx �S,x

zy �S,x
zz

T (−kx, −ky, −kz ) �S,x
xx �S,x

xy �S,x
xz �S,x

yx �S,x
yy �S,x

yz �S,x
zx �S,x

zy �S,x
zz

T P (kx, ky, kz ) �S,x
xx �S,x

xy �S,x
xz �S,x

yx �S,x
yy �S,x

yz �S,x
zx �S,x

zy �S,x
zz

C2x (kx, −ky, −kz ) �S,x
xx −�S,x

xy −�S,x
xz −�S,x

yx �S,x
yy �S,x

yz −�S,x
zx �S,x

zy �S,x
zz

C2y (−kx, ky, −kz ) −�S,x
xx −�S,x

xy −�S,x
xz −�S,x

yx −�S,x
yy �S,x

yz −�S,x
zx �S,x

zy −�S,x
zz

C2z (−kx, −ky, kz ) −�S,x
xx −�S,x

xy −�S,x
xz −�S,x

yx −�S,x
yy �S,x

yz −�S,x
zx �S,x

zy −�S,x
zz

C2[11̄0] (−ky, −kx, −kz ) −�S,y
yy −�S,y

yx −�S,y
yz −�S,y

xy −�S,y
xx −�S,y

xz −�S,y
zy −�S,y

zx −�S,y
zz

C3[111] (kz, kx, ky ) �S,z
zz �S,z

zx �S,z
zy �S,z

xz �S,z
xx �S,z

xy �S,z
yz �S,z

yx �S,z
yy

C4z (−ky, kx, kz ) �S,y
yy [†] −�S,y

yx �S,y
yz −�S,y

xy �S,y
xx −�S,y

xz �S,y
zy −�S,y

zx �S,y
zz

(b) For �S,y

k′ = Rk or Ak �S,y
xx �S,y

xy �S,y
xz �S,y

yx �S,y
yy �S,y

yz �S,y
zx �S,y

zy �S,y
zz

P (−kx,−ky, −kz ) �S,y
xx �S,y

xy �S,y
xz �S,y

yx �S,y
yy �S,y

yz �S,y
zx �S,y

zy �S,y
zz

T (−kx,−ky, −kz ) �S,y
xx �S,y

xy �S,y
xz �S,y

yx �S,y
yy �S,y

yz �S,y
zx �S,y

zy �S,y
zz

T P (kx, ky, kz ) �S,y
xx �S,y

xy �S,y
xz �S,y

yx �S,y
yy �S,y

yz �S,y
zx �S,y

zy �S,y
zz

C2x (kx, −ky, −kz ) −�S,y
xx −�S,y

xy �S,y
xz −�S,y

yx −�S,y
yy −�S,y

yz �S,y
zx −�S,y

zy −�S,y
zz

C2y (−kx, ky, −kz ) �S,y
xx −�S,y

xy �S,y
xz −�S,y

yx �S,y
yy −�S,y

yz �S,y
zx −�S,y

zy �S,y
zz

C2z (−kx, −ky, kz ) −�S,y
xx −�S,y

xy �S,y
xz −�S,y

yx −�S,y
yy −�S,y

yz �S,y
zx −�S,y

zy −�S,y
zz

C2[11̄0] (−ky,−kx, −kz ) −�S,x
yy −�S,x

yx −�S,x
yz −�S,x

xy −�S,x
xx −�S,x

xz −�S,x
zy −�S,x

zy −�S,x
zz

C3[111] (kz, kx, ky ) �S,x
zz �S,x

zx �S,x
zy �S,x

xz �S,x
xx �S,x

xy �S,x
yz �S,x

yx �S,x
yy

C4z (−ky, kx, kz ) -�S,x
yy �S,x

yx −�S,x
yz �S,x

xy −�S,x
xx �S,x

xz −�S,x
zy �S,x

zx −�S,x
zz

(c) For �S,z

k′ = Rk or Ak �S,z
xx �S,z

xy �S,z
xz �S,z

yx �S,z
yy �S,z

yz �S,z
zx �S,z

zy �S,z
zz

P (−kx,−ky, −kz ) �S,z
xx �S,z

xy �S,z
xz �S,z

yx �S,z
yy �S,z

yz �S,z
zx �S,z

zy �S,z
zz

T (−kx,−ky, −kz ) �S,z
xx �S,z

xy �S,z
xz �S,z

yx �S,z
yy �S,z

yz �S,z
zx �S,z

zy �S,z
zz

T P (kx, ky, kz ) �S,z
xx �S,z

xy �S,z
xz �S,z

yx �S,z
yy �S,z

yz �S,z
zx �S,z

zy �S,z
zz

C2x (kx, −ky,−kz ) −�S,z
xx �S,z

xy −�S,z
xz �S,z

yx −�S,z
yy −�S,z

yz −�S,z
zx −�S,z

zy −�S,z
zz

C2y (−kx, ky,−kz ) −�S,z
xx �S,z

xy −�S,z
xz �S,z

yx −�S,z
yy −�S,z

yz −�S,z
zx −�S,z

zy −�S,z
zz

C2z (−kx, −ky, kz ) �S,z
xx �S,z

xy −�S,z
xz �S,z

yx �S,z
yy −�S,z

yz −�S,z
zx −�S,z

zy �S,z
zz

C2[11̄0] (−ky,−kx, −kz ) −�S,z
yy −�S,z

yx −�S,z
yz −�S,z

xy −�S,z
xx −�S,z

xz −�S,z
zy −�S,z

zx −�S,z
zz

C3[111] (kz, kx, ky ) �S,y
zz �S,y

zx �S,y
zy �S,y

xz �S,y
xx �S,y

xy �S,y
yz �S,y

yx �S,y
yy

C4z (−ky, kx, kz ) �S,z
yy −�S,z

yx �S,z
yz −�S,z

xy �S,z
xx −�S,z

xz �S,z
zy −�S,z

zx �S,z
zz

relations under C2x, PC2x, TC2x, or T PC2x symmetries:

σ S,x
xy = σ S,x

yx = σ S,x
xz = σ S,x

zx = 0,

σ S,y
xx = σ S,y

yy = σ S,y
zz = σ S,y

yz = σ S,y
zy = 0,

σ S,z
xx = σ S,z

yy = σ S,z
zz = σ S,z

yz = σ S,z
zy = 0.

(9)

Further finite SHC components can be seen from transforma-
tion relations of the spin Berry curvature for other symmetry
operations listed in Table III. As the result, from the above
symmetry analysis for symmetry operators in Table II, we
obtain SHC tensor components finite for the Col-B3u, Col-
Au, and Col-B2u magnetic structures in Table IV, which is
consistent with the results shown in Ref. [39].

IV. RESULTS

A. Magnetic stability and ground state properties

We calculate the total energies for the magnetic configu-
rations in Figs. 1 and 2 in the presence of SOC to evaluate
the stability of the magnetic structures in the way suggested

TABLE IV. The symmetry-imposed shapes of the SHC tensors
for the Col-B3u, Col-Au, and Col-B2u structures.

σS,x σS,y σS,z

⎛
⎝0 0 0

0 0 σ S,x
yz

0 σ S,x
zy 0

⎞
⎠

⎛
⎝ 0 0 σ S,y

xz

0 0 0
σ S,y

zx 0 0

⎞
⎠

⎛
⎝ 0 σ S,z

xy 0
σ S,z

yx 0 0
0 0 0

⎞
⎠
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TABLE V. Total magnetization |M total|(μB) of magnetic struc-
tures in Figs. 1 and 2 and the difference in total energy between
each magnetic ordering and nonmagnetic state �Enm (meV/u.c.)
are listed. To easily discern, the different energies �E (meV/u.c.)
between each magnetic ordering with the most stable magnetic struc-
ture Col-B2u are also shown in the last column.

Structure |M total|(μB) �Enm (meV/u.c.) �E (meV/u.c.)

B3g(Mx ) 16.3 −3878.5 912.4
B2g(My ) 16.3 −3878.3 912.6
B1g(Mz ) 16.3 −3878.2 912.7
Au(Mu) 0.0 −4784.3 6.6
Au(Mv ) 0.0 −4444.6 346.3
B2u(Mzx ) 0.0 −4771.5 19.4
Col-B2u 0.0 −4790.9 0.0
Col-B3u 0.0 −4790.7 0.2
Col-Au 0.0 −4790.5 0.4
B2u(Ty ) 0.0 −4784.9 6.0
B1u(Tz ) 0.0 −4516.7 272.2
Ag(Tu) 0.0 −4750.9 40.0
B3g(Tyz ) 0.0 −4750.7 40.2
B1g(Txy ) 0.0 −4750.8 40.1

recently [40], setting a fully polarized valence state as the
initial setting. The obtained total energy differences and total
magnetization are listed in Table V. The magnetic structures
different only from magnetic anisotropy produce energy dif-
ferences only by considering SOC and have the same total
energies if the first-principles calculations are implemented
without SOC. As a result, the Col-B2u, Col-B3u, and Col-Au

structures have close total energies as well as those for the
FM structures Mx, My, and Mz in Fig. 1 due to the small SOC
in the Mn 3d orbitals, as shown in Table V.

The result in Table V shows that Col-B2u, Col-B3u, and
Col-Au are stable structures with an energy difference within
0.4 meV and much lower than other magnetic structures.
The small discrepancy of the most stable magnetic structure
from the experimentally observed one, that is the calcula-
tion predicting the most stable magnetic structure as Col-B2u

against the Col-B3u reported in experiment [20], can be ad-
dressed to the low accuracy for magnetic anisotropy within
GGA calculations [41]. Hereinafter, we will focus on the
characteristics of the Col-B3u, Col-Au, and Col-B2u magnetic
structures. The magnetic moments after getting convergence
for the calculations using an initial magnetic structure of
Col-Au and Col-B2u have magnetic moments that are slightly
canted along the x and z directions, respectively, while those
for Col-B3u are purely on the y direction. The difference
in the canting structure of magnetic alignments for different
collinear-AFM structures is understood from the geometrical
degree of freedom of the magnetic alignment adopted in each
irrep as illustrated in Fig. 2. The atomic positions obtained for
the Col-B3u structure are listed in Table VI, and differences
of those for the Col-Au and Col-B2u structures are within
0.005 Å.

The BZ of orthorhombic CuMnAs is illustrated with high-
symmetry points in Fig. 3(a). Figure 3(b) shows the projected
density of states for the Col-B3u structure as those for the Col-
Au and Col-B2u structures are similar with the plotted energy

TABLE VI. Relaxed atomic positions for the Col-B3u magnetic
structure in CuMnAs.

Atoms x y z

Cu 0.379 0.25 0.055
Cu 0.621 0.75 0.945
Cu 0.121 0.75 0.555
Cu 0.879 0.25 0.445
Mn1 0.457 0.25 0.674
Mn2 0.543 0.75 0.327
Mn3 0.043 0.75 0.174
Mn4 0.957 0.25 0.827
As 0.761 0.25 0.127
As 0.239 0.75 0.873
As 0.739 0.75 0.627
As 0.261 0.25 0.373

scale. All three collinear-AFM structures are semimetallic and
the Mn 3d and Cu 3d orbitals give a large density near the
Fermi level, implying their dominant role in the transport
properties. The energy bands of tight-binding models repro-
duce the energy bands obtained by first-principles calculations
within the energy interval from the lowest energy of the va-
lence bands to 2 eV above the Fermi energy, as shown in
Fig. 3(c).

Figures 4(a), 4(c), 4(e), and 4(g) show the electronic band
structures near the Fermi energy in the nonmagnetic, Col-B3u

magnetic, Col-Au magnetic, and Col-B2u magnetic structures
plotted both with and without SOC. These collinear-AFM
states are characterized with, at least, doubly degenerate
electronic bands at all k points due to the preservation of
T P symmetry. As a result, crossing points in the energy
bands are Dirac points, which are characterized by fourfold
band degeneracy. For the calculations neglecting SOC, these
collinear-AFM structures have Dirac nodal lines in the (010)
plane containing the � point as illustrated in Fig. 6(a) with a
small dispersion in the energy from 0 to about 30 meV. The
nodal line degeneracy for the Col-B3u and Col-B2u magnetic
structures splits entirely by considering the effect of SOC.
Meanwhile, the Col-Au magnetic structure forms one pair of
Dirac points, protected by screw rotation symmetry S2z, on
the nodal line even after considering the SOC, as investigated
in Ref. [17]. The two Dirac points of the Col-Au magnetic
structure are located between the X and U points with the
coordinates D1(0.50, 0.0, 0.47) and D2(−0.50, 0.0,−0.47) at
−12.7 meV from the Fermi level.

B. Topological degeneracy and spin Hall effect

Figures 4(b), 4(d), 4(f), and 4(h) show the SHC as a
function of chemical potential for the nonmagnetic, Col-B3u

magnetic, Col-Au magnetic, and Col-B2u magnetic structures.
The result in the nonmagnetic calculation shows an ap-
proximate antisymmetry for SHC components σ

S,γ

αβ ≈ −σ
S,γ

βα ,
while collinear-AFM states exhibit a large anisotropic SHE.
We illustrate an example of this anisotropy in Fig. 5. Under
electric fields along the x and y direction, we have σ S,z

xy ≈
−σ S,z

yx for the nonmagnetic state and |σ S,z
xy | � |σ S,z

yx | for the
Col-B3u state. It implies that the spin current flowing along
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FIG. 3. (a) The first BZ of a simple orthorhombic lattice with
high-symmetry points. (b) The projected density of states of the
Col-B3u structure for the orbitals Cu 4s (green), Cu 3d (blue), Mn
4s (pink), Mn 3d (red), As 4p (brown), As 4s (gold), and total
density of states (black). (c) Energy bands from the first-principles
calculations (red) and from a Wannier interpolation (green) of the
Col-B3u magnetic structure along high-symmetry lines.

the x direction with the z-spin component is significantly
enhanced under an applied electric field along the y direction,
i.e., | jS,z

x,Col-B3u
| � | jS,z

x,nonmag|, with the transition from a non-
magnetic state to the AFM state occurring by lowering the
temperature. The drastic change of the SHC components by
magnetic ordering might be useful for spintronics applications
such as to control the spin current by varying the temperature.

The largest components σ S,z
xy at zero energy have magni-

tudes of 142.4, 182.0, and 140.8 (h̄/e) S/cm in the Col-B3u,
Col-Au, and Col-B2u magnetic structures, respectively. Each
collinear-AFM state has a peak for σ S,z

xy located near the en-
ergy of the Dirac points and nodal line, which is from 0 to
about 30 meV below the Fermi energy. A strong dependence
on the chemical doping of the SHC is expected from the peak
structure of the chemical potential dependence of the SHC
around the Fermi level, whose maximum is ∼250 (h̄/e) S/cm,
which is comparable with first-principles calculation results of
ordinary metals such as Ta and W, ∼200 (h̄/e) S/cm [13].

Figure 6(b) shows the spin Berry curvature after taking
the band summation, �S,z

xy,sum = ∑
n fn�

S,z
n,xy, integrated over

(010) planes with the center changing from −Y to � and

FIG. 4. (a), (c), (e), and (g) Electronic band structures along
high-symmetry lines without SOC (red) and with SOC (blue) in
(a) nonmagnetic, (c) Col-B3u, (e) Col-Au, and (g) Col-B2u states,
respectively. (b), (d), (f), and (h) The SHC components σ S,z

xy (black),
σ S,z

yx (blue),σ S,x
yz (green), σ S,x

zy (gold), σ S,y
zx (brown), and σ S,y

xz (pink) in
(b) nonmagnetic, (d) Col-B3u, (f) Col-Au, and (h) Col-B2u structures,
respectively.

to Y in the BZ. The plot shows that the largest contribu-
tion from the (010) plane includes the � point and reduces
with the plane center moving apart from � along the y axis.
Figures 6(c)–6(e) show the distribution of �S,z

xy,sum, which con-
tributes to the SHC σ S,z

xy , in the (010) plane containing the
� point within the first BZ, illustrated in Fig. 6(a). The plot
shows the large �S,z

xy distributed around the gapped nodal line,
implying the large contribution to the SHC from the Bloch
states around the nodal line gapped out with the SOC in the
(010) plane. The distribution of the spin Berry curvature in k
space must reflect the symmetry constraint from the magnetic
point group of the magnetic structure as discussed in Sec. III.
As a result, under the mirror symmetry my = PC2y and the
two-fold rotation C2y, the symmetry of �S,z

xy,sum in Fig. 6(b) for
the Col-B3u and Col-Au structure, respectively, is reflected as
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FIG. 5. Illustration of the anisotropic SHE, which can be ex-
ploited for spintronics applications. Here, E is the electric field,
jS,z indicates the spin current with a z-spin component, and TC is
the transition temperature from the AFM state to the nonmagnetic
state.

∫
�S,z

xy,sum(kx,−ky, kz )dS = ∫
�S,z

xy,sum(kx, ky, kz )dS. In Figs. 6(c)
and 6(e) the spin Berry curvatures of the Col-B3u and Col-B2u

magnetic structures hold the relation �S,z
xy,sum(kx, ky,−kz ) =

�S,z
xy,sum(kx, ky, kz ) with the mirror symmetry mz = PC2z.

C. Spin Hall effect under external magnetic fields

We consider the Col-B3u magnetic structure, which cor-
responds to the experimentally observed magnetic structure,
under applied magnetic fields along the x, y, z directions, Hx,
Hy, and Hz. We illustrate the canting of the magnetic direction
of Col-B3u under external magnetic fields along the z axis, Hz,
in Fig. 7(a). When the external magnetic fields are perpendicu-
lar to the direction of the local magnetic moment, the absolute
value of net magnetization increases with increasing the mag-
netic fields as shown in Fig. 7(b) for the magnetic fields Hx and
Hz. The external magnetic fields parallel to the local magnetic
moments require a large field strength to flip the magnetic
moments by conquering the AFM-exchange energy. The large
spin-flip transition from AFM to FM corresponding to the
energy difference between the two magnetic ordered states
shown in Table V prevents magnetization from developing
with the applied magnetic fields along the y axis, Hy, as seen in
Fig. 7(b). As a result, applying the magnetic field Hy does not
affect the SHC in the Col-B3u structure within the investigated
range of the magnetic fields in this work.

Figure 7(c) shows the SHC σ S,z
xy under the magnetic fields

applied along the x and z axis for the Col-B3u structure. The
absolute value of the SHC reduces with increasing the external
magnetic fields, and then it mostly reaches a saturation value
when the external magnetic fields increase in the limit of the
considered applied magnetic fields from 0 to 85.75 T. We plot
the electronic band structure and corresponding spin Berry

FIG. 6. (a) Nodal line (pink) in the (010) plane including �

in the Col-B3u, Col-Au, and Col-B2u magnetic structures without
SOC. (b) The spin Berry curvature after taking the band summa-
tion is integrated on the (010) planes for the Col-B3u (dark-blue),
Col-Au (brown), and Col-B2u (dark-green) structure with SOC with
its center changing from −Y to �, and to Y [illustrated as green
rectangles in (a)]. (c)–(e) The spin Berry curvature when the SOC is
included for the Col-B3u, Col-Au, and Col-B2u magnetic structures,
respectively.

curvature along the high-symmetry lines for the different
magnitudes of external magnetic fields Hx in Fig. 7(d). The
magnetic fields strongly reduce the intensity of the spin Berry
curvature component, especially around the U point of the BZ,
at which the Dirac points are present around, against the small
change in the band structure [see Fig. 7(d)] and suppress the
SHC as a result [see Fig. 7(c)].
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FIG. 7. (a) Illustration of the change of the local magnetic mo-
ment under Hz for the Col-B3u magnetic structure. The red vectors
show magnetic moments in the ground state, and the blue vectors
show canted magnetic moments under Hz. (b) Magnetization under
the magnetic fields Hx, Hy, Hz in the Col-B3u magnetic structure.
(c) The SHC σ S,z

xy under Hx and Hz in the Col-B3u magnetic structure.
(d) Change of the electronic band structure and spin Berry curvature
under the external magnetic fields along high-symmetry lines.

D. Anomalous Hall effect under external magnetic fields

In the collinear-AFM states of CuMnAs, the preserved T P
symmetry forbids the AHC to be finite. Meanwhile, we here
show that the intrinsic AHC component can be developed
significantly with the applied magnetic fields due to the local
intensive contribution of the Berry curvature for the Bloch
states related to the topological bands. The result in Fig. 8(a)
shows the development of the AHC under different directions

FIG. 8. (a) The AHC σ A
x = σ A

yz and σ A
z = σ A

xy under Hx and
Hz in the Col-B3u structure. (b) The electronic structure along
high-symmetry lines, and the corresponding Berry curvature �A

indicating �x = �A
sum,yz or �z = �A

sum,xy in the logarithm base 10
scale, sgn(�A ) log10(|�A| + 1), under magnetic fields Hx (blue) and
Hz (red) of 51.45 T. Here, sgn(x) is the sign function, i.e., sgn(x) =
−1 if x < 0, sgn(x) = 0 if x = 0, and sgn(x) = 1 if x > 0. (c)–(f)
Berry curvature in the (010) plane containing � for Hx = 17.15 T,
Hx = 51.45 T, Hz = 17.15 T, Hz = 51.45 T, respectively, with the
black lines indicating the Fermi surface.
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FIG. 9. (a) The AHC as a function of the energy around the
Fermi energy in the case of applied magnetic fields 8.575 T along
the x axis and z axis in the Col-B3u structure. The Berry curvature
integrated on the (010) plane with its center changing from −Y to �,
and to Y for the Col-B3u structure with SOC under different (b) Hx

and (c) Hz.

of the applied magnetic fields Hx and Hz which cause the lin-
ear development of the magnetization in the Col-B3u structure
in Fig. 7(b). Under the magnetic field along the x axis, the
magnitude of AHC σ A

x increases from zero to 27 S/cm at Hx

of about 8.575 T and shows only a weak change above the
fields. Meanwhile, the AHC σ A

z increases monotonically with
increasing magnetic field along the z axis.

We show the electronic band structure and corresponding
Berry curvature along the high-symmetry lines in the case
of the applied magnetic fields of 51.45 T along the x and
z axis in Fig. 8(b). As shown in Fig. 8(b), the Berry cur-
vature around the U point exhibits a large difference for the
different directions of the applied magnetic fields against the
small change in the band structure. The difference can be
seen more clearly for the distribution of the Berry curva-
ture in the (010) plane including the � point for different
directions as plotted in Figs. 8(c)–8(f). The figure shows the
stronger intensity of the Berry curvature around the U point
under Hx magnetic fields than that under Hz fields while the
small Berry curvature under Hz fields spreads more around
the gapped nodal lines than that under Hx fields. Since the
local peaky Berry curvature can change drastically with the
small change in the energy bands and a widely spread small
Berry curvature provides a more gradual change in the con-
tribution to the AHC, the difference in the development of

TABLE VII. The dependence of AHC on the k-mesh and adap-
tive mesh (Adapt.) at peaks of AHC values in the Col-B3u structure
in Fig. 9(a).

(a) Under Hx = 8.575 T
σ A

x (S/cm)

k mesh (Adapt.) E = −0.03 eV E = 0 eV

180×280×180 (5×5×5) 16.9676 −23.9518
180×280×180 (7×7×7) 17.7158 −23.9188
200×300×200 (7×7×7) 17.4178 −24.9715

(b) Under Hz = 8.575 T
σ A

z (S/cm)

k mesh (Adapt.) E = −0.03 eV E = −0.01 eV

180×280×180 (5×5×5) 5.8248 7.5697
180×280×180 (7×7×7) −6.6037 7.4908
200×300×200 (7×7×7) −6.8678 7.8558

AHC for different magnetic field directions can be explained
by the different origin of the Berry curvature, as shown in
Figs. 8(c)–8(f).

We show the AHC value as a function of chemical po-
tential in the Col-B3u structure at an external magnetic field
of 8.575 T in Fig. 9(a). The result shows the drastic change
of magnitude and sign of AHC values around the energy of
the gapped out nodal line, which is about from 0 to 30 meV
below the Fermi energy. The rapid change implies the possible
change in the AHC value via chemical doping and partly helps
us to realize the origin of the AHC possible from the gapped
nodal line. We increase the k mesh to check the convergence
around the region with the rapid change shown in Table VII.
To see where the largest contribution of the Berry curvature
is to the AHC, we estimated the sum of the Berry curvature
in (010) planes with its center changing from −Y to � and
to Y for the different intensity values of Hx and Hz in the
Col-B3u structure. The result in Figs. 9(b) and 9(c) shows that
the largest summation belongs to the (010) plane including
�, which contains the gapped out Dirac nodal line by SOC.
The microscopic mechanism leading to significant anoma-
lous components of the Hall effect predicted for the AFM
CuMnAs is therefore concluded to be the further lifting of
band degeneracy under external magnetic fields for the Bloch
states generated with the splitting of nodal lines by SOC near
the Fermi energy.

V. CONCLUSIONS

In summary, we investigated the influence of topological
bands in macroscopic transport phenomena, SHE and AHE,
in orthorhombic CuMnAs. We provided a symmetry analysis
for these transport phenomena and magnetic structures in
the crystal structure. The collinear-AFM states in CuMnAs
form Dirac nodal lines in the energy bands near the Fermi
energy in the absence of SOC and the nodal lines generate
a large SHC with lifting degeneracies by SOC. The change
of the SHC from the antisymmetric tensor components in
the nonmagnetic state to anisotropic ones in the AFM states
enables us to manipulate the spin current by controlling mag-
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netism, and is expected to be applicable as spintronics devices
[15,16,42–53].

An experimentally observed collinear-AFM state referred
to as the Col-B3u structure, in which the local magnetic mo-
ments are aligned along the b axis, is investigated with the
effect of applied magnetic fields. Applied magnetic fields
cause a drastic change in the SHC and AHC with the local
contribution from the Bloch states around the nodal lines
opening the gap with SOC through further lifting of the band
degeneracy due to T P symmetry breaking, against the simple
linear development of the magnetization.

The rapid chemical potential dependence in the SHC and
AHC leads to the possibility to manipulate these transport
phenomena via chemical doping in CuMnAs. The SHC and
AHC in the collinear-AFM state thus can pave a way to
control these phenomena in the fields of spintronics as well

as to investigate the transport phenomena for further AFM
materials.
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