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Equilibrium current in a Weyl semimetal–superconductor heterostructure
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A heterostructure consisting of a magnetic Weyl semimetal and a conventional superconductor exhibits an
equilibrium current parallel to the superconductor interface and perpendicular to the magnetization. Analyzing a
minimal model, which as a function of parameters may be in a trivial magnetic insulator phase, a Weyl semimetal
phase, or a three-dimensional weak Chern insulator phase, we find that the equilibrium current is sensitive to the
presence of surface states, such as the topological Fermi-arc states of the Weyl semimetal or the chiral surface
states of the weak Chern insulator. While there is a nonzero equilibrium current in all three phases, the appearance
of the surface states in the topological regime leads to a reversal of the direction of the current, compared to
the current direction for the trivial magnetic insulator phase. We discuss the interpretation of the surface-state
contribution to the equilibrium current as a real-space realization of the superconductivity-enabled equilibrium
chiral magnetic effect of a single chirality, predicted to occur in bulk Weyl superconductors.
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I. INTRODUCTION

A Weyl semimetal is a three-dimensional crystal with topo-
logically protected nodal points in the band structure [1–3].
The nodes have a well-defined chirality and they appear in
pairs, such that in total the sum of the chiralities vanishes [4].
One manifestation of chiral Weyl nodes and the associated
chiral anomaly in crystals is the existence of topologically
protected surface states, which connect the projections of
two Weyl nodes of opposite chirality on the surface band
structure, in the form of two “Fermi arcs” located at opposite
surfaces of the Weyl semimetal and moving in opposite direc-
tions. Another manifestation is the chiral magnetic effect—an
external-magnetic-field induced current of Weyl Fermions
directed parallel or antiparallel to the magnetic field depend-
ing on the chirality—which leads to unusual nonequilibrium
transport properties of the crystal [5–9]. In equilibrium the
chiral anomaly usually remains hidden since the chiral cur-
rents must compensate each other, in agreement with general
band-theoretic considerations [10].

As was shown by O’Brien, Beenakker, and Adagideli [11]
(see also Ref. [12]), there is, however, a way to circumvent the
compensation of chiral anomalies in equilibrium with the help
of superconductivity. This is most easily seen in a minimal
model of a magnetic Weyl semimetal with two Weyl nodes of
opposite chirality and a superconducting s-wave pair poten-
tial. If the pair momentum is tuned to the momentum of one
of the two Weyl nodes via a flux or a supercurrent bias, super-
conductivity is induced there and the Weyl node is gapped out,
while the node of opposite chirality is left mostly unaffected.
In an applied magnetic field, this unaffected chirality gives
rise to an equilibrium current, as the opposite chirality is no
longer available to carry the compensating current. Unfortu-
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nately, making a Weyl semimetal superconducting [13–16]
meets the difficulty of a vanishing density of states at the Weyl
nodes, which suppresses the critical temperature. Another ob-
stacle, specifically in the case of a magnetic Weyl semimetal
considered in this work, is the competition with magnetism.

An alternative route to achieve superconducting phases
in Weyl semimetals is to make use of the proximity-
induced superconductivity in heterostructures by combining
an otherwise nonsuperconducting Weyl semimetal (N) and
a conventional superconductor (S) [17–20]. One promi-
nent type of such heterostructures is the Josephson junction
(SNS-heterostructure), which has been extensively studied
theoretically exploring the influence of various types of su-
perconducting pairing mechanisms [21–35] and has also
been realized experimentally [19,36–40]. Other examples
of similar heterostructures are NS-type [17,20,41–51], and
NSN-type [52–56] heterostructures.

While most of these studies investigate equilibrium cur-
rents that flow perpendicular to the superconductor–Weyl-
semimetal interface, in this article we theoretically investigate
the equilibrium current in a bilayer consisting of a Weyl
semimetal and a single superconductor (SN bilayer), as il-
lustrated in Fig. 1, for which the equilibrium current flows
parallel to the interface. We consider a magnetic Weyl
semimetal and a conventional s-wave superconductor, both
are microscopically inversion-symmetric, so that inversion
symmetry is broken only by the interface. To allow for a
comparison between different phases, we consider a model
for the normal region which, as a function of parameters,
may be in a trivial magnetic insulator phase, Weyl semimetal
phase, or a (three-dimensional) weak Chern insulator phase.
We find a significant contribution to the equilibrium current
from surface states (Fermi arcs in case of a Weyl semimetal,
chiral surface states for the weak Chern insulator), which
differs in sign and magnitude from the interfacial current of
a trivial insulator [57]. Although our minimal model shows
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FIG. 1. Mixed momentum/real-space illustration of the SN het-
erostructure considered in this article. It consists of a Weyl semimetal
slab of a finite width W with two Weyl nodes separated along the kz

axis and counterpropagating Fermi arcs on the top (solid blue) and
bottom (dotted blue) surfaces. The Weyl semimetal slab borders on a
superconductor (light blue) at the bottom surface and it is capped by
a trivial insulator at the top surface. Because of this built-in spatial
asymmetry of the heterostructure, the superconducting proximity
effect acts asymmetrically on the two Fermi arcs.

a clear signature at the onset of the topological regime, the
magnitude of the equilibrium current is nonuniversal because
for an inversion-symmetric Weyl semimetal the proximity su-
perconductivity pairs electrons in the topological low-energy
band with electrons in a nontopological high-energy band—an
effect known as “chirality blockade” [22]. For the minimal
model we can isolate the singular contribution to the current
from the Fermi-arc surface states by comparing equilibrium
currents in a finite-width slab for a chemical potential inside
and outside the finite-size gap of the Fermi-arc states at the
Weyl node.

The contribution of topological surface states can be inter-
preted as the result of an effective charge renormalization of
the chiral surface modes at the SN interface [58], which leads
to a disbalance with the counterpropagating surface modes
of the opposite surface and results in a finite current. In this
way, the idea of bulk superconductivity acting asymmetrically
on chiral states in momentum space [11,12] is transferred
to proximitized superconductivity acting asymmetrically on
chiral states in real space. In the first case the equilibrium
current is carried by the disbalanced chiral Weyl Fermions in
an external magnetic field, in the second by the disbalanced
chiral surface states at zero external magnetic field.

This article is structured as follows. After introducing the
minimal model for the SN heterostructure in Sec. II, we
calculate and discuss the equilibrium current in Sec. III. We
conclude in Sec. IV.

II. MODEL

We consider a bilayer consisting of a superconductor (S)
and a normal region (N) of width W . We choose coordinates
such that the x axis is perpendicular to the superconductor

interface and the superconductor interface is at x = 0. The
normal region corresponds to 0 < x < W .

Depending on the parameters in our model Hamiltonian,
the normal region is a topologically trivial magnetic insula-
tor, a magnetic Weyl semimetal, or a three-dimensional weak
Chern insulator. At x = W the normal region layer is capped
by a nonmagnetic trivial insulator. Below, we give lattice mod-
els for the Weyl semimetal, the superconductor, and the trivial
insulator. To keep the notation simple, the lattice constant and
h̄ are set to unity.

A. Normal region

We model the normal region with the four-band
Hamiltonian

H (W)(k) = tτ3(σ1 sin kx + σ2 sin ky)

+ m(k)τ1σ0 + βτ0σ3 − μτ0σ0, (1)

with

m(k) = m0 + t ′(2 − cos kx − cos ky) + t ′
z(1 − cos kz ), (2)

where the σi and τi, i = 0, 1, 2, 3 are Pauli matrices corre-
sponding to spin and orbital degrees of freedom, respectively.
(These include the identity matrices σ0 and τ0.) Further-
more, μ is the chemical potential; t , t ′, and t ′

z are hopping
parameters; m0 an orbital-selective on-site potential; and β

the exchange field, which is directed in the z direction. For
definiteness, all of these parameters are assumed to be pos-
itive. The Hamiltonian, shown in Eq. (1), satisfies inversion
symmetry

H (W)(k) = τ1H (W)(−k)τ1, (3)

whereas time-reversal symmetry is broken by the exchange
field. (Time-reversal symmetry is represented as σ2K , where
K is complex conjugation.) At zero chemical potential μ, the
Hamiltonian, see Eq. (1), also satisfies a mirror antisymmetry

H (W)
μ=0(kx, ky, kz ) = −σ2τ3H (W)

μ=0(kx,−ky, kz )σ2τ3. (4)

The Hamiltonian, given in Eq. (1), resembles minimal models
motivated by materials of the Bi2Se3 family [10], where,
however, for simplicity we omitted a term proportional to
τ3σ3 sin kz. [Such a term does not significantly alter the topo-
logical phases that we are going to study, but its absence
makes the analysis more transparent. A term ∝ τ3σ3 sin kz

preserves the inversion symmetry, Eq. (3), and the mirror anti-
symmetry, Eq. (4), at μ = 0. We verified that our conclusions
remain valid if we include this term.]

The eigenvalues of the Hamiltonian, Eq. (1), can easily be
calculated in closed form. For each momentum k there are
four eigenvalues, labeled ε±,±,

ε±,±(k) = −μ ±
√

t2(sin2 kx + sin2 ky) + (m(k) ± β )2. (5)

The two bands with energy eigenvalues ε±,+(k) are com-
pletely gapped. The other two bands, which have energy
eigenvalues ε±,−(k), may also be gapped or feature two Weyl
nodes, depending on the value of the exchange field β. The
Weyl-semimetal phase is found for

m0 < β < m0 + 2t ′
z. (6)
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In this case, two Weyl nodes exist at k = (0, 0,±k0), with

k0 = 2 arcsin

√
β − m0

2t ′
z

, m0 < β < m0 + 2t ′
z. (7)

For β ↓ m0, one has k0 → 0: The two Weyl nodes merge
at kz = 0 and gap out for β < m0. Hence, for

0 < β < m0 (8)

the system becomes a trivial insulator, which for a finite
exchange field β > 0 is magnetic. For β ↑ m0 + 2t ′

z, one has
k0 → π , and the Weyl nodes merge and gap out at the Bril-
louin zone boundary. For

β > m0 + 2t ′
z (9)

the system thus becomes a weak Chern insulator [59,60],
which has open surface-state contours extending over the
whole Brillouin zone.

To prepare for the description of superconductor het-
erostructures using the Bogoliubov–de Gennes (BdG) for-
malism, we double the degrees of freedom by introducing
holes with Hamiltonian −σ2H (W)(−k)∗σ2. The resulting
Bogoliubov–de Gennes Hamiltonian

H(W) =
(

H (W) 0
0 −σ2H (W)(−k)∗σ2

)
(10)

has particle-hole symmetry

H(k) = −ν2σ2H(−k)∗ν2σ2, (11)

where Pauli matrices ν j , j = 0, 1, 2, 3, represent the particle-
hole degree of freedom.

B. Heterostructure

The normal region at 0 < x < W is embedded between a
superconductor for x < 0 and a trivial insulator for x > W ,
both of which we model by semi-infinite systems in the fol-
lowing way: The lattice Hamiltonians for the superconductor
(S) and trivial insulator (I) in the Bogoliubov–de Gennes
formulation are

H(S)(k) = tν3τ3σ1 sin kx + �ν1τ0σ0, (12)

H(I)(k) = tν3τ3σ1 sin kx + m(I)ν3τ1σ0, (13)

where � > 0 is the superconducting order parameter and
m(I) → ∞ the mass gap in the insulating region. Both the
superconductor and the insulator satisfy inversion symmetry

H(S,I)(k) = τ1H(S,I)(−k)τ1, (14)

characteristic of superconducting order with even inversion
parity, and time-reversal symmetry

H(S,I)(k) = σ2H(S,I)(−k)∗σ2. (15)

To describe the heterostructure with an x-dependent Hamil-
tonian, we replace kx by −i∂x and linearize the Hamiltonians
H(W), H(S), and H(I) in kx. In this way, we obtain the Hamil-
tonian

H = −itν3τ3σ1∂x + M(x), (16)

where

M(x) = M(S)

≡ �ν1σ0 (17a)

for x < 0,

M(x) = M(W)

≡ tν3τ3σ2 sin ky

+ m(ky, kz )ν3τ1σ0 + βν0σ3 − μν3σ0 (17b)

for 0 < x < W , and

M(x) =M(I)

≡ m(I)ν3τ1σ0 (17c)

for x > W , respectively. Here

m(ky, kz ) = m0 + t ′(1 − cos ky) + t ′
z(1 − cos kz ) (18)

is the linearized mass term in the normal region.

C. Block diagonalization, chirality, Fermi arcs

A unitary transformation can be used to bring the Hamilto-
nian to a block-diagonal form. Labeling the two blocks by the
parameter τ = ±1, the transformation reads

Hτ = [U HU †]τ , U = ei(π/4)ν0τ2σ3 . (19)

The transformation acts nontrivially only on the mass term,
which transforms as

[Uν3τ1σ0U
†]τ = τν3σ3, (20)

while the transformation of the other terms simply replaces
τ3 by τ . After the unitary transformation from Eq. (19) the
diagonal blocks of the Hamiltonian, Eq. (16) then read

Hτ = −itτν3σ1∂x + Mτ (x), (21)

with Mτ (x) = M(S), given by Eq. (17a), for x < 0,
M(x) = M(W)

τ ,

M(W)
τ = tτν3σ2 sin ky + m(ky, kz )τμ3σ3 − μν3σ0 + βν0σ3

(22)

for 0 < x < W , and M(x) = M(I),

M(I)
τ = m(I)τν3σ3 (23)

for x > W . In the transformed basis, inversion, time-reversal,
particle-hole conjugation, and the mirror antisymmetry shown
in Eq. (4) are represented as τ3σ3, τ2σ1K , ν2τ2σ1K , and σ2τ3,
respectively.

After the unitary transformation, the Weyl nodes are found
in the blocks τ = −1 for electrons and τ = +1 for holes,
respectively. Expanding H(W)

τ around the Weyl nodes in the
form

∑
i viσi(ki − Ki ), where Ki is the node position, we can

identify the chirality χ = sgn(v1v2v3). For our convention
that all model parameters are positive, χ = ∓ for the node
at kz = ±k0 for both electrons and holes, as indicated for
electrons in Fig. 1.

To find Fermi-arc surface states at the interface with the
trivial insulator at x = W , we consider electron and hole
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eigenstates of the insulator that decay for x > W , taken at
x = W ,

ψe/h(W ) = ae/h

(
1
i

)
, (24)

with normalization coefficients ae/h that have to be determined
separately. For the normal region x < W we use the ansatz

ψe/h(x) = ae/h

(
1
i

)
eα(x−W ). (25)

The decay coefficient α > 0 and the energy ε can be found
by insertion of the ansatz of Eq. (25) into the Bogoliubov–de
Gennes equation

[
H(W)

τ − ε
](ψe(x)

ψh(x)

)
= 0. (26)

For τ = −1 we find an electron-like solution with α = β −
m(ky, kz ) and energy

εe(ky, kz ) = −t sin ky − μ. (27)

For τ = +1, the solution is hole-like and has energy

εh(ky, kz ) = −t sin ky + μ. (28)

Both solutions move in the y direction with velocity vF =
dεe/h/dky = −t cos ky, as illustrated (for electrons) in Fig. 1.
For small ky the condition α > 0 is satisfied for |kz| < k0, i.e.,
for kz between the two Weyl points.

III. EQUILIBRIUM CURRENT

Superconductor–normal-metal heterostructures with a
magnetic N region are known to exhibit an equilibrium cur-
rent in the direction of E × B, where here the role of the
time-reversal breaking (magnetic) field B is played by the
exchange field [described by the term proportional to β in
H(W) and here pointing in the z direction] and the role of the
inversion-symmetry breaking (electric) field E is played by
a confinement-potential gradient of the interface (here in the
x direction) [57]. In our geometry we thus expect to find an
equilibrium current in the y direction.

A. Scattering formulation

We calculate the equilibrium current density Iy as the
derivative of the ground-state energy E to the vector potential
Ay. The vector potential Ay enters the Bogoliubov–de Gennes
Hamiltonian H of Eq. (16) via the standard substitution ky →
ky − ν3eAy. Then the equilibrium current Iy is

Iy = 1

2

∑
τ

∫ 0

−∞
dε ε

∂

∂Ay

dNτ (ε)

dε

= −1

2

∑
τ

∫ 0

−∞
dε

∂Nτ (ε)

∂Ay
, (29)

where dNτ (ε)/dε is the density of states of the Hamiltonian
Hτ of Eq. (21) and Nτ (ε) is the cumulative density of states.

The density of states dNτ (ε)/dε is a sum of delta-function
contributions for |ε| < � and continuous otherwise. In prin-
ciple, dNτ (ε)/dε may depend on Ay in both the discrete and

continuous parts of the spectrum [61]. To capture both con-
tributions, we adopt a procedure used by Beenakker and one
of us for the calculation of the Josephson effect in a chaotic
quantum dot [62]. Following Ref. [62], we determine Nτ (ε)
by matching solutions of the Bogoliubov–de Gennes equation
Hτψ = εψ in the superconducting region x < 0 and in the
normal region x > 0. To this end, we insert an “ideal lead”
between the superconducting region at x < 0 and the normal
region at x > 0, described by the Hamiltonian of Eq. (21)
with Mτ = 0. At the end of the calculation, the length of the
ideal lead is sent to zero. In the ideal lead, the Bogoliubov–de
Gennes equation is solved by the scattering states

ψτ ;ν,±(x) = e±iεx/t |ν,±ντ 〉, (30)

where |ν, σ 〉 with ν, σ = ±1 is an eigenspinor of ν3 at eigen-
value ν and of σ1 at eigenvalue σ . The eigenstates ψτ ;ν,+
and ψτ ;ν,− represent solutions moving in the positive and
negative x directions, respectively. The solutions with ν = 1
are electron-like; the eigenstates with ν = −1 are hole-like.

In the ideal-lead segment around x = 0, the full solution of
the Bogoliubiov–de Gennes equation is a linear combination
of the scattering states given in Eq. (30),

ψτ (x) =
∑

ν

[aτ,νψτ ;ν,+(x) + bτ,νψτ ;ν,−(x)]. (31)

Viewing the coefficients aτ,ν and bτ,ν as amplitudes of quasi-
particles incident on and reflected from the normal region,
respectively, we may relate them via the scattering matrix
Sτ (ε) of the normal region(

bτ,+
bτ,−

)
= Sτ (ε)

(
aτ,+
aτ,−

)
. (32)

[The dependence of Sτ (ε) on ky and kz is kept implicit.] When
seen from the superconductor, the coefficients aν represent the
reflected amplitudes, whereas the coefficients bν represent the
incident amplitude, so that one has the relation(

aτ,+
aτ,−

)
= S(S)

τ (ε)

(
bτ,+
bτ,−

)
, (33)

where S(S)
τ (ε) is the scattering matrix of the superconducting

region. Upon combining Eqs. (32) and (33), one finds that
nontrivial solutions of the Bogoliubov–de Gennes equation
exist only if

det
[
1 − Sτ (ε)S(S)

τ (ε)
] = 0. (34)

Since Sτ (ε) and S(S)
τ (ε) are analytic functions of ε in the

upper half of the complex plane, we may directly obtain the
cumulative density of states Nτ (ε) as [62]

Nτ (ε) = − 1

π

∫
dkydkz

(2π )2
Im

{
ln det

[
1 − Sτ (ε+)S(S)

τ (ε+)
]

− 1

2
ln{det[Sτ (ε)]} − 1

2
ln

{
det

[
S(S)

τ (ε)
]}}

, (35)

where ε+ = ε + iη, η being a positive infinitesimal.
The second and third terms between the brackets in

Eq. (35) do not contribute to the current after integration to
ky. The first term in Eq. (35) is analytic in the upper half
of the complex plane and vanishes for Im ε → ∞. Shifting
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the integration along the negative real axis to the positive
imaginary axis, we then find

Iy =
∫

dkz

2π
Iy(kz ), (36)

where

Iy(kz ) = − 1

2π

∑
τ

∫
dky

2π
Re

∫ ∞

0
dω

× ∂

∂Ay
ln det

[
1 − Sτ (iω)S(S)

τ (iω)
]
. (37)

Under particle-hole conjugation, the basis state ψτ ;ν,±(x)
of Eq. (30) is mapped to ∓ψ−τ ;−ν,±(x), while simultaneously
inverting ε → −ε and ky,z → −ky,z, and vice versa. For this
choice of the scattering states, particle-hole symmetry im-
poses the condition

Sτ (ε; ky, kz ) = −ν1S∗
−τ (−ε; −ky,−kz )ν1. (38)

Calculating the scattering matrix S(S) of the superconductor
one obtains

S(S)
τ (ε) = e−iγ (ε)ν1, γ = arccos(ε/�), (39)

which is the standard result for Andreev reflection off an s-
wave spin-singlet superconductor [63]. The scattering matrix
Sτ (ε) of the normal region is diagonal with respect to the
particle-hole index ν,

Sτ (ε; ky, kz ) =
(

rτ (ε; ky, kz ) 0
0 −r−τ (−ε; −ky,−kz )∗

)
,

(40)

where rτ (ε; ky, kz ) is the reflection amplitude for electron-like
quasiparticles. Inserting Eqs. (39) and (40) into Eq. (37) and
performing a partial integration to ky, we find

Iy(kz ) = 2e

π

∫
dky

2π
Re

∫ ∞

0
dω

∂r+(iω; ky, kz )

∂ky

× r−(iω; −ky,−kz )∗

e2iγ (iω) + r+(iω; ky, kz )r−(iω; −ky,−kz )∗
. (41)

Because of the mirror antisymmetry at μ = 0 given
in Eq. (4), the reflection amplitudes satisfy rτ (ε; ky, kz ) =
rτ (ε; −ky, kz )∗, from which it follows that the current vanishes
at μ = 0. We use this feature of our model to focus our
calculation on the derivative dIy(kz )/dμ at small μ.

B. Reflection amplitudes of normal region

We calculate the reflection amplitude rτ by expressing it
in terms of the reflection and transmission amplitudes r (W)

τ ,
r′
τ

(W), t (W)
τ , and t ′

τ
(W) of the normal region 0 < x < W and the

reflection phase iτ of the insulator at x > W ,

rτ = r (W)
τ + iτ t ′

τ
(W)t (W)

τ

1 − iτ r′
τ

(W)
. (42)

In this notation, the unprimed amplitudes r (W)
τ and t (W)

τ

refer to reflection and transmission from the normal region
for particles incident at the interface with the superconduc-
tor (S), whereas the primed amplitudes r′

τ
(W) and t ′

τ
(W) are

for particles incident at the interface with the trivial insulator

(I). Solving the scattering problem with the Hamiltonian of
Eq. (21), we find the explicit expressions

r (W)
τ (ε; ky, kz ) = r′

τ
(W)(ε; −ky,−kz )

= iτ
m(ky, kz ) + βτ − itτ sin ky

tκτ coth(κτW ) − i(ε + μ)
, (43)

t (W)
τ (ε; ky, kz ) = t ′

τ
(W)(ε; −ky,−kz )

= tκτ / sinh(κτW )

tκτ coth(κτW ) − i(ε + μ)
, (44)

where we abbreviated

κ2
τ t2 = dτ (kx, ky)2 − (ε + μ)2, (45)

with

dτ (ky, kz ) =
√

t2 sin2 ky + [β + τm(ky, kz )]2 (46)

the gap in the kz-dependent spectrum of the Hamiltonian
shown in Eq. (21), see Eq. (5). The symmetry relation be-
tween the primed and unprimed reflection and transmission
amplitudes is a consequence of the inversion symmetry from
Eq. (15).

To evaluate the kz-resolved current density Iy(kz ), it
is convenient to consider the three-dimensional Hamilto-
nian H(kx, ky, kz ) as a family of two-dimensional Hamil-
tonians H(kx, ky) that parametrically depend on kz. The
two-dimensional Hamiltonian H(W)(kx, ky) describes a triv-
ial (two-dimensional) insulator if β < m0 or if m0 < β <

m0 + 2t ′
z and |kz| > k0, see Eqs. (6) to (8). It describes a

(two-dimensional) topologically nontrivial Chern insulator if
m0 < β < m0 + 2t ′

z and |kz| < k0 or if β > m0 + 2t ′
z.

For the calculation of the equilibrium current Iy, we find it
convenient to parametrize the reflection amplitudes r (W)

τ , and
r′
τ

(W) in terms of the transmission coefficient Tτ = |t (W)
τ |2 and

the phase shifts φτ and φ′
τ ,

r (W)
τ = iτ

√
1 − Tτ eiφτ ,

r′
τ

(W) = iτ
√

1 − Tτ eiφ′
τ . (47)

Expressions for the reflection phases φτ and φ′
τ can be ob-

tained from Eq. (43). For small ky, ε, and μ, the reflection
phase φ+ of the high-energy band is well approximated by

φ+(ky, kz ) = φ′
+(−ky,−kz )

≈ (ε + μ − kyt )/d+. (48)

The approximations for the reflection phase for the low-
energy band for small ky, ε, and μ are different for the
trivial regime β < m0 or |kz| > k0 and the topological regime
β > m0 + 2t ′

z or |kz| < k0,

φ−(ky, kz ) = φ′
−(−ky,−kz )

≈
{

(ε + μ + kyt )/d− trivial,
π + (ε + μ − kyt )/d− topological. (49)

The fact that φ− = π at ky = 0 in the topological case is
what causes the appearance of the Fermi-arc surface states
near ky = 0. With the parametrization defined in Eqs. (47),
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the reflection amplitude rτ (ε; ky, kz ) reads

rτ = iτeiφτ
eiφ′

τ + √
1 − Tτ

eiφ′
τ

√
1 − Tτ + 1

. (50)

C. kz-resolved current density for large W

We will now discuss the kz-resolved current Iy(kz ) well
inside the trivial and topological regimes, so that the two-
dimensional Hamiltonian H(W)(kx, ky) describes a gapped
phase with a gap magnitude on the order of the band width.
The case that kz is in the vicinity of k0 will be addressed in
Sec. III E.

For our calculation of Iy(kz ) we assume that the width W
of the normal region is much larger than the lattice spacing
(which is set to one). The energy scale corresponding to the
inverse width, t/W , the pair potential �, and the chemical
potential μ are considered to be much smaller that the band
width t ∼ t ′ ∼ t ′

z. The energy difference of the high- and low-
energy bands 2m0 is considered to be on the order of the band
width.

With this hierarchy of energy and length scales, the energy
dependence of the reflection amplitudes of the normal region
may typically be neglected when compared to the energy de-
pendence of the phase shift γ for Andreev reflection from the
superconductor. Also, one has κτW � 1, so that transmission
is exponentially suppressed, Tτ ↓ 0. Assuming continuity of
the current with Tτ ↓ 0, which we discuss in more detail in
Appendix B, we may set

rτ (iω; ky, kz ) = iτeiφτ (ky,kz ), (51)

where the reflection phase φτ (ky, kz ) of the normal region is
evaluated at ε = 0 since the energy dependence is dominated
by the energy dependence of the reflection phase e−iγ of the
superconductor. This approximation breaks down if eiφ′

τ = −1
because then the denominator in Eq. (50) vanishes for Tτ ↓ 0
so that the energy dependence of rτ (ε; ky, kz ) becomes im-
portant, which occurs if a Fermi-arc state at the surface at
x = W crosses the Fermi level. This case will be discussed
in Sec. III D. With the approximation from Eq. (51), the ω-
integration in Eq. (41) may then be performed, with the result

Iy(kz ) = − e�

2

∫
dky

2π

∂φ+
∂ky

s(φ) sin(φ/2), (52)

where

φ(ky, kz ) = φ+(ky, kz ) − φ−(−ky,−kz ) (53)

and s(φ) = sgn cos(φ/2).
Effectively, the approximations used to derive Eq. (52)

from the general result of Eq. (41) amount to restricting to
contributions from the discrete part of the Andreev spectrum.
(This approximation is known as the “short-junction limit” in
the context of the Josephson effect.) To show that Eq. (52) rep-
resents the contribution from the discrete part of the Andreev
spectrum, we note that, if we neglect the energy dependence
of the reflection amplitudes from the normal region, Andreev
bound states appear at discrete energies ε±(ky, kz ) satisfying
the quantization condition

e−i2γ (ε± )eiφ+(ky,kz )eiφ−(−ky,−kz ) = 1. (54)

Solving for ε±(ky, kz ), one finds

ε±(ky, kz ) = ±� cos(φ/2). (55)

The current associated with a single Andreev level is
∂ε±(ky, kz )/∂Ay. To find the total current we integrate
over the contributions from all Andreev levels with energy
ε±(ky, kz ) < 0,

Iy(kz ) = 1

2

∑
±

∫
dky

2π

∂ε±
∂Ay

�(−ε±), (56)

where the Heaviside function �(x) = 1 if x > 0 and 0 oth-
erwise. Upon substitution of Eq. (55) for ε±, one recovers
Eq. (52).

To find the derivative dIy(kz )/dμ [recall that Iy(kz ) = 0
for μ = 0, see the discussion at the end of Sec. III A] we
observe that from Eq. (43) we have

∂φτ

∂μ
= 1

dτ

, (57)

where the gap dτ (ky, kz ) was defined in Eq. (46). For the
μ-derivative of the kz-resolved current Iy(kz ) we then find a
“regular” contribution and a “singular” contribution, which
follows from the derivative of the discontinuity of the step
function s(φ) at φ = π (mod 2π ),

dIy(kz )

dμ
= dIy(kz )

dμ

(r)

+ dIy(kz )

dμ

(s)

, (58)

with

dIy(kz )

dμ

(r)

= −e�

4

∫
dky

2π

[(
1

d+
− 1

d−

)
∂φ+
∂ky

cos
φ

2

− 2

d2+

∂d+
∂ky

sin
φ

2

]
s(φ), (59)

dIy(kz )

dμ

(s)

= e�
∫

dky

2π

∂φ+
∂ky

(
1

d+
− 1

d−

)
δ(φ − π ), (60)

where the delta function should be periodically extended with
period 2π . In the limit of a large exchange field β, d− is
much smaller than d+, and one may further approximate
dIy(kz )/dμ by restricting to the terms inversely proportional
to d−.

On the basis of Eqs. (59) and (60) we can compare
dIy(kz )/dμ in the trivial and topological regimes. The phases
φ+ and φ− are shown versus ky for typical model parame-
ters in Figs. 2(a) and 2(b). In the topologically trivial case,
generically both φ+ and φ− have a weak ky-dependence and
φ remains close to zero. In this case, the singular contribution
[dIy(kz )/dμ](s) is absent. Considering the “regular” contribu-
tion (59), we see that the dominant contribution to the total
equilibrium current Iy comes from regions in which the gap
d− is smallest, which is in the vicinity of the Weyl points, i.e.,
for |kz| ↓ k0. The sign of the equilibrium current is determined
by the derivative dφ+/dky near ky = 0.

In the topological case, as a result of the band inversion
from the sign change of β − m(ky, kz ), the phase φ− decreases
by 2π upon going from ky = −π to ky = π . Hence, the singu-
larity in the integrand at φ = π (mod 2π ) cannot be avoided.
This gives rise to the singular contribution [dIy(kz )/dμ](s) of
Eq. (60). Since φ− is close to π in the vicinity of ky = 0, the
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FIG. 2. (a,b) Reflection phases φ±(ky, kz ) at chemical potential
μ → 0 and energy ε = 0 (after first taking the limit W → ∞) for
parameter choices corresponding to the (a) trivial and (b) topo-
logical regimes. (c,d) Factors s(φ) sin(φ/2) (blue), (t/d+ − t/d−)
(red, dashed), and ∂φ+/∂ky (red, solid) for the same parameter
choices as in (a) and (b), respectively. (e) kz-resolved equilibrium
current Iy(kz ) as a function of kz from Eq. (58) (solid curve).
The sign of the current changes if kz goes from the topolog-
ical region (kz between the Weyl nodes at ±k0) to the trivial
region. The dashed line shows the result at ultrasmall chemical
potential within the finite-size gap of surface states, see Eq. (65).
The parameters are m0 = 0.5 t , β = 1.5 t , t = t ′ = t ′

z = 1. In panels
(a) and (c) we further set kz = 1; in panels (b) and (d) we set kz = 2.6.

integrand in Eq. (60) has support precisely where the deriva-
tive ∂φ+/∂ky is maximal, see Fig. 2(c). As a consequence, in
the topological regime, the total current dIy(kz )/dμ has larger
magnitude and opposite sign when compared to the trivial
regime, see Fig. 2(e).

To obtain an explicit expression for a special parameter
choice well inside the topological regime, one may con-
sider kz = 0 and β = m0 + t ′, t ′ = t , in which case κ− = 1
and φ−(ky, 0) ≈ π − ky for all ky. Additionally assuming a
large gap d+ ≈ β + m0 � t , so that φ+(ky, 0) ≈ −[t/(m0 +

β )] sin ky, the current becomes

dIy(0)

dμ
≈ 2e�

3π (β + m0)
. (61)

For the trivial case we consider the leading-order term in β/t ,
since the current vanishes at β = 0, and take m0 = t = t ′ and
kz = 0, which gives

dIy(0)

dμ
≈ − e�β

12πt2
. (62)

Comparing Eqs. (61) and (62) also shows the opposite signs
of the equilibrium current in the two regimes.

D. Finite-size effects

For small transmission coefficient T− of the low-energy
band, the presence of the Fermi-arc states at the interface with
the trivial insulator at x = W causes a narrow resonance in
the reflection amplitude r−(ε; ky, kz ). This resonance occurs,
when the denominator in Eq. (50) is approximately zero,
eiφ′

τ ≈ −1. In this case, the assumption that the energy depen-
dence of r−(ε; ky, kz ) can be neglected when compared to the
energy dependence of the Andreev reflection phase e−iγ (ε) is
obviously violated, despite the fact that the gap d− � �.

For the minimal model we consider in this article, this issue
affects the topological regime β > m0, |kz| < k0 only. Here
we consider the case of small μ � t , so that the resonance
appears in the vicinity of ky = 0. For small transmission co-
efficient T−, the full reflection amplitude r− of Eq. (50) may
then be well approximated as

r− = −ieiφ−w(kyt + ε + μ), (63)

with

w(ε) = 2ε − iT−d−
2ε + iT−d−

. (64)

Since w(kyt + iω + μ) ≈ 1 if |kyt + iω + μ| � T−d−, the
presence of the factor w(kyt + iω + μ) has little effect on the
integrand in Eq. (41) in the limit of small transmission T−
if μ � T−d−, except for a small integration region around
kyt ≈ −μ and ω � T−d−. Because of the smallness of the
integration region in which w significantly differs from unity,
the net finite-size effect on dIy(kz )/dμ after integration over
ky and ω is small and goes to zero if T− → 0. For μ � T−d−
this conclusion cannot be drawn, however, because the singu-
larity in the fraction in Eq. (64) coincides with the singularity
of the integrand in dIy(kz )/dμ, which led to the singular
contribution shown in Eq. (60).

To analyze this limit of “ultrasmall” chemical potential μ

in further detail, we observe that the singular contributions
of the integration in Eq. (41) from the vanishing of the de-
nominator and from the finite-size factor w(kyt + iω + μ) are
limited to a small interval −δ < ky < δ around ky = 0, where
δ � 1 may be chosen large enough that w(±δt + μ + iω) ≈
1. It follows that the “regular” contribution of Eq. (59) to
dIy(kz )/dμ, which is associated with momenta ky outside
this interval, is unaffected by the finite-size effects. On the
other hand, as we show in detail in Appendix A, upon in-
clusion of the finite-size effects the integrand of the singular
contribution dIy(kz )(s)/dμ is multiplied by a negative factor
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−(d+ + d−)/(d+ − d−), when compared to the result given
in Eq. (60) for μ � T−d−. Hence for ultrasmall chemical
potential μ � T−d− we find

dIy(kz )

dμ
= dIy(kz )

dμ

(r)

+ dIy(kz )

dμ

(s)

, (65)

with [dIy(kz )/dμ](r) given by Eq. (59) and

dIy(kz )

dμ

(s)

= e�
∫

dky

2π

∂φ+
∂ky

(
1

d+
+ 1

d−

)
δ(φ − π ). (66)

The sign change of the singular contribution leads to a sig-
nificant reduction of the equilibrium current in the case of an
ultrasmall chemical potential μ � T−d−, when compared to
the case μ � T−d−.

To obtain an order-of-magnitude estimate, we again set
kz = 0 and consider the well-established topological regime
β = m0 + t ′, t ′ = t , kz = 0, β + m0 � 1, for which we find
that

dIy(0)

dμ
≈ − e�

3π (β + m0)
(67)

if μ � T−d−. A comparison to Eq. (61) shows that at
ultrasmall chemical potential the equilibrium current is ap-
proximately −1/2 times the current at finite μ.

Physically, the energy ∼T−d− ∼ t e−2W that separates the
regimes of “ultrasmall” and “finite” μ is associated with the
finite-size gap of the Fermi-arc surface states, whose wave-
functions decay exponentially away from the surfaces. Based
on our result that in the topological regime the equilibrium
current is strongly modified when the chemical potential is
inside this finite-size gap, we interpret the difference be-
tween the finite-μ and ultrasmall-μ limits as the contribution
of the topological surface states to dIy/dμ. The difference
between the large-μ and small-μ limits involves the sin-
gular contribution [dIy/dμ](s) only. In the well-established
topological regime the surface-state contribution assumes the
value 2[dIy/dμ](s), with [dIy/dμ](s) given in Eq. (60).

E. Total current density

The full equilibrium current density Iy involves the integral
of Iy(kz ) over kz. The kz-resolved current density Iy(kz ) is
calculated in Sec. III C, for the case that the normal region
is gapped at momentum kz and that the gap dτ � �. This
condition is no longer satisfied for the low-energy band if kz is
in the immediate vicinity of the Weyl points because d− → 0
there.

That the results of Sec. III C cease to be valid if d− becomes
small in comparison to � is also reflected in the expression in
Eq. (58) for dIy(kz )/dμ, which diverges ∝ �/d− if d−/� →
0. This divergence should be cutoff for d− ∼ �. To see this,
we evaluate dIy(kz )/dμ in the opposite limit d− � �, in
which we may neglect the energy dependence of the Andreev
reflection phase e−iγ (ε) and of the reflection amplitude r+ of
the high-energy band, but keep the full energy dependence of
the reflection amplitude r− of the low-energy band.

Starting point of our calculation is Eq. (41). Since r−
depends on energy ε and chemical potential μ through the
combination ε + μ only, upon analytic continuation ε → iω,
one has ∂r∗

−/∂μ = i∂r∗
−/∂ω. When calculating dIy(kz )/dμ,

FIG. 3. kz-resolved equilibrium current dIy/dμ. The supercon-
ducting gap � = 0.01 t ; the other parameters are the same as in
Fig. 2. The solid blue and dashed red curves are obtained from
Eq. (41) with finite chemical potential μ = 0.01 t and μ = 10−6 t ,
respectively. The width of the normal region is W = 300 and W =
5, respectively. The solid and dashed black curves are obtained
from Eqs. (58) and (65), respectively. The inset shows a closeup
at the Weyl node at k0 ≈ π/2. The discontinuity in the derivative
of dIy/dμ vs kz near k0 is a finite-size effect and disappears upon
further increasing W .

the integrand in Eq. (41) then is a total derivative to ω and we
find

dIy(kz )

dμ
= 2e

π

∫
dky

2π
Re

∂φ+
∂ky

1

e−iφ + 1
, (68)

where, as before, φ(ky, kz ) = φ+(ky, kz ) − φ−(−ky,−kz ).
Using Re 1/(e−iφ + 1) = 1/2 − πδ(φ − π ) we find that
dIy(kz )/dμ ∼ e∂φ+/∂ky, which is the same order-of-
magnitude estimate as one would obtain from Eq. (58) by
cutting off the small-d−-divergence at d− ∼ �. [We note that
the condition d− � � may not be fulfilled for all ky simulta-
neously, so that, strictly speaking, the approximations leading
to Eq. (68) do not apply to the full range of the ky-integration.
This, however, does not affect the order-of-magnitude esti-
mate of dIy(kz )/dμ ∼ e∂φ+/∂ky that follows from Eq. (68).]

We thus find that dIy(kz )/dμ ∼ e∂φ+/∂ky is a regular
function of kz in the vicinity of the Weyl points at kz = ±k0.
Since the range of momenta kz affected by the violation of the
condition dτ � � is correspondingly small, we conclude that
the contribution of the Weyl points to the total current dIy/dμ

is small and that one may obtain dIy/dμ by integration of
the kz-resolved result of Eq. (58) for dIy(kz )/dμ, omitting
the immediate vicinity of the Weyl points from the integration
range.

F. Numerical results

In Fig. 3 we compare the kz-resolved equilibrium current
dIy(kz )/dμ obtained directly from Eq. (41) with the ap-
proximation of Eq. (58). We find excellent agreement away
from the Weyl points. We observe that dIy(kz )/dμ has op-
posite signs for μ � T−d− and μ � T−d− in the topological
regime (kz between the Weyl points), while there is no dif-
ference between the cases of large and small μ in the trivial
regime. Except for the finite-size effect at ultrasmall chemical
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FIG. 4. Equilibrium current dIy/dμ as a function of the exchange
field β. The solid blue curve is for finite chemical potential μ =
0.01 t and width W = 300, which meets the condition μ � T−d−
for most of reciprocal space. The dashed red curve is for ultrasmall
chemical potential μ = 10−6 t and width W = 5, which meets the
condition μ � T−d− for most of reciprocal space. The black dashed
curve shows the difference of these two cases, which is the contribu-
tion to dIy/dμ associated with the Fermi arcs. Other parameters are
same as in Figs. 2 and 3.

potentials, we observe only a weak dependence on the width
W of the normal region, which is bound to the small vicinity
(d− � �) of Weyl nodes (data not shown).

Figure 4 shows the total current density dIy/dμ, see
Eq. (36), as a function of the exchange field β. For compar-
ison, the ultrasmall-μ limit and the difference between the
cases of ultrasmall and finite μ are also shown (dashed curves
in Fig. 4). The current vanishes at β = 0 because the system
is time-reversal invariant there. Its magnitude increases with
β in the trivial insulator regime β < m0. Upon entering the
Weyl-semimetal regime, dIy/dμ receives an upturn due to the
positive contribution of the Fermi arcs. In the weak Chern in-
sulator regime β > m0 + 2t ′

z, dIy/dμ decreases upon (further)
increasing β, but the difference between ultrasmall and finite
chemical potential μ (dashed curve) persists.

To understand the apparent plateau in the Weyl-semimetal
region m0 < β < m0 + 2t ′

2 and the decrease with β in the
Chern-insulator regime β > m0 + 2t ′

z, we note that the order
of magnitude of the contribution of Fermi arcs (the difference
between dIy/dμ for μ � T−d− and μ � T−d−) can be esti-
mated from the difference of Eqs. (61) and (67), multiplying
by the distance 2k0 between the Weyl points in the topological
region,

dIFA
y

dμ
∼ e�k0

β + m0
, (69)

where one needs to set k0 = π in the Chern-insulator regime.
The apparent plateau in the Weyl-semimetal regime appears
because the increase of the factor k0 in the numerator with β is
compensated by the increase of the denominator. In the Chern-
insulator regime, the numerator in Eq. (69) is independent
of β, whereas the denominator continues to increase with β,
explaining the decrease of the current in the Chern-insulator
regime. Note that k0 has a singular dependence on β at the
boundaries of the Weyl-semimetal regime at β = m0 and

β = m0 + 2t ′
z, see Eq. (7), which relates to the sharp up-

turns of the current. We verified that these sharp features
are eliminated if dIy/dμ is considered as a function of the
node separation 2k0 in the Weyl-semimetal regime (data not
shown).

IV. DISCUSSION AND CONCLUSION

We investigated the equilibrium current in a minimal model
describing an SN heterostructure, where S is a conventional
s-wave superconductor and, depending on the value of the
exchange field β, the normal region (N) can be a magnetic
insulator with a topologically trivial band structure, a Weyl
semimetal with broken time-reversal symmetry, or a three-
dimensional weak Chern insulator. The constituents of the
heterostructure are microscopically inversion-symmetric, so
that inversion symmetry is broken only by the heterostructure
geometry. In all three regimes, time-reversal symmetry is bro-
ken by the exchange field.

In the trivial-insulator regime we find an equilibrium cur-
rent that is proportional to the exchange field β at small β. It
quantifies the interface current of a superconductor–magnetic
insulator heterostructure, which is known to be generally pos-
sible in the presence of spin-orbit coupling. Previously such
an equilibrium current has been predicted only for a system
with interfacial Rashba spin-orbit coupling [57], instead of the
intrinsic spin-orbit coupling considered here.

In the topological regime of a Weyl semimetal or a
weak Chern insulator the current shows a qualitatively dif-
ferent behavior. Upon entering the topological regimes the
β-dependence of the equilibrium current abruptly changes,
causing a reversal of the sign of the current well inside the
topological regime. The decisive contribution comes from the
topological surface states, which we can identify within a
minimal model (motivated by materials of the Bi2Se3 family
[10]) by comparing the equilibrium currents for a chemical
potential inside and above the finite-size gap of the surface
states. In contrast, the Weyl nodes of the bulk band structure,
which the Fermi arcs connect, do not give a significant contri-
bution to the equilibrium current.

That we find a large contribution of Fermi arcs and an
insignificant contribution of Weyl nodes relates to previous
studies which found that the bulk states of an inversion-
symmetric, magnetic Weyl semimetal are mainly unaffected
by superconductivity due to a “chirality blockade” [22]. Ac-
cordingly, we expect that this would change if the chirality
blockade is lifted, which happens when at least one of the
constituents of the heterostructure breaks the microscopic
inversion symmetry [22]. In our model, the chirality block-
ade manifests itself through the fact that Andreev reflection
from the superconductor switches quasiparticles between the
topologically trivial high-energy band and the (potentially)
topologically nontrivial low-energy band. It is this connection
of the trivial and the nontrivial band by the superconducting
pairing that also makes the magnitude of the equilibrium
current non-universal in both the topologically trivial and
nontrivial parameter regimes.

Whereas the “chirality blockade” prevents the bulk Weyl
points to be strongly affected by the proximity supercon-
ductivity, Fermi-arc surface states at the interface with the
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superconductor, on the other hand, undergo a renormalization
of their effective charge [58], which, however, is weak because
of the chirality blockade. Relating the Fermi-arc current con-
tribution of Eq. (69) to the charge renormalization of Fermi
arcs one can interpret the former in terms of an uncompen-
sated chiral current of surface states. Specifically, one can
consider that each Fermi arc contributes to the current density

dI (arc)
y

dμ
= sgn (v)

k0q

(2π )2
, (70)

where v is the velocity of the Fermi arc and q the effective
charge. The Fermi-arc contribution to the current of the Fermi
arcs is reproduced if the charge at the superconductor interface
is renormalized to

q ∼ −e[1 − �/(β + m0)], (71)

while the charge of the opposite surface remains unaffected
(q = −e). The sign of the Fermi-arc velocity is discussed in
Sec. II and is illustrated in Fig. 1.

The contribution of Fermi arcs can be seen as a real-space
counterpart to the superconductivity-enabled equilibrium chi-
ral magnetic effect [11,12], in which a disbalance of chiral
Landau levels of a pair of Weyl Fermions is produced by
current- or flux-biased bulk superconductivity acting asym-
metrically in momentum space on the chiral Landau levels.
The fundamental connection of chiral Landau levels and
Fermi arcs allows for the complementary effect that we just
described. The differences between chiral Landau levels and
Fermi arcs are that the Fermi arcs continue to exist in zero
magnetic field and are separated in real space. Our work
shows that these differences can be used to realize the equilib-
rium chiral magnetic effect via the superconducting proximity
effect, without flux or current bias, and at zero magnetic field.

Relevant materials where the Fermi-arc contribution to the
equilibrium current should be important are magnetic Weyl
semimetals, such as GdPtBi [64] and Co3Sn2S2 [53]. Our
work, however, shows that the experimental identification of
the Fermi-arc contribution is challenging because the equilib-
rium current is not exclusively due to Fermi arcs. The isolation
of the Fermi-arc contribution that we could obtain in the
minimal model (relying on an ultrasmall chemical potential
or an ultrasmall, constant width of the Weyl semimetal, and
mirror antisymmetry) does not seem to be experimentally
realizable on the basis of existing materials. We believe, how-
ever, that characteristic signatures or other peculiar effects
may be found in further studies of the equilibrium current,
such as exploring its response to external magnetic fields.
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APPENDIX A: [dIy(kz )/dμ](s) FOR μ ↓ 0

To show that the singular contribution to dIy/dμ changes
sign in the limit μ � T−d− of an “ultrasmall” chemical poten-

tial (as compared to the case μ � T−d− of a “finite” chemical
potential), we consider the regime of small ky and μ in more
detail. The equilibrium current for finite W is found from
Eq. (41) by replacing r+r∗

− by −eiφw∗, where the function
w(μ + iω − kyt ) is given in Eq. (64), and by restricting the
ky-integration to the interval −δ < ky < δ,

Iy(kz )(s) = 2e

π

∫ δ

−δ

dky

2π
Im

∫ ∞

0
dω

∂φ+
∂ky

w∗

e2iγ (ω)−iφ − w∗ .

(A1)

The integration boundaries ±δ are chosen such that, on the
one hand, w ≈ 1 for |ky| = δ, whereas, on the other hand, δ ↓
0 as T− → 0.

To find [dIy(kz )/dμ](s), we have to differentiate the
integrand in Eq. (A1) to μ. Using that for small ky

one has ∂w/∂μ = −(1/t )∂w/∂ky and ∂φ/∂μ = (1/d+ −
1/d−) = −(1/t )∂φ/∂ky − 2/d− and using that φ+ is an odd
function of ky for μ → 0, so that we may treat ∂φ+/∂ky as a
constant inside the integration range −δ < ky < δ, we obtain

dIy(kz )(s)

dμ
= 2e

π

∫ δ

−δ

dky

2π
Im

∫ ∞

0
dω

∂φ+
∂ky

×
(

−1

t

d

dky
− 2

d−

∂

∂φ

)
w∗

e2iγ (ω)−iφ − w∗ . (A2)

Since the first term between the brackets, which is propor-
tional to d/dky, is a total derivative and since w∗ ≈ 1 at
both ends of the integration domain, we may set w∗ → 1
in the integrand when evaluating the first term. This allows
us to relate the first term to the equilibrium current at fi-
nite μ. Again using that (1/t )∂φ/∂ky = −(1/d+ + 1/d−) =
(d+ + d−)/(d+ − d−)∂φ/∂μ, we recognize that the first term
is −(d+ + d−)/(d+ − d−) times the singular contribution of
Eq. (60).

The second term between the brackets vanishes to leading
order in �/d−: To leading order in �/d− the energy depen-
dence in w∗ can be neglected and the ω integration can be
performed similarly as when going from Eq. (41) to Eq. (52)
with the phase modified by w∗, which approaches 1 upon
taking the limit T− → 0. The whole integrand is thus nonsin-
gular in this limit and, upon integration, the term vanishes for
T− → 0 due to the vanishing integration range.

APPENDIX B: CONTINUITY OF THE CURRENT
IN THE LIMIT T− ↓ 0

In the main text we derived the current at the transmission
amplitude set to zero from the beginning. Here we repeat the
calculation in a more careful way, taking the limit T− → 0
at the end, to show that the current is a continuous function
of T− at T− = 0. For simplicity we only consider the well-
established topological regimes at kz = 0, β = m0 + t , and
t = t ′ = t ′

z. The goal is thus to reproduce Eqs. (61) and (67).
Starting point is Eq. (41), where we set kz = 0,

Iy(0) = 2e

π

∫
dky

2π
Re

∫ ∞

0
dω

∂r+(iω; ky, 0)

∂ky

× r−(iω; −ky, 0)∗

e2iγ (iω) + r+(iω; ky, 0)r−(iω; −ky, 0)∗
. (B1)
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We consider leading order in the gap d+ ≈ β + m0 of
the high-energy band, allowing to approximate r (W)

+ =
i exp[−it sin ky/(β + m0)] and leading to

Iy(0) = 2et

π (β + m0)

∫
dky

2π
cos ky Re

∫ ∞

0
dω

× r−(iω; −ky, 0)∗

e2iγ (iω) + ir−(iω; −ky, 0)∗
. (B2)

For the nontrivial band we take the full reflection amplitude
of Eq. (50)

r− = −ieiφ− eiφ′
− + √

1 − T

eiφ′−
√

1 − T + 1
, (B3)

where for brevity we have written T instead of T−. In the
well-established topological regime at kz = 0, β = m0 + t ,
and t = t ′ = t ′

z, the reflection phase for the nontrivial band
is φ−(ky, kz ) = π + μ/t − ky. Further, we introduce Z =
exp(−iky) and use dky cos ky = idZ (1 + Z2)/2Z2, as well as
ω = � sinh ζ and dω = dζ� cosh ζ (so that e2iγ = −e2ζ ) to
obtain

Iy(0) = − � e t

π (β + m0)
√

1 − T
Re

∫ ∞

0
dζ

∮
dZ

2π i
cosh ζ

× i(e−iμ/t − √
1 − T Z )(1 + Z2)

Z (Z − Z−)(Z − Z+)
, (B4)

where

Z± = eζ ±i
√

sin2(iζ − μ/t ) − T + cos(iζ − μ/t )√
1 − T

. (B5)

The integration contour of Z is the unit circle in the complex
plane enclosing two poles, one at Z = 0 and the other at
Z = Z+.

For T = 0 only the pole at Z = 0 contributes to the
integral, due to cancellation of the (Z − Z+) term of the de-
nominator with the first term of the numerator in Eq. (B4),
and it gives

I (0)
y (0) = − � e t

π (β + m0)
Im

∫ ∞

0
dζ cosh ζ e−2ζ−iμ/t , (B6)

which for μ � t evaluates to

dI (0)
y (0)

dμ
= 2e�

3π (β + m0)
, (B7)

reproducing Eq. (61).
For T > 0 both poles at Z = 0 and Z = Z+ contribute

to the integration. The contribution of the Z = 0 pole gives
the same as the result Eq. (B6) for T = 0 up to a factor of
1/

√
1 − T → 1.

The contribution to the integral from the pole at Z = Z+ is

I (1)
y (0) = − e�

2π (β + m0)
Im

∫ ∞

0
dζ g(iζ − μ/t )

× [z(iζ − μ/t )(1 + e2ζ ) (B8)

+ z−1(iζ − μ/t )(1 + e−2ζ )],

where we abbreviated

g(iζ − μ/t ) = e−iμ/t − √
1 − T Z+√

1 − T (Z+ − Z−)
, (B9)

z(iζ − μ/t ) = e−ζ Z+. (B10)

(One verifies that g and z are functions of iζ − μ/t only.)
Since it contributes for T > 0 only, the pole at Z+ can be seen
to represent a contribution to the equilibrium current from the
Fermi arc at the insulating side of the semimetal. To estimate
this contribution in the limit of small T , we note that the
difference Z+ − Z− is

Z+ − Z− = 2ieζ

√
sin2 (iζ − μ/t ) − T

1 − T
. (B11)

To further evaluate this expression in the limit of small trans-
mission T , we note that for T � 1 one has

Z+ = e−iμ/t
[
1 − i

T

2
cot (iζ − μ/t ) + · · ·

]
. (B12)

In the limit of large ζ , this expansion is convergent and gives
a numerator of order T in Eq. (B8). Hence, for large ζ , the
integral in Eq. (B8) is convergent and of order T . If μ �= 0
this conclusion applies to the entire integration domain ζ > 0,
so that we conclude that the finite-T correction to the result
shown in Eq. (B6) is of order T and smoothly vanishes for
T ↓ 0 if μ �= 0. The case μ = 0 is different because then the
expansion shown in Eq. (B12) is singular for ζ → 0. In the
limit of small ζ one finds, if μ = 0, that

g(iζ ) = −
√

ζ 2 + T − ζ

2
√

ζ 2 + T

= − T

2
√

ζ 2 + T (
√

ζ 2 + T + ζ )
. (B13)

We now divide up the ζ integral into a region 0 < ζ < T α/4

and a region T α < ζ with 0 < α < 1/2. In the former region,
the remaining factors of the integration are approximately
constant and integration of Eq. (B13) gives a contribution to
I (1)

y (0) that is of order
√

T . In the region ζ > T α one may
still use the small-T expansion from Eq. (B12) to arrive at a
systematic expansion around the result at T = 0. Since both
contributions to the integral vanish in the limit T → 0, we
conclude that I (1)

y (0) → 0 for T → 0 even if μ = 0, although
the convergence may be slower than for generic μ.

We now consider the derivative of (B8) with respect to μ

at μ = 0 before taking the limit T → 0. We use that d/dμ =
(i/t )d/dζ acting on z(iζ − μ/t ) and g(iζ − μ/t ), to obtain

dI (1)
y (0)

dμ
= − e�

2π (β + m0)d−
Re

∫ ∞

0
dζ (1 + e2ζ )

× d

dζ
g(iζ )z(iζ ) + (1 + e−2ζ )

d

dζ

g(iζ )

z(iζ )
. (B14)

Using

lim
T →0

g(0)

z(0)
= lim

T →0
g(0)z(0) = −1

2
, (B15)
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partial integration gives

dI (1)
y (0)

dμ
= − e�

π (β + m0)

[
1 − Re

∫ ∞

0
dζ

(
e2ζ g(iζ )z(iζ ) − e−2ζ g(iζ )

z(iζ )

)]
. (B16)

The remaining integral vanishes for T → 0 similarly as the
current in (B8) at μ = 0 as shown above, hence

dI (1)
y (0)

dμ
= − e�

π (β + m0)
. (B17)

Thus for the total current I (0)
y (0) + I (1)

y (0) in the ordered limit
μ → 0, T → 0 we obtain

dIy(0)

dμ
= − e�

3π (β + m0)
, (B18)

reproducing Eq. (67).
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