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Gross-Neveu Heisenberg criticality: Dynamical generation of quantum spin Hall masses
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We consider fermions on a honeycomb lattice supplemented by a spin invariant interaction that dynamically
generates a quantum spin Hall insulator. This lattice model provides an instance of Gross-Neveu Heisenberg
criticality, as realized for example by the Hubbard model on the honeycomb lattice. Using auxiliary field quantum
Monte Carlo simulations we show that we can compute with unprecedented precision susceptibilities of the order
parameter. In O(N) Gross-Neveu transitions, the anomalous dimension of the bosonic mode grows as a function
of N such that in the large-N limit it is of particular importance to consider susceptibilities rather than equal-time
correlations so as to minimize contributions from the background. For the N = 3 case, we obtain 1/ν = 1.11(4),
ηφ = 0.80(9), and ηψ = 0.29(2), respectively, for the correlation length exponent, and the bosonic and fermionic
anomalous dimensions.
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I. INTRODUCTION

Fermionic quantum criticality is a long-standing problem
in the domain of strongly correlated electron systems [1,2].
In d-wave superconductors [3,4] or in freestanding graphene
[5–7] the problem greatly simplifies. Here, the Fermi surface
consists of a discrete set of points with a linear dispersion
relation at low energies that can be captured by a Dirac equa-
tion [8]. Fermion criticality in these systems refers to a set of
phenomena such as the opening of a single particle gap [9]
(mass generation), or nematic transitions where a Dirac point
meanders [10,11].

In mass generating transitions in two spatial dimensions,
one expects emergent Lorentz symmetry [12]. The field theory
corresponds to Dirac fermions supplemented by a Yukawa
term consisting of a Dirac mass [13] coupled to a bosonic
mode described by a φ4 theory [9]. At the Wilson-Fisher
fixed point, the Yukawa coupling is relevant and drives the
system to a new so-called Gross-Neveu (GN) critical point. In
comparison to Wilson-Fisher fixed points where the bosonic
anomalous dimension is small [14–16], fermion quantum crit-
icality in Dirac systems is characterized by a much larger one.
This can be understood intuitively since coupling to fermions
provides new decay channels for bosonic modes. As noted in
[7], this characteristic of the GN critical points potentially
poses a numerical challenge. If in two spatial dimensions,
the anomalous dimension of the bosonic mode is greater
than unity, then the equal-time correlations of this mode will
be dominated by the background. On the other hand, crit-
ical fluctuations will become apparent in the susceptibility.
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In principle this should not cause a problem since within aux-
iliary field quantum Monte Carlo (AFQMC) methods [17–20]
one can compute time displaced correlation functions and
hence susceptibilities. To the best of our knowledge, it turns
out that computing susceptibilities for Hubbard-type models
in the vicinity of the critical point is very noisy, and is plagued
by rare configurations with anomalous fluctuations. This in-
hibits a precise determination of this quantity and to date
analyses of GN criticality in lattice systems [5–7,21–24] are
based on equal-time correlations of the critical bosonic mode.

In Ref. [25], we have introduced a model with an SU(2)
spin symmetry that shows a transition from a Dirac semimetal
(DSM) to a quantum spin Hall (QSH) insulator. As con-
jectured in Ref. [9] this transition is expected to belong to
the same universality class as that of the Hubbard model
on the Honeycomb lattice. Remarkably, our AFQMC imple-
mentation presented in Ref. [25] does not suffer from the
aforementioned anomalous fluctuations of the critical bosonic
modes. We are hence in a position to compute the susceptibil-
ity and extract critical exponents using this quantity. The main
result of paper reads

1/ν = 1.11(4), ηφ = 0.80(9), and ηψ = 0.29(2) (1)

for the exponents of the (2 + 1)-dimensional GN-Heisenberg
universality class at Nf = 2 four-component fermion fields
akin to graphene. Here ν is the correlation length exponent
and ηφ (ηψ ) the bosonic (fermionic) anomalous dimension.

The paper is organized as follows. In the next section,
we define the model and the AFQMC approach. In Sec. III,
we discuss our QMC results using a crossing-point analysis
based on the time displaced correlations. Adopting this anal-
ysis scheme, corrections to scaling are taken into account. In
Sec. IV we compare our results to previous estimates and pro-
vide concluding remarks. We have included three appendices.
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FIG. 1. Schematic ground-state phase diagram with DSM, QSH,
and SSC phases. The DSM-QSH transition belongs to the Gross-
Neveu Heisenberg universality class. The QSH-SSC is an example
of a monopole-free deconfined quantum critical point (DQCP) [25].

In Appendix A we compare the quality of our susceptibility
data to those of the generic Hubbard model on the honeycomb
lattice. In Appendix B we provide a detailed symmetry based
understanding of the single particle Green’s function, which is
used to compute the fermion anomalous dimension. Finally, in
Appendix C we show that the correlation ratio is a renormal-
ization group invariant quantity.

II. MODEL AND METHOD

We consider a honeycomb lattice model with Hamiltonian

Ĥ = −t
∑
〈i, j〉

ĉ†
i ĉ j − λ

∑
�

⎛⎝ ∑
〈〈i j〉〉∈�

Ĵi, j

⎞⎠2

,

Ĵi, j = iνi j ĉ
†
i σĉ j + H.c. (2)

The spinor ĉ†
i = (ĉ†

i,↑, ĉ†
i,↓) where ĉ†

i,σ creates an electron at
lattice site i with z component of spin σ . The first term
accounts for nearest-neighbor hopping. The second term is
a hexagon interaction involving next-nearest-neighbor pairs
of sites and phase factors νi j = −ν ji = ±1 identical to those
of the Kane-Mele model [26]. That is, assume that the
honeycomb lattice spans the x-y plane, and let r be the nearest-
neighbor site common to next-nearest-neighbor sites i and j,
then

νi j = sgn[(i − r) × (r − j)] · ez. (3)

Finally, σ = (σ x, σ y, σ z ) corresponds to the vector of Pauli
spin matrices. Since Ĵi, j transforms as a vector under
SU(2) spin rotations, the model possesses global SU(2) spin
symmetry.

The ground state phase diagram as a function of λ pre-
sented in Ref. [25] is briefly summarized in Fig. 1. As a
function of λ/t (we set t = 1), we observe three phases: a
DSM for λ < λc1, a QSH insulator for λc1 < λ < λc2, and
an s-wave superconductor (SSC) at λ > λc2. The DSM and
QSH states are separated by a Gross-Neveu Heisenberg phase
transition at λc1 ≈ 0.0187; the QSH and SSC states are sepa-
rated by a deconfined quantum critical point (DQCP) [27–29]
at λc2 ≈ 0.0332. Here and in comparison to Ref. [25] we focus
on the critical behavior of the Gross-Neveu Heisenberg tran-
sition. We simulated lattices with L × L unit cells (N = 2L2

sites). Here we will provide results on larger lattice sites up to
N = 1152 with L = 24 and determine the correlation length
exponent, and bosonic and fermionic anomalous dimensions.

The model described by Hamiltonian (2) is investigated
with the algorithms for lattice fermions (ALF) [30,31] im-
plementation of finite temperature AFQMC [17–20]. Since
the interaction is written in terms of squares of single body
operators, it can be decomposed with a generic Hubbard-
Stratonovich transformation [25,32,33]. We consider values of
λ > 0 such that for a given instance of Hubbard-Stratonovitch
fields, time reversal symmetry is present. This has the con-
sequence that the eigenvalues of the fermion matrix occur in
complex conjugate pairs [34]. Hence no sign problem occurs.
Note that since adding a chemical potential does not break
time reversal symmetry, finite dopings can also be considered
[35]. For the details of the implementation of the algorithm,
we refer the reader to Ref. [25]. In the following, we used
t = 1 as the energy unit and simulated half-filled lattices with
L × L unit cells with periodic boundary conditions. For the
numerical simulations presented here, we have used a sym-
metric Trotter decomposition (see Ref. [31]) so as to ensure
hermiticity of the imaginary time propagation. For the imagi-
nary time step we have chosen, �τ = 0.2 and as appropriate
for Lorentz invariant systems have carried out an inverse tem-
perature β = L scaling analysis.

One key technical point of this study is that our specific im-
plementation allows for the calculation of the order parameter
susceptibility with unprecedented precision. In comparison to
the Hubbard model on the honeycomb lattice, we show in
Appendix A that we do not suffer from rare configurations
with anomalous fluctuations when computing this quantity.

III. RESULTS

A. Order parameter

The DSM-QSH transition involves the breaking of an
SU(2) spin rotation symmetry and is expected to be in the
Gross-Neveu Heisenberg universality class for Nf = 2 four-
component Dirac fermions (two sublattices, two Dirac cones,
and spin σ = ↑,↓). The local vector order parameter takes the
form of the spin-orbit coupling,

Ô
QSH
r,〈〈δ,δ′〉〉 = iĉ†

r,δσĉr,δ′ + H.c., (4)

where r labels a unit cell or equivalently a hexagon, and
〈〈δ, δ′〉〉 corresponds to next-nearest-neighbor pairs with legs
δ and δ′ of the corresponding hexagon. Because this order
parameter is a lattice regularization of the three QSH mass
terms in the Dirac equation [13], long-range order implies
a mass gap. To study this phase transition, we use sus-
ceptibilities rather than equal-time correlations to suppress
background contributions to the critical fluctuations. The as-
sociated time-displaced correlation functions of the spin-orbit
coupling order parameter read

SQSH
〈〈δ,δ′〉〉〈〈δ′′,δ′′′〉〉(k, τ )

= 1

L2

∑
r,r′

〈
Ô

QSH
r,〈〈δ,δ′〉〉(τ ) · Ô

QSH
r′,〈〈δ′′,δ′′′〉〉(0)

〉
eik(r−r′ ). (5)

Here τ is the imaginary time. Since our model enjoys an

SU(2) spin rotation symmetry and Ô
QSH
r,〈〈δ,δ′〉〉 transforms as a

vector under global rotations, we can neglect the background
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FIG. 2. (a) Correlation ratio and (b) susceptibility of the spin-
orbit coupling order parameter for different system sizes across the
DSM-QSH phase transition.

terms. We define the susceptibility as

χQSH(k) = �1

(∫ β

0
dτ SQSH

〈〈δ,δ〉〉,〈〈δ′′,δ′′′〉〉(k, τ )

)
, (6)

where, �1() indicates the largest eigenvalue of the corre-
sponding 6 × 6 matrix spanned by the 〈〈δ, δ′〉〉 and 〈〈δ′′, δ′′′〉〉
indices corresponding to the six next-nearest-neighbor bonds
of a hexagon. The QSH state is characterized by diverging
χQSH(k = 0). The corresponding renormalization-group in-
variant correlation ratio [36] (see Appendix C) reads

RQSH
χ = 1 − χQSH(k = �k)

χQSH(k = 0)
. (7)

The ordering wave vector corresponds to k = 0, and on
an L × L lattice with periodic boundary conditions, |�k| =

4π√
3L

. In the thermodynamic limit RQSH
χ → 1 (RQSH

χ → 0)
in the ordered (disordered) phase and corresponds to a
renormalization-group invariant quantity

RQSH
χ = fR[Lz/β, (λ − λc)L1/ν, L−w], (8)

at the critical point as discussed in Appendix C. Here β is the
inverse temperature, z the dynamical critical exponent, ν the
correlation length exponent, and ω the leading correction-to-
scaling exponent. We will assume conformal invariance and
set z = 1 and β = L. Hence up to corrections to scaling, RQSH

χ

should show a crossing point at λ = λc. This is clearly seen
in Fig. 2(a). In Fig. 2(b) we present the bare data, that support
a divergence of the susceptibility beyond the crossing point
of the correlation ratio. In particular, in the ordered phase,
we expect the correlation length to diverge exponentially with

 0.018

 0.0185

 0.019

 0.0195

 0  0.05  0.1  0.15  0.2

(a)

� c

1/L

 0.8

 1

 1.2

 1.4

 1.6

 0  0.05  0.1  0.15  0.2

(b)

1/
�

1/L

 0.5

 0.6

 0.7

 0.8

 0.9

 0  0.04  0.08  0.12  0.16  0.2

(c)

� �

1/L

FIG. 3. (a) λc as a function of system size is obtained from a
crossing-point analysis of the correlation ratio of Eq. (7) for L and
L + 6. (b) Correlation length exponent as a function of system size as
obtained from Eq. (9). (c) Bosonic anomalous dimension as obtained
from Eq. (11). From the fits (see text) we obtain λc = 0.0186(2),
1/ν = 1.11(4), and ηφ = 0.80(9) in the large system size limit.

inverse temperature [37]. For our β = L scaling it will hence
exceed the size of the system and we expect the susceptibility
to scale as the Euclidean volume βL2 in the large volume
limit.

We locate the critical point with the crossing-point method.
Aside from a polynomial interpolation of the data as a func-
tion of λ for each L, this analysis does not require any further
fitting, and by definition, converges to the correct critical cou-
pling with leading finite-size corrections given by L−ω−(1/ν).
Figure 3(a) plots the finite-size estimate, λc(L), corresponding
to the crossing point of RQSH

χ for L and L + 6. Extrapola-
tion to the thermodynamic limit yields λc = 0.186(2) and
λc(L) = λc + a1L−ω1 with ω1 = 1.6(5). Here ω1, and also
include ω2, ω3, and ω4 corresponding to the correlation length
exponent, and bosonic and fermionic anomalous dimensions,
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FIG. 4. As a cross-check for our determination of the critical
point and exponents, we provide a data collapse with λc = 0.0186,
1/ν = 1.11, and ηφ = 0.8 for (a) the correlation ratio and (b) the
QSH susceptibility.

respectively, in the later part should be considered as “effec-
tive” exponents that change with the range of system sizes
considered, which becomes the leading correction exponent
only for very large sizes.

Based on Eq. (8) and the crossing-point analysis method in
Ref. [38], we compute the correlation length exponent, ν, at
crossing points of the correlation ratio via

1

νQSH(L)
= 1

ln(r)
ln

(
d

dλ
RQSH

χ (λ, rL)
d

dλ
RQSH

χ (λ, L)

)∣∣∣∣∣
λ=λc (L)

. (9)

Here r = L
L+6 . The data of Fig. 3(b) supports 1/ν = 1.11(4)

and 1/ν(L) = 1/ν + b1L−ω2 with ω2 = 2.9(8).
To estimate the bosonic anomalous dimension we consider

the susceptibility

χQSH(k = 0) = L2−ηφ fχ [Lz/β, (λ − λc)L1/ν, L−w], (10)

at criticality such that

ηφ (L, rL) = 2 − 1

ln(r)
ln

(
χQSH(λc(L), rL)

χQSH(λc(L), L)

)
. (11)

Again r = L
L+6 , and λc(L) refers to the size resolved crossing

point of the correlation ratio. The data of Fig. 3(c) supports
ηφ = 0.80(9) with ηφ (L) = ηφ + c1L−ω3 and ω3 = 1.4(6).

Finally, we check the critical point and exponents by
collapsing the data on the basis of the finite-size scaling re-
lations (8) and (10) without taking the correction to scaling
terms (L−ω) into consideration. As expected and as shown in
Figs. 4(a) and 4(b), the data for different system sizes collapse
onto each other in the large size limit.

FIG. 5. (a) Monte Carlo estimate of Z as defined in Eq. (13).
(a) Size scaling of the fermionic anomalous dimension as obtained
from Eq. (15). In the large system size limit, we obtain ηψ = 0.29(2).

B. Single particle Green’s functions

To extract the fermionic anomalous dimension, we con-
sider the imaginary time displaced local single particle
Green’s function at τ = β/2 ≡ L/2:

G(λ, L) = 1

2L2

∑
r,δ,σ

〈ĉ†
r+δ,σ

(β/2)ĉr+δ,σ (0)〉. (12)

Here r denotes the unit cell, δ is the orbital in the unit cell
corresponding to the A(B) sublattices, and σ is the spin de-
gree of freedom. It is convenient to normalize G(λ, L) with
its noninteracting value so as to filter out size effects. This
motivates the definition

Z = G(λ, L)

G(0, L)
. (13)

In the noninteracting case, G(0, L) scales as L−2 reflecting
the fermionic anomalous dimension, d/2 (d is the spatial
dimension), of the fermion operator at the noninteracting fixed
point (see Appendix B for a symmetry based discussion of the
single particle Green’s function).

In the vicinity of the GN critical point, we expect

Z = L−ηψ fZ [Lz/β, (λ − λc)L1/ν, L−w], (14)

where ηψ is the fermionic anomalous dimension. In Fig. 5(a)
we report our bare data from which we can extract ηψ using
the relation

ηψ (L, rL) = − 1

ln(r)
ln

(
Z (λc(L), rL)
Z (λc(L), L)

)
(15)
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with r = L
L+6 , and λc(L) the size resolved crossing points of

the correlation ratio. In Fig. 5(b) we show that ηψ = 0.29(2)
with ηψ (L) = ηψ + d1L−ω4 and ω4 = 3.2(6). We note that
the single particle Green’s function is not a Lorentz invariant
quantity (see Appendix B). It is hence challenging to use
the real space decay so as to extract the fermion anomalous
dimension.

IV. DISCUSSIONS AND OUTLOOK

For Nf = 2 four-component Dirac fermions akin to
graphene, there are a number of GN transitions that can be
classified in terms of symmetry. After a canonical transfor-
mation, the noninteracting Dirac Hamiltonian of graphene is
given by (see Appendix B)

Ĥ0 = −vF

∑
p

�̂
†
(p)[pxτx + pyτy]�̂(p), (16)

where we label the eight-component spinor as �̂
†

:= �†
τ,σ,μ.

The τx,y,z Pauli matrices act on the τ indices and a similar no-
tation holds for σx,y,z and μx,y,z Pauli matrices. In this writing
of the Dirac Hamiltonian, the SU(4) symmetry is explicit. Ĥ0

has a maximum of five mutually anticommuting mass terms
corresponding to the matrices:

� = (σμxτz, μyτz, μzτz ). (17)

The GN models

ĤN = Ĥ0 − U
N∑

i=1

∫
V

d2x[�̂†(x)�i�̂(x)]2 (18)

have O(N) symmetry, and the generators of the SO(N) sub-
group are given by

�i j = i

4
[�i, � j], i > j, (19)

where i ∈ 1 . . . N . The authors of Ref. [39] compute within
an ε expansion around three spatial dimensions, as well as
with functional renormalization group (FRG) methods the
exponents for the aforementioned O(N)-GN transitions. In
the FRG approximation, the bosonic anomalous dimensions
read ηφ = 0.760, 0.875, 1.015, 1.159, and ηφ = 1.285 at N =
1, 2, 3, 4, 5, respectively. Hence, as N grows it becomes in-
creasingly important to compute susceptibilities rather than
equal-time correlation functions. Lattice regularizations of
the above continuum theories can capture the O(1) or Z2

[23], O(2) [40,41], as well as the O(3) [4–7] critical points.
While Landau level regularization schemes allow one to sim-
ulate higher symmetries [42,43], O(4) and O(5) Gross-Neveu
transitions seem to be realized only at multicritical points
[39,44,45]. Such multicritical points have been put forward
in fermion lattice models in Refs. [46,47] and Ref. [48]
for the O(4) and O(5) cases respectively. Aside for the
necessity of considering susceptibilities to investigate crit-
icality, the task becomes especially challenging since one
has to control two model parameters to locate the critical
point.

In Hubbard based models, generically used to capture GN
O(3) criticality, computing the susceptibilities of the bosonic
mode turns out to be difficult due to anomalous fluctuations

TABLE I. Comparison of critical exponents of the Nf = 2 four-
component Dirac fermions Gross-Neveu O(3) critical point in 2+1
dimensions. The table is adapted from Ref. [22].

1/ν ηφ ηψ

This study 1.11(4) 0.80(9) 0.29(2)
Ref. [4] (AFQMC) 0.95(5) 0.75(4) 0.23(4)
Ref. [49] (HMC) 0.861 0.872(22)
Ref. [25] (AFQMC) 1.14(9) 0.79(5)
Ref. [6] (AFQMC) 0.98(1) 0.49(2) 0.20(2)
Ref. [7] (AFQMC) 1.19(6) 0.70(15)
Ref. [50] (4 − ε), ε4, Padé [2/2] 0.6426 0.9985 0.1833
Ref. [50] (4 − ε), ε4, Padé [3/1] 0.6447 0.9563 0.1560
Ref. [51] FRG 0.795 1.032 0.071
Ref. [52] FRG 0.76 1.01 0.08

that suggest fat tailed distributions. When computing observ-
ables in the AFQMC, we divide by the fermion determinant
[20]. The zeros of this quantity could be at the origin of
these anomalous fluctuations. This interpretation has been put
forward in Ref. [53]. It certainly may be part of the prob-
lem, but does not seem to provide an understanding of why
the spin-susceptibility shows anomalous fluctuations but not,
for instance, the charge susceptibility or the single particle
time displaced correlation function. We refer the reader to
Appendix A for further discussions and examples.

We have noticed empirically that the AFQMC implementa-
tion of the model of Eq. (2) [25] showing a GN O(3) transition
from a DSM to a QSH insulator does not suffer from the
aforementioned issue. It hence provides a unique possibility to
compute the exponents by considering susceptibilities rather
than equal-time correlations. Our results are at best summa-
rized by comparing with other calculations listed in Table I.
The Monte Carlo results are ordered chronologically and con-
vergence between different groups is apparent. In particular,
the most recent independent calculations of Ref. [4], where
the Dirac metal originates form a d-wave superconducting
BCS state and the antiferromagnetic mass terms are generated
dynamically with a Hubbard U term, compare very favorably
to our DSM to QSH transition.

To progress in our determination of the critical exponents,
high precision simulations on larger system sizes are de-
sirable. In AFQMC algorithms, the fermion determinant is
computed exactly such that the computational time per sweep
for β = L scaling reads L7. Alternatively, in hybrid Monte
Carlo (HMC) approaches [54,55] one generically evaluates
the fermion determinant stochastically such that one can, in
the ideal case, hope for an L4 scaling corresponding to the
Euclidean volume. In the vicinity of the GN critical point,
such a scaling is not achievable, and the authors of Ref. [49]
revert to an explicit calculation of the fermion determinant
[56]. The origin for this poor scaling of the HMC, is the zeros
of the fermion determinant. As mentioned above, one can
conjecture that our ability to compute the order parameter sus-
ceptibilities stems from a low density of zeros of the fermion
determinant. If so, it may be worthwhile to attempt HMC
simulations of our model in the hope of reaching larger system
sizes.
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APPENDIX A: TIME DISPLACED
CORRELATION FUNCTIONS

In this Appendix we present simulations for the Hubbard
model on the honeycomb lattice close to the GN O(3) critical
point. Our aim is to illustrate the difficulty in computing
precisely the time displaced spin-spin correlations. In contrast
the corresponding data for the model of Eq. (2) shows no such
anomalous fluctuations up to L = β = 24.

Using the ALF-2.0 library [20,31], we can choose be-
tween different Hubbard-Stratonovich (HS) transformations:
the field can couple to the density or to the magnetization
[57]. The density decoupling is an SU(2) spin invariant code,
meaning that for each field configuration, global SU(2) spin
symmetry is present. On the other hand, coupling to the mag-
netization breaks the SU(2) symmetry to U(1). This symmetry
will be restored after sampling over auxiliary field configura-
tions. In Fig. 6 we plot the spin-spin correlations,

S(q, τ ) = 4

3

∑
δ

∑
r

eiq·r〈Sr,δ (τ )S0,δ (0)〉, (A1)

where r denotes a unit cell, δ the orbital, and Sr,δ is the spin
operator. Here we consider an L = 12 lattice at βt = 12. As
apparent, and within error bars, both HS transformations yield
identical results. To assess the quality of the data we plot in
Fig. 7 the single particle Green’s function:

G(k, τ ) = 1

2

∑
δ,σ

〈ĉk,δ,σ
(τ )ĉ†

k,δ,σ
〉 (A2)

for the same run that produced the data of Fig. 6. As apparent,
the quality of the single particle Green’s function is excellent
in comparison to the time displaced spin correlations. The
larger error bars observed in the spin channel stem from rare
configurations with anomalous fluctuations. The values of
each bin for the spin

χs =
∫ β

0
dτ S(q = 0, τ ) (A3)

FIG. 6. Spin-spin time displaced correlation function at the or-
dering wave vector. Here we consider the Hubbard model on the
honeycomb lattice in the proximity of the GN O(3) critical point.
We present data for different choices of the HS transformation where
the field couples to the density (triangles) or to the magnetization
(circles).

and single particle

χg =
∫ β

0
dτ G(k = 0, τ ) (A4)

susceptibilities are plotted in Fig. 8. For the spin suscepti-
bilities, one observes spikes in the bin values for both codes.
On the other hand, the bin values of the Green’s function
susceptibility show no anomalies.

We now consider equivalent quantities albeit on much
larger system sizes for the model of Eq. (2). In Fig. 9 we plot

SQSH(k, τ ) =
∑

〈〈δ,δ′〉〉

∑
r

eik·r
〈
Ô

QSH
r,〈〈δ,δ′〉〉(τ ) · Ô

QSH
0,〈〈δ,δ′〉〉(0)

〉
,

(A5)

where Ô
QSH
r,〈〈δ,δ′〉〉 is defined in Eq. (4). As apparent, the data is

of excellent quality.

FIG. 7. Green’s function at the Dirac point for the same run as in
Fig. 6.
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FIG. 8. Bin values for the spin (a),(b) and single particle
(c),(d) susceptibilities for a 12 × 12 honeycomb lattice at U/t = 4
and βt = 12. (a),(c) The HS field couples to the magnetization.
(b),(d) The HS field couples to the density. Each bin consists of 2400
sweeps.

In Fig. 10 we plot the local Green’s function

Glocal(τ ) = 1

2L2

∑
r,δ,σ

〈ĉ†
r+δ,σ

(τ )ĉr+δ,σ (0)〉 (A6)

FIG. 9. Time displaced spin-orbit correlation functions at
L = β = 24 and λ = 0.018 75.

FIG. 10. Time displaced local Green’s function for the same run
as in Fig. 9.

used to obtain the fermion anomalous dimension. As apparent,
the data quality is very good.

The spin-orbital coupling susceptibility reads

χQSH = �1

(∫ β

0
dτ SQSH

〈〈δ,δ〉〉,〈〈δ′′,δ′′′〉〉(k = 0, τ )

)
, (A7)

where,SQSH
〈〈δ,δ〉〉,〈〈δ′′,δ′′′〉〉 is the time displaced correlation function

of spin-orbit coupling order parameter and �1() indicates the
largest eigenvalue of the 6 × 6 matrix spanned by the next-
nearest-neighbor bonds of a hexagon. The values of each bin
for χQSH and the three components χQSHx , χQSHy , and χQSHz

are plotted in Fig. 11. We observe no spikes in the bin values
for all components.

APPENDIX B: SPACE AND TIME DEPENDENCE
OF THE SINGLE PARTICLE GREEN’S FUNCTION

The aim of this appendix is to understand the behavior of
the single particle Green’s function in space and imaginary
time using symmetry arguments. Let us start with the tight
binding Hamiltonian on the honeycomb lattice that reads

Ĥ0 = −t
∑
k∈BZ

(â†
k, b̂†

k)

(
0 Z (k)

Z (k) 0

)(
âk
b̂k

)
. (B1)

Here,

â†
k = 1√

N

∑
r

eik·râ†
r (B2)

creates a Bloch state on orbital a of the unit cell. A similar
equation holds for the b orbital. r = na1 + ma2 with a1 =
a(1, 0), a2 = a( 1

2 ,
√

3
2 ), and n, m ∈ Z runs over the unit cells.

We have used periodic boundary conditions and

Z (k) = 1 + e−k·a2 + e−ik·(a2−a1 ). (B3)

The Dirac points are defined by the zeros of Z (k) and are
located at

k = ±K, with K = 4
3 b1 + 2

3 b2 (B4)

with bi · a j = 2πδi, j .
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FIG. 11. Bin values for spin-orbital coupling susceptibility χQSH

(d) and its three components χQSHx (a), χQSHy (b), and χQSHz (c) for a
12 × 12 honeycomb lattice at λ/t = 0.0186 and βt = 12. Each bin
consists of 2400 sweeps.

The Hamiltonian is invariant under the antiunitary particle-
hole transformation

T̂ −1α

(
â†

r
b̂†

r

)
T̂ = α

(
b̂r

−âr

)
(B5)

as well as under inversion symmetry,

Î−1

(
â†

r
b̂†

r

)
Î =

(
b̂†

−r

â†
−r

)
. (B6)

Hence, for r �= 0,

〈â†
r â0〉 = 〈b̂r b̂†

0〉 = −〈b̂†
0b̂r〉

= −〈b̂†
−rb̂0〉 = −〈â†

r â0〉 (B7)

and 〈â†
r â0〉 vanishes. In the last two steps, we have used

translation and inversion symmetry. Similarly, one will show
that 〈b̂†

r b̂0〉 = 0 again for r �= 0. Hence, provided that the
symmetries of the Dirac Hamiltonian are not broken, only
equal-time correlations between different orbitals do not
vanish.

We will now show that there is no nonvanishing Lorentz
invariant fermion bilinear such that we cannot expect a

simple asymptotic behavior of the one particle propagator.
Since Lorentz symmetry is emergent, we will consider the
continuum limit by expanding around the Dirac points:

Z (K + p) =
√

3a

2
(px − ipy),

Z (−K + p) = −
√

3a

2
(px + ipy), (B8)

to obtain

Ĥ = −vF

∑
p,i=1,2

ĉ†
pipiγ0γiĉp. (B9)

Here ĉ†
p ≡ ĉ†

p,μ=±K,τ=a,b such that ĉ†
p,μ=±K,τ=a = â†

±K+p and

ĉ†
p,μ=±K,τ=b = b̂†

±K+p. The Fermi velocity is given by vF =
√

3at
2 and the γ matrices are defined as

γ0 = τz, γ1 = μzτy, γ2 = τx, γ3 = μxτy, γ5 = μyτy.

(B10)

τ and μ are vectors of Pauli spin matrices that act on orbital
and valley indices, respectively. As apparent, the γ matrices
satisfy the Clifford algebra,

{γμ, γν} = 2δμ,ν . (B11)

Note that the canonical transformation that leads to Eq. (16)
is given by

ĉ† = �̂†(τyP+ + P−) with P± = 1
2 (1 ± μz ). (B12)

With

ĉ†
p = 1√

V

∫
V

d2x eip·xĉ†(x), (B13)

the Euclidean time action is then given by

S = vF

∫
d2x dτ

∑
μ=0,2

c(x)∂μγμc(x). (B14)

In the above,

c(x) = c†(x)γ0, (B15)

∂0 = ∂

vF ∂τ
and ∂i = ∂

∂xi

and cp is a Grassmann spinor. The Dirac equation is scale
invariant. In particular under the transformation x′ = bx and
τ ′ = bτ the Euclidean action remains form invariant provided
that the fermion fields transform as

c′(x′) = b−d/2c(x) (B16)

for the two, d = 2, dimensional case. Hence, fermion bilinears
can take the form

〈c(x)Mc(0)〉 ∝ a

(vF τ )2
+ b

|x|2 + cx1

|x|3 + dx2

|x|3

+ aL

(vF τ )2 + |x|2 · · · . (B17)
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FIG. 12. Real space equal-time Green’s function at zero temper-
ature along different directions.

The Dirac equation is Lorentz invariant [58] such that Lorentz
invariant fermion bilinears scale as

〈c(x)MLc(0)〉 ∝ aL

(vF τ )2 + |x|2 . (B18)

Examples of Lorentz invariant bilinears include

ML = 1, ML = iγ3, ML = iγ5, ML = iγ3γ5. (B19)

These biliniears are mass terms corresponding respectively
to charge-density wave (CDW) patterns, to the two Kékule
orders, and finally to the Haldane mass. Since mass terms
break symmetries of the Dirac Hamiltonian they vanish such
that

〈c(x)MLc(0)〉 = 0. (B20)

One can check the above explicitly for the CDW mass since
it changes sign under inversion symmetry. We are hence
left with fermion bilinears that are not Lorentz invariant,
and hence do not enjoy rotational symmetry in space and
imaginary time. In particular, computing 〈â†

r b̂0〉 on the lattice
amounts to considering M = γ0γ2. This is a nematic term that
breaks Lorentz symmetry. An explicit calculation of the equal-
time correlations of this fermion bilinear can be found in an
Appendix of Ref. [59]. For distances on the lattice that satisfy
r = n3a1 + m3a2, e±iK·r = 1 and no oscillatory behavior is
seen. In Fig. 12 we plot the equal-time Green’s function using
these sets of points. As apparent, depending upon the direction
1/r2 and 1/r3 decays are observed. Note that the 1/r3 decay
can be justified by combining the terms x1/|x|3 and x2/|x|3 for
x1 = x and x2 = a − x.

Setting x = 0 and considering solely imaginary time,
greatly simplifies the analysis. In this case the scaling dimen-
sion of the fermion leads to

〈â†
0(τ )â0(τ = 0)〉 ∝ 1

(vF τ )2
. (B21)

FIG. 13. Here we plot the time displaced local Green’s function,
at τ = β/2 for β = L simulations. As apparent, this quantity is
proportional to L−2.

In fact an explicit calculation of this quantity on the lattice and
at zero temperature gives

〈â†
0(τ )â0(τ = 0)〉 = 1

2N

∑
k

e−τ |tZ (k)|. (B22)

Expanding around the Dirac points, Z (±K + p) =
√

3a
2 |p| and

changing sums to integrals, yields the desired result. Figure 13
shows that adopting a β = L scaling and considering τ = β/2
provides confirmation of the above law.

At the Gross-Neveu critical point, the scaling dimension
of the fermion operator will be enhanced by half the fermion
anomalous dimension, η� , such that at this critical point we
expect

〈â†
0(τ )â0(τ = 0)〉GN ∝ 1

(vF τ )2+η�
(B23)

in two spatial dimensions.

APPENDIX C: SCALING OF CORRELATION RATIO

Generically the space-time correlation function at a critical
point with Lorentz invariance (z = 1) reads

C(r, τ, ξ , L, β )

= (|r|2 + c2τ 2)−(D+z−2+η)/2 f

( |r|
L

,
τ

β
,
β

L
,
ξ

L
, L−ω

)
,

(C1)

where ξ is the correlation length that depends on the distance
from the critical point λc:

ξ ∝ |λ − λc|−1/ν . (C2)

Here we consider only one dominant scaling correction term
with scaling dimension ω in Eq. (C1).
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For a space V ≡ LD and imaginary time β volume, the susceptibility scales as

χ (q) ≡
∫ β

0
dτ

∫
LD

dDrC(r, τ, ξ , L, β )eiq·r

=
∫ β

0
dτ

∫
LD

dDr
(|r|2 + c2τ 2

)−(D+z−2+η)/2
f

( |r|
L

,
τ

β
,
β

L
,
ξ

L
, L−ω

)
eiq·r

=
∫ 1

0
dτ ′

∫
1D

dDr′
(

|r′|2 + β2

L2
c2τ ′2

)−(D+z−2+η)/2
β

L
L−(D+z−2+η)LD+1 f

(
|r′|, τ ′,

β

L
,
ξ

L
, L−ω

)
eiLq·r′

= F

(
β

L
,
ξ

L
, L−ω, L|q|

)
L2−η. (C3)

In the second step, we carried out the variable substitutions, r = r′L and τ = βτ . Hence the correlation ratio R scales as

R ≡ 1 − L2−ηF
(

β

L ,
ξ

L , L−ω, L|qmin|
)

L2−ηF
(

β

L ,
ξ

L , L−ω, 0
)

≡ f̃

(
β

L
,
ξ

L
, L−ω

)
= fR

(
β

L
, L|λ − λc|1/ν, L−ω

)
(C4)

which stems from the fact that we fix L|qmin| as a constant during finite-size scaling.
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