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Flat energy bands of model lattice Hamiltonians provide a key ingredient in designing dispersionless wave
excitations and have become a versatile platform to study various aspects of interacting many-body systems.
Their essential merit lies in hosting compactly localized eigenstates which originate from destructive interference
induced by the lattice geometry, in turn often based on symmetry principles. We here show that flat bands can be
generated from a hidden symmetry of the lattice unit cell, revealed as a permutation symmetry upon reduction of
the cell over two sites governed by an effective dimer Hamiltonian. This so-called latent symmetry is intimately
connected to a symmetry between possible walks of a particle along the cell sites, starting and ending on each of
the effective dimer sites. The summed amplitudes of any eigenstate with odd parity on the effective dimer sites
vanish on special site subsets called walk multiplets. We exploit this to construct flat bands by using a latently
symmetric unit cell coupled into a lattice via walk multiplet interconnections. We demonstrate that the resulting
flat bands are tunable by different parametrizations of the lattice Hamiltonian matrix elements which preserve
the latent symmetry. The developed framework may offer fruitful perspectives to analyze and design flat band
structures.
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I. INTRODUCTION

Wave excitations in a lattice system are governed by the
form of its energy band structure and the corresponding eigen-
states. Since the dawn of quantum mechanics, substantial
efforts have been made to understand the response properties
of crystals in terms of their energy bands. With the technologi-
cal advances of the past decades, however, also artificial lattice
systems have been realized with ever increasing accuracy.
This has enabled an unprecedented engineering of bands with
targeted properties. A most intriguing case is that of “flat”
bands with vanishing curvature, which have become a subject
of intense research for designed lattice setups [1]. Those range
among various spatial scales and different technological plat-
forms, such as photonic waveguide or resonator arrays [2–4],
optical lattices for trapped atoms [5,6], superconducting wire
networks [7], nanostructured electronic lattices [8], optome-
chanical setups [9], or electric circuit networks [10].

The remarkable features induced by flat bands essentially
originate from the vanishing group velocity—or, equivalently,
diverging effective mass—of the eigenstates residing in them.
This allows for dispersionless wave excitations over the whole
crystal-momentum range of the flat band [3], which may be
exploited for their robust storage and transfer [11]. In turn,
transport properties of flat band states can be manipulated
by weak perturbations which set a dominant energy scale for
them [1]. In particular, flat bands have been used, e.g., to
model certain types of superfluidity [12–18] or topological
phases of matter [19–23]. Flat bands have also been explored
very recently to generate many-body localization [24–26] and
“caging” [27,28] in the presence of interactions, or to control
superradiance via synthetic gauge fields [29].

Flat bands of discrete lattice Hamiltonians rely on the
occurrence of eigenstates which are strictly localized on a
subset of sites, with vanishing amplitude in the remainder
of the lattice [30]. Such “compact localized states” (CLSs)
can be classified according to the number of unit cells they
occupy [31]. Notably, they do not violate the translational in-
variance of the lattice since they can, due to their macroscopic
degeneracy at the flat band energy, be linearly combined into
extended Bloch states. A CLS originates from the destructive
interference of its amplitudes on the neighboring lattice sites
coupled to the site subset the CLS occupies. This mechanism
may result directly from the geometric symmetry of the lattice
unit cell under a site permutation operation [32,33]. It may
also be caused by a bipartite (or chiral) symmetry of a lattice
composed of sublattices [34], or induced “accidentally” by
tuning the Bloch Hamiltonian matrix elements into the CLS
condition. Various schemes for generating flat bands from
CLSs have been proposed, based, e.g., on local permutation
symmetries [33,35], “origami” rules [36], local basis trans-
formations [32], solving inverse eigenvalue problems [31,37],
and, as shown very recently, using the properties of Gram
matrices [38] or combining lattice deformations with site ad-
ditions [39]. Despite the great value of such approaches, the
question remains whether flat bands may be systematically in-
voked by symmetry principles beyond the existing paradigms.

In the present work we propose a scheme to create flat
bands which is based on a type of hidden symmetry in the unit
cell Hamiltonian of a lattice. This so-called latent symmetry,
introduced recently in graph theory [40], is revealed as a per-
mutation symmetry once reducing the unit cell Hamiltonian
over a particular subset of sites to an effective subsystem
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Hamiltonian. Very recently, latent symmetries were proposed
as a novel possibility to explain seemingly accidental spectral
degeneracies of generic Hamiltonian matrices [41]. Reduc-
tion over a pair of latently exchange-symmetric sites—as we
will focus on here—results in an effective two-site symmetric
dimer, and the symmetry-induced parity of this dimer’s eigen-
states is inherited in the original unit cell; that is, any of its
eigenstates is locally even or odd on the latently symmetric
sites. Latent symmetry of two sites can be intuitively inter-
preted as a collective symmetry of so-called walks [42] (i.e.,
sequential hoppings) along the coupled sites of the unit cell,
starting and ending at each of those two sites. Equivalently,
the latent symmetry is simply expressed in terms of powers of
the Hamiltonian. We here combine latent symmetry with the
occurrence of special subsets of sites called walk multiplets.
On each such site subset, the amplitudes of any nondegenerate
eigenvector with odd parity on the latently symmetric sites
sum to zero. As we show, periodic lattices generated by inter-
connection of walk multiplets between latently symmetric unit
cells host flat bands with corresponding CLSs which occupy
single unit cells. Importantly, the underlying latent symmetry
persists upon the simultaneous variation of certain parameters
in the lattice Hamiltonian, making the generated flat bands
systematically tunable. With our results applicable to arbitrary
dimensions, we demonstrate the principle for one- and two-
dimensional lattices with simple prototype cells possessing
latent symmetries.

After introducing the concepts of latent symmetry and walk
equivalence in Sec. II, we show how to combine them to
generate flat band lattices in Sec. III, illustrating the principle
with prototype examples. We discuss possible extensions in
Sec. IV, while Sec. V concludes this work.

II. LATENT SYMMETRY, COSPECTRALITY,
AND WALK MULTIPLETS

Consider the eigenvalue problem H |ϕ〉 = E |ϕ〉 for a real
symmetric N × N Hamiltonian matrix H represented in the
orthonormal basis of single orbitals |n〉 on N coupled sites, n ∈
H ≡ {1, . . . , N}. To introduce the notion of latent symmetry,
let us partition the system into a selected subset S ⊂ H with
NS = |S| sites and its complement S = H \ S. The reduced
NS × NS Hamiltonian H̃S effectively describing subsystem S
under the influence of the rest of the system S is then given by
[43–45]

H̃S(E ) = HS + Γ [E − HS]−1Γ � ≡ HS + ΣS(E ), (1)

where the diagonal blocks HX = HXX of H are the Hamil-
tonians of the isolated subsystems X = S,S and Γ = HSS

is the coupling from S to S. This is essentially Feshbach’s
projection operator method [46] applied to the present dis-
crete model, while the term ΣS(E ) can be recognized as the
“self-energy” [45,47] of S induced by its coupling to S. It
amounts to “renormalized” matrix elements in the resulting
Hamiltonian H̃S(E ), in analogy to decimation procedures in
real-space renormalization group theory [45], which has been
applied to study, e.g., localization in disordered and quasiperi-
odic tight-binding structures [48–50]. The reduced eigenvalue
problem now has a smaller dimension, but is nonlinear due
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FIG. 1. Left: An unweighted graph, representing a Hamiltonian
H with unit hopping (thin edge lines) and zero on-site elements,
with two cospectral vertices S = {u, v} = {1, 2} forming a latently
symmetric site pair. Right: H is reduced over S to the effec-
tive Hamiltonian H̃S describing a symmetric two-site dimer with
on-site elements f (visualized as loop edges in the graph) and
hopping g depending functionally on the eigenvalue E ; in this
example f (E ) = (8 − 4E − 10E 2 + 2E 3 + 2E 4)/d (E ) and g(E ) =
(−6 + 6E 2 + 2E 3)/d (E ), where d (E ) = 7E − 2E 2 − 8E 3 + E 5.

to the E -dependence of H̃S. The spectrum σ (H̃S ) of H̃S,
given by det[E − H̃S(E )] = 0, coincides with that of H after
removing E values which happen to be eigenvalues of HS and
for which H̃S is not defined; symbolically, σ (H̃S ) = σ (H ) −
σ (HS ) (note that σ is a multiset in the presence of repeated
eigenvalues). Most importantly, any eigenvector |ϕ̃〉 of H̃S

equals the restriction of that of H , with the same eigenenergy,
to the subsystem S [51]: 〈s|ϕ̃〉 = 〈s|ϕ〉 for s ∈ S.

A latent symmetry is a permutation symmetry ΠS of the
reduced Hamiltonian H̃S such that any extended permutation
ΠS ⊕ ΠS (including the identity ΠS = IS) is not a symmetry
of the original Hamiltonian H . Throughout this work, S will
consist of two sites u and v, and by “latent symmetry” we will
always mean symmetry under transposition (i.e., exchange)
of u and v. Then H̃S effectively behaves like a two-site dimer
with E -dependent on-site potentials and coupling; see Fig. 1.
If u and v are latently symmetric in H , this effective dimer
is symmetric under exchange of u and v. If nondegenerate,
its eigenstates |ϕ̃〉 accordingly have definite parity 〈u|ϕ̃〉 =
±〈v|ϕ̃〉, and the same holds for the corresponding eigenstates,
with the same eigenenergies, of H : 〈u|ϕ〉 = ±〈v|ϕ〉. Such a
parity of amplitudes on u and v in the original, extended
system H , is usually traced back to an involutory site permu-
tation symmetry. Remarkably, the global parity in H̃S is here
inherited to the eigenstates |ϕ〉 as a local parity in H , where
there is no permutation symmetry producing it.

Latent symmetries were introduced very recently [40,52]
in the context of isospectral graph reductions [53]. There, H
is the (weighted) adjacency matrix of a connected graph with
vertex set H and edges with weights Hmn = 〈m|H |n〉 between
vertices. For brevity we will refer to the graph itself simply as
H . The isospectral reduction of the graph over a subset S of
its vertices is exactly the graph with adjacency matrix given in
Eq. (1). An example graph is shown in Fig. 1, containing the
two latently symmetric vertices S = {u, v} = {1, 2}.

A crucial fact, promoting the treatment of latent symmetry
with the tools of graph theory, is the following [42]: Two
latently symmetric vertices u, v of a graph are cospectral,
meaning that the spectra of the “vertex-deleted” graphs Hu =
H − u and Hv = H − v (where vertices u and v, as well
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as edges incident to them, have been deleted, respectively)
coincide, σ (Hu) = σ (Hv ). Alternatively, and of more use for
our purposes here, cospectral vertices are defined by the
property that their corresponding diagonal entries in any non-
negative power r of H coincide [54],

[Hr]uu = [Hr]vv ∀ r ∈ N. (2)

In general, for an unweighted graph (Hmn ∈ {0, 1}) the
element [Hr]mn gives the total number of all possible walks
of length r from vertex m to n [55,56], that is, sequences

α = (a1 = m, b1)(a2, b2) · · · (ar, br = n) (3)

of r possibly repeated edges (ai, bi ) with ai+1 = bi. For ex-
ample, the walk with steps 1 → 3 → 5 → 8 → 6 → 2 along
the sites of Fig. 1 is denoted as the sequence of edges
(1, 3)(3, 5)(5, 8)(8, 6)(6, 2). Note that also loops, with bi =
ai, may be included in a walk, representing on-site potentials
Haiai . Equation (2) concerns the special case of closed walks
(n = m) starting and ending at each cospectral vertex u or v.
For instance, Eq. (2) can easily be verified in the unweighted
graph of Fig. 1 for the first few powers r, by counting all
closed walks of length r starting at u = 1 or v = 2. The
closed walks of length r = 3, for example, are (in simplified
step notation) 1 → 3 → 5 → 1 and 2 → 4 → 6 → 2, plus
the same in opposite directions, in accordance with [H3]11 =
[H3]22 = 2.

For a weighted graph, a weight w(α) is assigned to each
walk, equal to the product of edge weights along it, w(α) =∏r

i=1 w(ai, bi ) = ∏r
i=1 Haibi . The above interpretation of ma-

trix powers in terms of walks is then generalized to a sum over
walk weights [57],

[Hr]mn =
∑

α∈A(r)
mn

w(α), r ∈ N, (4)

where A(r)
mn is the set of all walks of length r from m to n.

Fortunately, there is no need to evaluate Eq. (2) beyond k =
N − 1 since, by the Cayley-Hamilton theorem, any higher
powers Hk�N can be expressed as lower order polynomials in
H . As a consequence, if Eq. (2) holds for r = 0, . . . , N − 1,
it automatically holds for all r. This enables the use of the
N × N walk matrix [58,59] WM of a subset M ⊆ H to encode
walks ending in M, constructed by the action of Hr on the
indicator vector |eM〉 of M (with 〈m|eM〉 = 1 for m ∈ M and
0 otherwise):

WM = [|eM〉, H |eM〉, . . . , HN−1|eM〉], (5)

also known as the Krylov matrix of H generated by |eM〉
[60,61]. The rth column of WM is given by [WM]∗r =
Hr−1|eM〉 (∗ denoting all indices) and its element

[WM]sr =
∑
m∈M

[Hr−1]sm (6)

yields the sum over weighted walks—in the sense of Eq. (4)—
of length r − 1 from vertex s to all vertices in M.

We call two vertices u, v walk equivalent [62] relative to
M if their summed walks to M are equal for any walk length
r, that is, if the corresponding rows of WM are equal,

[WM]u∗ = [WM]v∗. (7)
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FIG. 2. The same graph as in Fig. 1, but now parametrically
weighted in the two different ways which preserve the cospectral-
ity of S = {u, v} = {1, 2}. Different edges and loops (hopping and
on-site elements in H ) are visualized by different line numbers and
vertex sizes, respectively. Subsets Mμ (μ = 1, 2, . . . , 5) of sites with
same shading (also with same vertex size) are “walk multiplets” with
respect to S (with u, v being “walk equivalent” relative to any Mμ),
fulfilling Eq. (7). Here the doublets are {1, 2}, {3, 4}, {5, 6}, and the
singlets {7}, {8}.

Conversely, we say that M then constitutes a walk multiplet
with respect to {u, v}; specifically, a walk M-let of size M =
|M| (singlet for M = 1, doublet for M = 2, etc.) [63].

Examples of walk singlets (M = 1) and doublets (M =
2) are shown in Fig. 2. There the weights of the graph in
Fig. 1 have also been parametrized in two different ways
such that the cospectral pair {1, 2}, and each shown walk
multiplet relative to it, are preserved [64]. More specifically,
the cospectrality of {1, 2} and walk multiplets relative to it
remain intact for any arbitrary value—a parameter of H—of
edge weights (including loops) which are equal. For instance,
in the right parametrization the equal weights H13 = H15 =
H24 = H26 can be varied together arbitrarily while retaining
the cospectrality and walk multiplets of {1, 2}.

As we will see further below, this cospectrality- and
multiplet-preserving parametrization will allow for a flexi-
ble tuning of flat bands. In the next section we will start
by showing how the combination of walk equivalence with
cospectrality for vertex pairs may be used to generate CLSs
and corresponding flat band lattices.

Before continuing, let us note that, if two vertices u and
v are related by a permutation symmetry of the graph, i.e.,
there is some permutation matrix Π commuting with H for
which Π |u〉 = |v〉, then Eq. (2) is automatically fulfilled. In
this work we focus on cospectral pairs u, v for which Eq. (2) is
not induced by permutation symmetry, but which correspond
to latent symmetry as defined above. As will be discussed later
on (see Sec. IV C), constructing such graphs is not a trivial
task. We have here resorted to numerical validation of Eq. (2)
for a fixed small graph size (N = 8), with a latently symmetric
example provided in Fig. 1. It should thus be clear that the
graphs we utilize as representative examples in this work
are special cases whose structure supports latent symmetry.
Modifying them arbitrarily (e.g., by adding or deleting edges)
would in general invalidate Eq. (2) and thus break the latent
symmetry between the selected vertices u, v in each case.
Nevertheless, as shown in Ref. [62], there exist systematic
graph modifications which do preserve the cospectrality of a
given vertex pair. Those modifications are outlined below (in
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Sec. III A) and will constitute the key ingredient in generating
flat bands by combining latent symmetry with walk multiplets.

III. FLAT BANDS INDUCED BY WALK EQUIVALENT
COSPECTRAL SITES

Let us now consider a graph H with cospectral vertices u, v

which are walk equivalent relative to a multiplet M, like in
Fig. 2 (with M chosen as one of the multiplets Mμ). Due to
cospectrality, any nondegenerate eigenvector |ϕν〉 has (or, if
degenerate, can be chosen to have) local parity on {u, v} [65],

〈u|ϕ±
ν 〉 = ±〈v|ϕ±

ν 〉, (8)

with + (−) denoting even (odd) parity. This local parity on
the cospectral pair {u, v} is equivalent to a symmetry Q of
H with Q2 = I which exchanges u and v, that is, Q|eu〉 =
|ev〉, while acting as a general orthogonal transformation on
the complement H \ {u, v} [41,54], as described in detail in
Appendix A.

Now, by inserting the spectral decomposition H =∑
ν Eν |ϕν〉〈ϕν | into Eq. (7) and using Eq. (8), one can show

[62] that the amplitude sum of any odd {u, v}-parity eigenstate
over any walk multiplet relative to {u, v} vanishes, that is,∑

m∈M
〈m|ϕ−

ν 〉 = 〈eM|ϕ−
ν 〉 = 0, (9)

where, in the case of degenerate |ϕ−
ν 〉, it has been chosen to

be the only {u, v}-odd eigenstate to its eigenvalue Eν , given
by the projection of the vector |u〉 − |v〉 onto that degenerate
subspace [62]. In particular, 〈m|ϕ−

ν 〉 vanishes on any walk
singlet M = {m}. We note that walk singlets are fixed (that
is, each mapped onto itself) under the action of Q, as shown
in Appendix A.

The generation of flat bands from a latently symmet-
ric H will ultimately consist in converting it into a Bloch
Hamiltonian by interconnecting any of its walk multiplets
within the same graph H itself via edges with corresponding
complex weights. To develop and demonstrate the principle
step-by-step in the following subsections, we will first pro-
vide the necessary graph modification rules in Sec. III A;
apply them to construct a periodic 1D lattice, or directly its
Bloch Hamiltonian, hosting CLSs in Sec. III B; demonstrate
how the corresponding flat bands can be parametrically tuned
in Sec. III C; and combine the above in a 2D example in
Sec. III D.

A. Graph modifications preserving walk multiplets

As shown in Ref. [62], certain modifications can be per-
formed on a graph H such that the cospectrality of vertex pair
{u, v} together with the walk multiplets relative to it remain
intact. For clarity, we here focus on their simplest form (see
Sec. IV below for related generalizations).

The cospectrality of {u, v}, as well as any walk multiplet
M of H , are preserved in the new graph H ′ obtained by
performing the following modifications:

(M1) Connection of an arbitrary graph exclusively to any
walk singlet c of H via edges of arbitrary weights,
whereby all vertices of the added graph become walk
singlets in H ′;

FIG. 3. Schematically depicted graph modifications addressed in
Sec. III A and Appendix B: (M1) connection of an arbitrary graph
G exclusively to a walk singlet c of H , (M2) connection of a walk
multiplet M of H to a single vertex c′ of an arbitrary graph G′, and
(M3) interconnection of two overlapping walk multiplets X and Y
of H .

(M2) Connection of all vertices of any walk multiplet of H
to a single vertex c′ of an arbitrary graph via edges of
uniform weight, whereby all vertices of the added
graph become walk singlets in H ′;

(M3) Interconnection of any two walk multiplets of H via
edges of uniform weight between all vertices of one
multiplet and each vertex of the other (added to any
already existing edge weights),

where any walk multiplet is implied relative to {u, v}. In
Appendix B we provide brief proofs of the above properties in
their general form. A generic schematic of the modifications
is given in Fig. 3. Note that if the two multiplets in (M3)
overlap (that is, have common vertices), then the vertices in
the overlap are interconnected by double (additional) edges,
like the double loop in Fig. 3; see Appendix B.

In the following we will employ the above modifications
(M1)–(M3) for the construction of flat band lattices, illus-
trated in concrete examples.

B. Flat bands via walk multiplet interconnections

In the following principle for constructing flat band lat-
tices, an original latently symmetric Hamiltonian H featuring
walk multiplets will be used as a unit cell of a lattice with
Hamiltonian H 	. The unit cells are interconnected using the
modifications described above in Sec. III A. In this way the
latent symmetry in any copy of H is inherited by the whole
lattice in the sense that it remains present after the intercon-
nection. We stress that, in order to induce flat bands, the walk
multiplets used in the those interconnections are relative to a
given cospectral site pair {u, v}, as described above, and not
to any arbitrary site pair.
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FIG. 4. Top: Construction of a lattice Hamiltonian H 	 using the
Hamiltonian H of Fig. 1 as an isolated unit cell, via modifications
(M1)–(M3) of Sec. III A with respect to its cospectral site pair {1, 2}:
For each of the copies of H (left), setting the labeled graph as refer-
ence, first we connect the walk singlet {8} to sites 1,2 of the cell above
using (M1) and the walk doublet {1, 2} to site 8 of the cell below
using (M2) (middle), and then connect the walk multiplets {3, 4} and
{7} to walk singlets of the resulting graph using (M3) (right), with
intercell connections h indicated by dotted lines. Bottom: The Bloch
Hamiltonian Hk corresponding to the lattice Hamiltonian H 	 can
be constructed from H via (M3) by interconnecting the singlet {8}
({7}) to the doublet {1, 2} ({3, 4}), though with complex Hermitian
couplings he±ikL indicated by purple (green) double-arrowed dotted
lines, with k = |k| and lattice constant L; see Sec. III B.

In Fig. 4 (top) we illustrate the modifications (M1)–(M3)
as applied to our example Hamiltonian H of Fig. 1 to create
a periodic lattice H 	 with H as a unit cell. First, for a given
reference cell H (the cell with labeled sites in Fig. 4; simply
“cell” will mean “unit cell” from here on), we connect the
walk singlet {8} to sites 1,2 in the cell above and the doublet
{1, 2} to site 8 in the cell below. Thus, the cospectrality of the
pair {1, 2} and relative multiplets are preserved by simulta-
neous application of (M1) (connecting a singlet to the graph
above) and (M2) (connecting a multiplet to the graph below).
Note that, after this interconnection, all sites in the remainder
of the lattice (outside the reference cell) are singlets relative to
{1, 2} in the reference cell. Second, in the resulting graph, we
apply (M3) by interconnecting the doublet {3, 4} with the site
7 of the cell above (a singlet relative to {1, 2} in the reference
cell) and the singlet {7} to sites 3,4 of the cell below (both
singlets relative to {1, 2} in the reference cell).

Note that the same interconnections as for the reference
cell to adjacent cells can be performed simultaneously for
all periodically arranged copies of H , without affecting the
cospectrality of {u, v} = {1, 2} in the reference cell. Thus,
since the reference cell is chosen arbitrarily, each unit cell in
H 	 inherits the cospectral pair {u, v} (in local labeling for that
cell) and its relative walk multiplets from the isolated graph
H . We also underline that the distinction between the different
intercell connections in Fig. 4 by the labels M1, M2, M3 refers
only to the way the lattice is constructed by sequential applica-
tion of those graph modification rules. In the final lattice, those
physical connections are qualitatively equivalent; in fact, the
connections labeled M1 and M2 constitute the same intercell
coupling, translated by one unit cell.

The intercell connection scheme previously outlined can be
more compactly expressed directly at the level of the Bloch
Hamiltonian Hk of the lattice. Hk is generally obtained by
Fourier transformation of the lattice Hamiltonian elements
[66] as

[Hk]mn =
∑

�

eik·�〈m|H 	|n�〉, (10)

where |n�〉 is the orbital |n〉 in the cell at position �, with
|n〉 ≡ |n�=0〉 for the reference unit cell at � = 0. The eigen-
values Eν (k) of Hk constitute the band structure of the lattice.
Interconnections between different cells in the lattice graph H 	

(e.g., with some coupling 〈m|H 	|n�〉 = h ∈ R between sites
m, n� �=0) are equivalent to the corresponding interconnections
in the single cell graph H , though additionally weighted with
conjugate Bloch phases (i.e., coupling [Hk]mn = [Hk]∗nm =
h eik·� between sites m, n). This is shown in Fig. 4 (bottom) for
the example lattice. The resulting Bloch graph Hk is directed,
with complex conjugate edge weights in opposite directions
between any vertex pair being interconnected. In fact, Hk

can be seen as resulting from the cospectrality-preserving
modification (M3) (interconnection of two walk multiplets) on
H , though with additional uniform prefactors e±ik·� in either
direction of the connection (see Fig. 4). In Appendix C we
explicate that site pair cospectrality and corresponding latent
symmetry are preserved under walk multiplet interconnec-
tions (M3) with complex Hermitian coupling weights.

Let us now explain how the multiplet interconnection de-
scribed above can induce CLSs and corresponding flat bands
for the resulting lattice. Specifically, any {u, v}-odd eigenstate
|ϕ−

ν 〉 of the initially isolated unit cell H constitutes a CLS
in the lattice H 	 constructed via multiplet interconnection
between unit cells. Indeed, consider the infinite-length column
vector |ϕ−

ν;�〉 defined to have the components of |ϕ−
ν 〉 on the

cell at �, padded with zeros on all other cells �′ �= �, that
is, 〈n�′ |ϕ−

ν;�〉 = 〈n|ϕ−
ν 〉 δ��′ . In other words, |ϕ−

ν;�〉 is a CLS
occupying the cell at �.

Notice now that |ϕ−
ν;�〉 is an eigenstate of the lattice Hamil-

tonian H 	 to the eigenenergy Eν (the eigenenergy of |ϕ−
ν 〉 in

the isolated cell H). To see this, let us write H 	 in the form

H 	 =
⊕

�

H +
∑

��=�′,X,Y

(
h��′
XY |eX;�〉〈eY ;�′ | + H.c.

)
, (11)

where H is repeated on the block diagonal and |eX;�〉〈eY ;�′ |
contains the off-diagonal block coupling multiplet Y in cell
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�′ to multiplet X in cell � with uniform coupling strength
h��′
XY , and zeros otherwise (|eX;�〉 being the infinite column

with components |eX〉 on cell � and zeros otherwise)—see,
e.g., colored couplings in Fig. 4 (top right). Now, acting with
H 	 on |ϕ−

ν;�〉 directly yields

H 	|ϕ−
ν;�〉 = Eν |ϕ−

ν;�〉, (12)

since H |ϕ−
ν 〉 = Eν |ϕ−

ν 〉 for block � (corresponding to the only
cell occupied by |ϕ−

ν;�〉), while 〈eX;�|ϕ−
ν;�〉 = 〈eX|ϕ−

ν 〉 = 0 by
Eq. (9).

As an example, the lattice constructed in Fig. 4 features
two different CLS types, which are illustrated in Fig. 5 (right
panel) in two different unit cells of the lattice. The orange
arrows indicate an example of how the CLS amplitudes cancel
out (interfere destructively) on a neighboring cell site upon
action of H 	 due to the multiplet condition, Eq. (9).

Analogously to the above, |ϕ−
ν 〉 is an eigenvector of the

Bloch Hamiltonian Hk constructed from H via multiplet in-
terconnections. More specifically, Hk can be written as

Hk = H +
∑

�,X,Y

(
h�
XY eik·�|eX〉〈eY | + H.c.

)
, (13)

summing over all interconnected multiplet pairs X,Y with
Y in cell � and X in the reference cell � ≡ 0 connected
with uniform coupling weight h�

XY . Acting with Hk on |ϕ−
ν 〉

immediately yields

Hk|ϕ−
ν 〉 = Eν |ϕ−

ν 〉, (14)

again due to Eq. (9). This holds for any k, so |ϕ−
ν 〉 corresponds

to a flat band at the k-independent eigenenergy Eν in the band
structure of the lattice.

In Fig. 5 the band structure of the lattice constructed in
Fig. 4 is shown [67]. As we see, there are two flat bands at E =
±√

2, corresponding to the two CLSs “CLS1” and “CLS2”
depicted on the right, with odd parity on the cospectral sites
{1, 2}.

We would like to underline here that the constructed flat
bands are independent of the intercell coupling strength used
in the walk multiplet interconnections. Indeed, as evidenced
by Eq. (9), the hopping elements h�

XY connecting the lattice
cells do not enter the eigenvalue problem in Eq. (14). The
corresponding flat band energy Eν is therefore unaffected by
the value of the h�

XY , which however generally do affect
the rest of the energy spectrum. Thus, the intercell coupling
strengths used in the walk multiplet interconnections can be
flexibly tuned to modify the dispersive part of the band struc-
ture around the constructed flat bands.

The above construction of CLSs and flat bands from latent
symmetry and walk multiplets can be seen as a generaliza-
tion of the construction from local permutation symmetries
Π which are involutory (Π2 = I) and leave certain sites of
the unit cell fixed. If n is such a fixed site, i.e., Π |n〉 = |n〉,
then any eigenstate |ϕ〉 with odd parity under Π has 〈n|ϕ〉 =
〈n|Π2ϕ〉 = −〈n|ϕ〉 = 0, that is, has a node (vanishing am-
plitude) on the fixed site. Interconnecting unit cells into a
lattice by coupling such Π -fixed sites from cell to cell, any
Π -odd eigenstate of the isolated unit cell yields a CLS and
thus a corresponding flat band for the lattice. This scenario
constitutes a special case of the construction described in

FIG. 5. Band structure (left) of the lattice H 	 in Fig. 4, with
unit intracell couplings and intercell couplings h = 2. It features two
flat bands at E = ±√

2 (red lines) corresponding to the two latent-
symmetry induced CLSs “CLS1” and “CLS2” depicted (right). The
amplitudes of each shown CLS are real with indicated relative sign +
(red) and − (blue), with magnitudes proportional to the areas of the
corresponding signed (red/blue) circles, and zero on all other sites.
The isolated unit cell Hamiltonian H and site labeling are highlighted
(green) in the middle. An example of destructive interference of one
of CLS1’s amplitudes on the connected site of an adjacent cell is
indicated by (orange) arrows, with ±ϕ denoting the amplitude on the
walk doublet {3, 4}. Energies are in units of the uniform intracell
site couplings, and lengths in units of the lattice constant L = 1
(quasimomentum k in units of 1/L).

the present work (based on walk equivalent cospectral sites),
where (a) the cospectral sites are related by a common per-
mutation symmetry exchanging those sites and (b) the unit
cells are interconnected via walk singlets relative to the pair
of exchanged sites [68]. We note that such a local exchange
symmetry is, in turn, a special case of general local permuta-
tion symmetries inducing CLSs, as addressed in Ref. [33] in
terms of so-called equitable partitions of graphs. Relating that
approach to latent symmetries involving site subsets S of more
than two sites is an interesting direction of further research.
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FIG. 6. Band structure (left) of a lattice constructed from H in
Fig. 1 as a unit cell by interconnecting its walk doublets {1, 2} and
{3, 4} as indicated by dotted edges in Hk and H 	 (right), with unit
intracell couplings and intercell couplings h = 2. The two flat bands
at E = ±√

2 (red lines) correspond to the same CLSs as in Fig. 5.
Note that the band around E ≈ 0.8 is dispersive and only looks rather
flat at the used plotting scale of the E axis.

We stress that in the present case (Fig. 5), the zeros of
the CLSs within the unit cell (on sites 7,8) are not induced
by any permutation symmetry of the cell fixing those nodal
sites, but rather by latent symmetry and walk equivalence (of
the cospectral sites relative to walk singlets), as described
above.

For simplicity we have applied walk singlet-to-doublet
intercell connections in the above example (Figs. 4 and 5).
It is clear from the above, however, that the procedure to
generate flat bands applies naturally for any walk multiplet
interconnection as intercell coupling; see Eqs. (13) and (14).

As an example, in Fig. 6 we start with the same graph H
(as in Fig. 4) but now interconnect the walk doublets {1, 2} and
{3, 4} in Hk, i.e., each site 1,2 to both 3,4 with complex Her-
mitian couplings (including Bloch phases), and corresponding
real intercell couplings in H 	, as explained above. This lattice
maintains the same CLSs and flat bands as before (Fig. 5),
though generally with modified dispersive bands.

In general, any Hermitian walk multiplet interconnection
(M3) with complex Bloch phases, applied to a unit cell H , is

mapped to an intercell connection in the lattice Hamiltonian
H 	 preserving the latent symmetry in each cell. This allows for
great flexibility in generating flat bands with a given latently
symmetric prototype cell.

To summarize, the proposed flat band construction princi-
ple consists in

(i) starting with a Hamiltonian H in the form of a graph
having two latently exchange-symmetric, cospectral
vertices {u, v},

(ii) identifying walk multiplets of H relative to {u, v}, and
(iii) using H as the unit cell of a lattice constructed by

periodically interconnecting any walk multiplet of
each cell to any walk multiplet of other cells (which
can be neighboring cells but also more remote ones).

The resulting lattice H 	 then features a flat band for each
eigenstate |ϕ−

ν 〉 of H with odd parity on {u, v}, which becomes
a macroscopically degenerate CLS in H 	 occupying one unit
cell.

C. Parametric invariance of latent symmetry flat bands

It is important to notice that the generation of CLSs and
resulting flat bands from latent symmetry and walk multiplets
of a graph H is not restricted to a fixed set of edge weight
values Hmn. Indeed, there is a certain freedom in changing
H’s elements parametrically while still inducing flat bands
from the same latent symmetry and walk multiplets. Specif-
ically, this parametrization means that there exist groups of
the elements Hmn which can be set to a common arbitrary
real value per group, without breaking the given latent sym-
metry and selected walk multiplets. For example, the weight
parametrizations shown in Fig. 2 preserve the cospectrality
of {u, v} as well as the multiplets interconnected to form the
lattice in Fig. 4. Thus, when varying the weight parameters
(that is, the common value of each group of elements Hmn),
flat bands are still induced for the constructed lattice. Their
energy positions, however, generally depend on the weight
parameters, which allows for tuning the flat bands relative to
the rest of the band structure.

We demonstrate this parametric invariance of the flat bands
for our navigating example graph in Fig. 7, where the band
edges for the lattice in Fig. 5 are plotted for a continuous
variation of selected couplings in the unit cell. Specifically,
using the cospectrality- and multiplet-preserving edge weight
parametrization of Fig. 2 (right), a selected subset of couplings
is set to a common varying value p (see Fig. 7 caption). As
we see, while the dispersive band widths vary with p, the flat
bands constructed by latent symmetry for p = 1 remain flat
for any p (see red lines, whose vertical cross sections at any p
are single points at the corresponding Eν). This is in contrast
to flat bands that may appear “accidentally” when varying p,
as seen, e.g., for the second lowest band which becomes flat
at a single point around p ≈ 0.4765.

Furthermore, in this example the upper (lower) flat band
energy increases (decreases) linearly with p across the disper-
sive bands and the gaps between them. This demonstrates the
possibility to tune the flat band positions relative to dispersive
bands without invoking any apparent symmetry of the unit
cell.
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FIG. 7. Band edges (black lines) and band projections⋃
k∈BZ Eν (k) (gray shades) of the bands Eν (k) over the Brillouin

zone (BZ) for the lattice in Fig. 5 with varying coupling parameter
H13 = H15 = H24 = H26 = p indicated (orange lines) in the
schematic on the left; p = 1 corresponds to the band structure in
Fig. 5. The two flat bands induced by latent symmetry of sites 1,2
occur at any p, with energies varying in p (thick red lines).

For clarity, let us here underline the qualitative difference
of intercell and intracell variations regarding their influence
on the constructed flat bands. The intercell couplings used
in walk multiplet interconnections in the unit cell [the h�

XY
in Eq. (13) for each interconnected multiplet pair X,Y ] can
be varied at will leaving the flat bands intact in energy. In
contrast, the intracell couplings must first be parametrized
into groups of common values, as described above, whose
variation then retains the occurrence of the flat bands but may
generally alter their energy position. Combined, those inter-
and intracell coupling variations constitute a flexible way to
design the overall band structure featuring flat bands induced
by latent symmetry.

D. Flat bands via walk singlet augmentation

Another variation of using the graph modifications in
Sec. III A for flat band construction is to first modify a latently
symmetric graph H itself, before interconnecting it into a
lattice. In particular, using (M2) we can augment H by con-
necting new vertices to walk multiplets relative to a cospectral
pair {u, v}. In the resulting graph H ′, each such new vertex
c′ will be a walk singlet, which will in turn have vanishing
amplitude in any nondegenerate eigenvector with odd parity
on {u, v}; see Eq. (9). This “singlet augmentation” may be
used, e.g., to bring a given unit cell into a more preferable
shape for connection into a lattice.

FIG. 8. Band structure (left) of a 2D lattice (bottom right) con-
structed by repetition of an unweighted 8-vertex graph H (with unit
intracell couplings) augmented by two vertices 9 and 10 connected
to the graph’s cospectral pair {1, 2} and the walk doublet {3, 4},
respectively (top right), with dotted double-arrowed edges indicating
complex couplings he±ikx(y)L in ±x(y) direction in the Bloch Hamil-
tonian H ′

k (see text). Intercell edges with unit weight h = 1 (dotted
lines) connect the walk singlets {7, 8, 9, 10} of the graph in x and y
direction, preserving its two CLSs (depicted in the lattice; colormap
as in Fig. 5) which correspond to two flat bands at E = ±√

2 − 1.

We demonstrate this procedure by constructing a 2D flat
band lattice in Fig. 8. The original 8-vertex graph H (upper
right of figure) has four doublets relative to the cospectral
pair {u, v} = {1, 2}, with one of them further consisting of
the two singlets {7}, {8}. The graph has two eigenvectors with
odd {u, v} parity which vanish on those singlets. Note that,
like the graph in Fig. 2, this one can also be parametrized
in its edge weights while keeping its latent symmetry and
corresponding compact eigenvectors, as we will see below.
For simplicity we first keep its unweighted version. We now
connect two new vertices 9 and 10 to two doublets using
modification (M2), which thus yields two more singlets on
which the previous compact eigenvectors also vanish. Then
we connect the new graph H ′ into a 2D lattice—similarly
to the procedure in Sec. III B—via its four corner singlet
vertices, as shown, described by the corresponding Bloch
Hamiltonian H ′

k. The resulting band structure Eν (k) features
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FIG. 9. Band edges and projections as in Fig. 7 but for the 2D
bands of the lattice in Fig. 8 for varying parameter p in two different
cases of the edge weight parametrization as shown at the top; p = 1
corresponds to the band structure in Fig. 8.

two flat bands at E = ±√
2 − 1, with the corresponding CLSs

depicted in two unit cells of the lattice.
We emphasize that the CLSs are induced by the latent

symmetry of the site pair {1, 2}, and not by a permutation
symmetry of the lattice cell. Specifically, the cell is indeed
reflection symmetric about one diagonal (the line passing
through sites 7 and 9), and the CLSs are odd under this
reflection with nodes on this diagonal, as expected (recall
discussion on permutation symmetry Π in Sec. III B). This
symmetry does not explain, however, the other two CLS
nodes at sites 8 and 10. Each of those are instead fixed
under the latent symmetry operation Q (see Appendix A)
induced by the cospectrality between u, v. In fact, a general
weight parametrization preserving the walk multiplet struc-
ture violates the cell’s reflection symmetry, though retains the
compactness of the CLSs, that is, their nodes on the singlet
sites, and the corresponding flat bands.

The latter is demonstrated in Fig. 9, where a cospectrality-
and multiplet-preserving parametrization of the edge weights
by real parameters pi=1,2,...,7 is considered (top panel).
Parametrization of the on-site elements, or loops, is also pos-
sible but not shown for simplicity. The band edge evolution
for two parametrical variations is plotted. In the first case
(left plot) we set p2 = p7 = p (other intracell hoppings to
unity) and vary p, whereby the flat bands (red lines) are pre-
served with linearly varying energy. In the second case (right

plot) we set p1 = p2 = p3 = p (other intracell hoppings again
equal unity), whose variation modifies the dispersive bands
but leaves the flat band energies fixed. We thus see that such
parametrizations of the unit cell Hamiltonian preserving its
latent symmetry, together with the chosen intercell couplings
(whose variation, not shown here, evidently also preserves the
latent symmetry), can be used to tune the induced flat bands
flexibly in relation to the surrounding band structure.

Finally, we note that in this example we interconnected
the unit cells via their corner walk singlets for simplicity.
One could instead, or additionally, interconnect larger mul-
tiplets between the cells, still preserving the same CLSs
and concomitant flat bands—though generally changing the
dispersive bands. For example, the walk doublet {3, 4} (see
Fig. 8) of the cell at each � could be connected diagonally in
the lattice to the doublet {5, 6} of the cell at � + Lx̂ + Lŷ.

IV. DISCUSSION

Having demonstrated how latent symmetry, in combination
with walk multiplets, may be employed to induce flat bands,
let us now discuss some aspects and extensions of the pre-
sented framework.

A. Number and spatial extension of CLSs

In each of the above examples, Figs. 5 and 8, there were
two CLSs per unit cell associated with a cospectral site pair
{u, v} in H . The number of such CLSs depends on the struc-
ture of the graph used as a cell. Specifically, the number
of eigenstates of H with odd {u, v} parity is given by the
dimension of the Krylov subspace generated by the vector
|−〉 ≡ |u〉 − |v〉 [65], that is, the rank of the correspond-
ing Krylov matrix [|−〉, H |−〉, H2|−〉, . . . , HN−1|−〉]. Also,
there may be more than one cospectral pair in the graph H ,
each of which may induce different CLSs in a correspond-
ing multiplet-interconnected lattice. Of course such latently
symmetric cospectral pairs may further coexist with cospec-
tral pairs corresponding to permutation symmetries swapping
only two vertices u, v. Clearly for such pairs all other sites
in H are walk singlets, with corresponding CLSs confined to
{u, v} in each lattice cell. In the examples shown here, we have
chosen cell graphs having only latent symmetries for clarity.

Note, further, that in the above flat band construction
scheme (see Sec. III B) we have explicitly considered the orig-
inal graph H (or some augmented one, see Sec. III D) as the
unit cell of the generated lattice H 	. The induced CLSs then
occupy U = 1 unit cell each, using the number of occupied
unit cells U as a flat band classifier [31] (recently generalized
accordingly for lattice dimensions d > 1 [69]). One could in
principle, however, start with a supercell H ′ of a target lattice
H 	, consisting of U > 1 interconnected copies of H , and
look for new cospectral pairs {u′, v′} which are not cospectral
in H . Then, CLSs induced by {u′, v′}-odd eigenstates of H ′
will generally occupy U > 1 primitive unit cells within the
supercell. The key challenge here would be to design inter-H
connections which coincide with walk multiplet interconnec-
tions between supercells H ′. We leave this endeavor for future
work.
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B. Generalizations of walk multiplets

The concept of walk multiplets can be generalized [62]
by replacing the indicator vector of M in Eq. (5) with a
nonuniform version |eγ

M〉, with a tuple γ of generally different
amplitudes

γm = 〈
m

∣∣eγ

M

〉
(15)

for m ∈ M and 0 otherwise. γm = 1, up to a global factor,
corresponds to the uniform walk multiplets considered so far.
If a new vertex c′ is connected to M via those weights γm,
then the associated cospectrality is preserved and c becomes a
walk singlet if Eq. (7) is fulfilled—now with the walk matrix
generated by |eγ

M〉. In other words, the modification (M2)
of Sec. III A is generalized to such nonuniform walk multi-
plets, as is, similarly, the multiplet-interconnection (M3); see
Appendix B. A particular case is that of overlapping uniform
multiplets Mμ (μ = 1, 2, . . . ), whose union yields a nonuni-
form multiplet with indicator vector |eγ

M〉 = ∑
μ |eMμ

〉, where
|eMμ

〉 is the usual indicator vector of multiplet Mμ. An exam-
ple is schematically shown as overlapping multiplets X and Y
in Fig. 3.

Another variation is to consider walk antiequivalence by
replacing Eq. (7) with [WM]u∗ = −[WM]v∗. In this case, M
is a walk antimultiplet relative to {u, v} and the role of par-
ity is swapped: Now the eigenvectors |ϕ+

ν 〉 with even parity
on {u, v} become CLSs, with vanishing amplitudes on anti-
singlets [62]. These generalizations of the concept of walk
multiplets offer an even larger flexibility in generating flat
band lattices from graphs with latent symmetries.

C. Occurrence and construction of latently symmetric graphs

In all of the above we have assumed that the original graph
H is latently exchange symmetric, that is, features some pair
of vertices u and v which are cospectral but not exchange sym-
metric in H . We also assumed the given graph to feature some
walk multiplets relative to {u, v}. The aim was to show how
these properties, when given, can be used instead of common
symmetries—that is, permutation operations commuting with
H—to induce CLSs and corresponding flat bands for periodic
lattice structures.

The systematic construction of latently symmetric graphs
is far from trivial. To date, and to the best of our knowl-
edge, there is indeed no general procedure for constructing
undirected, latently symmetric graphs; it is rather a subject
of ongoing research. One approach is based on “unpacking”
the isospectrally reduced form of a graph [42], by applying
partial fraction decomposition to its functional dependence on
the eigenvalue E , and then accordingly constructing a gen-
erally directed graph with complex weights. Another recent,
semiempirical approach [70], starts from a graph with trivially
cospectral vertices—that is, induced by some permutation
symmetry—which is then modified by adding vertices and
edges such that the permutation symmetry is broken while the
cospectrality is not.

In fact, the defining property of vertex cospectrality, Eq. (2)
evaluated up to r = N − 1, makes it straightforward to re-
sort to numerical iteration for verifying it. In this spirit,
Ref. [70] reports on the occurrence of latently symmetric
graphs out of all possible unweighted graphs of given small

size. Specifically, we have created a database of all un-
weighted graphs (adjacency matrices) of size up to N = 11
which have at least one cospectral vertex pair and no permu-
tation symmetry. For N � 7 there is no such graph. For N =
8, 9, 10, 11 there are 78, 2 247, 78 489, 3 714 397 such graphs,
respectively. Although this is, in each case, a small portion
(≈7.0, 8.6, 10.0, 4.7%) of all possible graphs, the analysis
shows that there is a substantial number of latently symmetric
unweighted graphs even for such small sizes. This means that
latent symmetry would in principle not be hard to design in a
targeted setup, consulting, e.g., the above database.

For larger graphs (N � 1) there is numerical evidence
that the occurrence of latent symmetries is correlated to that
of common permutation symmetries, in the sense that their
percentage has been found to follow the same trend when
varying a structural parameter for a class of randomly gen-
erated graphs, as stated in Ref. [52]. The exact reason for this
behavior is an open question.

In the same manner as cospectral vertices, we identify
walk multiplets relative to a cospectral pair {u, v} of a given
graph by scanning through all vertex subsets of all possible
sizes for those that fulfill Eq. (7). For the graphs available
in the above database, we have observed that, typically, the
graphs have multiple walk multiplets [relative to the featured
cospectral pair(s)] for each multiplet size—although there are,
e.g., cases where walk singlets are absent—with the number
of multiplets typically increasing with their size. Also, there
is always at least one walk doublet, namely the cospectral
pair itself. The walk multiplet structure is further enriched
by considering their generalized version (nonuniform and
antimultiplets, see Sec. IV B above), as described in detail
in Ref. [62]. The relation of general walk multiplets to the
structure of eigenvectors of graphs with cospectral vertices is
an interesting topic to be pursued.

V. CONCLUSIONS

We have shown how flat bands can be induced by latent
symmetry between a pair of sites in the unit cells of discrete
lattices. This symmetry is revealed as an exchange permuta-
tion symmetry of the effective Hamiltonian upon reduction
of the cell over the site pair subsystem, and imposes odd or
even local parity of the original Hamiltonian eigenstates on
those two sites. Using recent concepts and tools from graph
theory, where latent symmetry takes the form of cospectrality
between two vertices, we propose a framework for generating
flat bands from the structural properties of graphs lacking
permutation symmetries. The key ingredient is the occurrence
of walk equivalence of cospectral vertices relative to vertex
subsets called walk multiplets. This signifies a collective sym-
metry between possible walks along the edges of a graph from
its cospectral vertices to a given walk multiplet, expressed in
terms of corresponding walk matrices. Crucially, the ampli-
tude sum on walk multiplets vanishes for any nondegenerate
eigenvector with odd parity on cospectral vertices.

When connecting the graph as a unit cell into a lattice
via its walk multiplets, those eigenvectors constitute compact
localized states (CLSs) forming flat bands within an otherwise
dispersive band structure. We illustrate the scheme for 1D
and 2D lattices using simple graphs with cospectral sites. A
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generalization to more complex cell geometries, possibly with
multiple latent symmetries, and to higher-dimensional lattices
is straightforward. As we demonstrate, the latent symmetry
persists over flexible parametrizations of the lattice Hamilto-
nian elements, making the induced flat bands systematically
tunable. This should allow for a feasible generation of flat
bands from latent symmetries in various realization platforms
such as, e.g., photonic waveguide arrays or electric circuit
networks, with tailored intersite connections. We thus offer
a fundamental insight into a class of CLSs originating from
hidden Hamiltonian symmetries, which may also provide a
valuable tool in designing flat band setups.
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APPENDIX A: COSPECTRALITY FROM WALK
MATRICES AND ORTHOGONAL SYMMETRY

Here we give a brief account on the orthogonal symmetry
matrix Q describing vertex cospectrality. The purpose is to
provide an insightful connection between the latent symme-
try of a graph, upon reduction over two cospectral vertices,
and the underlying symmetry operation exchanging those
vertices in the original graph. The description is adapted
from Ref. [58] to a graph with N vertices H and symmetric
weighted adjacency matrix H .

First, consider two arbitrary subsets U ,V ⊆ H with walk
matrices

WX = [|eX〉, H |eX〉, . . . , HN−1|eX〉] (A1)

for the indicator vectors |eX〉, X = U ,V . If WV is invertible
(that is, has full rank N), then the matrix

QUV = WUW −1
V (A2)

commutes with H , thus representing a general symmetry
transformation. To see this, recall that

HN =
N−1∑
r=0

crHr (A3)

by the Cayley-Hamilton theorem which states that H fulfills
its own characteristic equation χ (x) = ∑N

r=0 arxr = 0, where
cr = −ar/aN . Therefore, we have that

HWX = WXC, X = U ,V , (A4)

where

C =

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cN−1

⎤
⎥⎥⎥⎥⎦ (A5)

is the companion matrix [60] for H . Thus,

HQUV = WUCW −1
V

= WU

(
W −1

V HWV

)
W −1

V = QUVH. (A6)

Furthermore, if both WU and WV are invertible and fulfill

W �
UWU = W �

V WV , (A7)

then QUV is orthogonal:

Q�
UV = [

W −1
V

]�
W �

U

= [
W −1

V

]�
W �

V WVW −1
U = WVW −1

U = Q−1
UV . (A8)

With invertible WX (X = U or V ), H has simple eigenvalues
[58] Eν (no degeneracies) and then, because QUV commutes
with H , it is a polynomial in H . Thus, if H is symmetric, so is
QUV , and since it is also orthogonal, we obtain that

QUV = Q�
UV = Q−1

UV . (A9)

Now, if U = {u} and V = {v} constitute two cospectral
vertices, we have [54]

W �
u Wu = W �

v Wv. (A10)

Then, if both Wu and Wv are invertible, Eq. (A9) holds for
Q{u},{v} ≡ Q of the main text, that is, Q2 = Q�Q = I . In par-
ticular, since QWv = Wu and QH = HQ, we have that Q|v〉 =
|u〉 and Q|u〉 = |v〉. Thus, being also orthogonal, Q is block
diagonal with one block being the antidiagonal matrix

JS =
[

0 1
1 0

]
(A11)

swapping u and v in S = {u, v}.
Furthermore, for a walk multiplet M the condi-

tion [WM]u∗ = [WM]v∗ [Eq. (7)] yields 〈u|Hr |eM〉 =
〈v|Hr |eM〉 = 〈v|HrQ�Q|eM〉 = 〈u|HrQ|eM〉 for r =
0, . . . , N − 1, where we used H = H�, QH = HQ, and
Q|v〉 = |u〉. Since Wu has full rank, the N columns Hr |u〉 span
an N-dimensional column space, meaning that Q|eM〉 = |eM〉
(both vectors have equal projections in all N dimensions).
Thus, if H has a vertex subset F consisting of walk singlets,
then [Ws]u∗ = [Ws]v∗ ∀s ∈ F , so another block of Q is the
|F | × |F | unit matrix IF leaving the singlet vertices fixed
(causing the odd-{u, v}-parity eigenvectors to vanish on
them).

The remaining orthogonal block QO operates on the re-
maining vertices within O = H \ (S ∪ F ), transforming the
corresponding rows of Wv into those of Wu: [Wu]O,∗ =
QO[Wv]O,∗. With vertices labeled accordingly, Q thus has the
form

Q = JS ⊕ IF ⊕ QO. (A12)

As an example, for the graph of Fig. 1 the |O| × |O| block is
given by QO = 1

2

[A B
B A

]
, with A = [1 1

1 1

]
and B = [−1 1

1 −1

]
,

where O = {3, 4, 5, 6}.
Notice here that, since Q commutes with H , its eigenvec-

tor matrix block-diagonalizes H accordingly under similarity
transformation. Such a transformation can be seen as reminis-
cent of the “Fano detangling” procedure of Ref. [32], though
here for a cospectral site pair {u, v} (instead of a single site)
and determined from the walk structure of H .
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If the spectrum of H is degenerate or has any eigenvector
with vanishing amplitudes on {u, v}, then Wu and Wv do not
have full rank [54,59] and are thus not invertible. Hence,
although a Q matrix still exists, which is unique under the
convention of treating eigenvectors vanishing on {u, v} as
{u, v}-even [54], it cannot be obtained directly from Eq. (A2)
[71].

Alternatively, the following expression can be used for a Q
matrix (obeying, Q2 = Q�Q = I and Q|u〉 = |v〉) [41]:

Q = P+ − P− = I − 2P−, (A13)

where P± = ∑
ν |ϕ±

ν 〉〈ϕ±
ν | is the projector onto eigenvectors

with ± parity on {u, v} (P+ also including eigenvectors van-
ishing on {u, v}), chosen in case of degeneracy such that there
is at most one eigenvector of each parity nonvanishing on
{u, v} for any given eigenvalue. This expression is not directly
derived from the structure of the graph (specifically, its walk
matrices Wu,Wv) but rather invokes the spectral properties of
H—that is, one first needs to find its eigenvectors.

APPENDIX B: GENERAL COSPECTRALITY-PRESERVING
GRAPH EXTENSIONS AND INTRACONNECTIONS

We show here that the cospectrality of a pair {u, v} and
the walk multiplets relative to it are preserved by the modi-
fications (M1), (M2), and (M3) listed in Sec. III A. Like in
Ref. [62], the modifications are now stated in a more general
form for nonuniform walk multiplets with weighted indicator
vector |eγ

M〉 (see Sec. IV).
For an original weighted adjacency matrix of a graph H ,

the modified one H ′ will have the form of a sum

H ′ = A + B, (B1)

with

A = H ⊕ G (B2)

generally being a block-diagonal matrix (including the case of
absent or 0 × 0 block G) and

B = |b1〉〈b2| + |b2〉〈b1| (B3)

being a symmetric sum of rank-one coupling matrices. Setting
the |b1,2〉 to be site subset indicator vectors below, B will
express the interconnection of those subsets in the modified
graph H ′.

The powers of H ′, appearing in the corresponding modified
walk matrices W ′

M, are given by

[A + B]r =
r∑

p=0

∑
π (A,B)

{Ar−pBp}, (B4)

where
∑

π (A,B){Ar−pBp} denotes the sum of all distinct per-
mutations of A’s and B’s in matrix products with r − p A’s
and p B’s; for instance, AAB + ABA + BAA for r = 3, p = 1.
H ′r is thus generally a weighted sum of products of the
matrices Hr−p ⊕ Gr−p, [|b1〉〈b1|]n1 , [|b2〉〈b2|]n2 , [|b1〉〈b2|]n3 ,
[|b2〉〈b1|]n4 with p ∈ {0, 1, . . . , r} and ni ∈ {0, 1, . . . , p}.

In the following we briefly prove preservation of cospec-
trality and walk multiplets under modifications (M1), (M2),
(M3), which are depicted schematically in Fig. 3.

1. Singlet extension (M1)

For a singlet c ( �= u, v) of H connected symmetrically—
i.e., so that H ′ is symmetric—to an arbitrary graph G with
vertices G, we have |b1〉 = |c〉, which is the indicator vector
of c in H ′, and |b2〉 = |eγ

G〉, which is the arbitrarily weighted
indicator vector of G, in Eq. (B3).

From Eqs. (B1) and (B4), elements [H ′r]uu = 〈u|H ′r |u〉
thus only have contributions involving |u〉 in factors [Hq]uu

and [Hq]uc, [Hq]cu for different powers q. For instance,
with 〈c|eγ

G〉 = 0, we have A2B2A = A2(〈eγ

G|eγ

G〉|c〉〈c| +
|eγ

G〉〈eγ

G|)A, whose uu element becomes [A2B2A]uu =
[H2]uc〈eγ

G|eγ

G〉Hcu.
Since {u, v} are cospectral in H and c is a walk singlet,

those factors [Hq]uu, [Hq]uc, [Hq]cu remain equal under the
replacement u → v, as do, trivially, factors not containing
the index u. This yields [H ′r]uu = [H ′r]vv , so {u, v} remain
cospectral in H ′.

Similarly, walk matrix elements [W ′
M]ur for any walk mul-

tiplet M of H only have contributions involving |u〉 in factors
[WM]uq and [Hq]uc. Thus, since [WM]uq = [WM]vq (M walk
multiplet in H) and [Hq]uc = [Hq]vc (c walk singlet in H), we
have [W ′

M]u∗ = [W ′
M]v∗, that is, M is a walk multiplet also

in H ′.

2. Multiplet extension (M2)

For a walk multiplet M of H connected symmetrically to a
single vertex c′ of an arbitrary graph G, we have |b1〉 = |c′〉,
which is the indicator vector of c′ in H ′, and |b2〉 = |eM〉 in
Eq. (B3). With similar arguments as in Appendix B 1 above,
again we get [H ′r]uu = [H ′r]vv and [W ′

X]u∗ = [W ′
X]v∗ for any

walk multiplet X of H .

3. Multiplet interconnection (M3)

If two disjoint walk multiplets X and Y of H are symmet-
rically and fully interconnected—that is, each vertex of one
is connected to all of the other, with weights added to any al-
ready existing connection—we have A = H in Eq. (B2), with
G now being absent, and |b1〉 = |eX〉, |b2〉 = |eY 〉 in Eq. (B3).
With similar arguments as in Appendix B 1, cospectrality of
the pair {u, v} and any walk multiplet M relative to it are
preserved in H ′. Using the same form of the interconnection
matrix B, this also holds if X and Y overlap, that is, have
common vertices.

APPENDIX C: SYMMETRY VERSUS HERMITICITY

In this Appendix we briefly comment on the relation
between vertex cospectrality and latent symmetry when
considering a complex Hermitian—as opposed to a real
symmetric—Hamiltonian H . Note that, for complex Hermi-
tian H , the cospectrality condition for a pair {u, v} in terms of
walk matrices, Eq. (A10), is replaced with

W †
u Wu = W †

v Wv, (C1)

with ( )† = ( )�∗ denoting Hermitian conjugation.
It was recently shown [42] that cospectrality of a vertex

pair {u, v} of a graph H is equivalent to latent symme-
try between u and v—that is, the 2 × 2 reduction H̃{u,v} of
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H is bisymmetric—if H is symmetric, that is, its graph is
undirected. Therefore, to relate vertex cospectrality to latent
symmetry, we have assumed a symmetric unit cell Hamil-
tonian matrix H , which was also chosen real to generally
possess a real eigenvalue spectrum.

Nevertheless, if H is modified into a Bloch Hamiltonian
Hk exclusively by interconnecting walk multiplets with self-
adjoint complex weights (a special case of a directed graph;
see Hk in Fig. 4 with each dotted line indicating complex
conjugate weights he±ik·� in either direction), then vertex
pair cospectrality does imply corresponding latent symme-
try, and vice versa. Indeed, the multiplet interconnection in
Appendix B above remains valid in the same form (with
〈x| = |x〉† and “symmetric” replaced by “self-adjoint”) for
walk multiplets with indicator vector |eγ

M〉 weighted by a
complex tuple γ [see Eq. (15)]. For instance, in Hk in Fig. 4
the singlet {8} is connected with complex weight γ8 = heikL =
[Hk]8m = [Hk]∗m8 (m = 1, 2) to the doublet {1, 2} and the sin-
glet {7} is connected with complex weight γ7 = he−ikL =
[Hk]7m = [Hk]∗m7 (m = 3, 4) to the doublet {3, 4}, for some
real h.

Now, since such walk multiplet interconnections pre-
serve {u, v}-cospectrality and relative multiplets (as shown in
Appendix B), in particular {u, v} itself remains a walk doublet

in Hk: [
Hr

k

]
uu + [

Hr
k

]
uv

= [
Hr

k

]
vv

+ [
Hr

k

]
vu (C2)

for all powers r ∈ N. As a consequence,[
Hr

k

]
uv

= [
Hr

k

]
vu ∈ R ∀ r ∈ N. (C3)

Thus, the restriction of each power Hr
k to the cospectral pair

is bisymmetric, that is, commutes with the 2 × 2 exchange
matrix JS={u,v}, Eq. (A11).

As we showed very recently in Ref. [41], a necessary and
sufficient condition for a latent symmetry transformation T
upon reduction to a vertex subset S is that all powers of H
restricted to S have the same symmetry:

T H̃S = H̃ST ⇐⇒ T [Hr]S = [Hr]ST ∀ r ∈ N. (C4)

In the present case S = {u, v} is a cospectral pair and T = JS,
with [Hr

k ]SJS=JS[Hr
k ]S implying H̃k;SJS = JSH̃k;S, meaning

that Hk has a latent JS symmetry in its reduction over {u, v}.
To summarize: For a general directed graph H , {u, v}

cospectrality is necessary but in general not sufficient for
corresponding latent symmetry [42]; but for a complex self-
adjoint H ′ (in our case the Bloch Hamiltonian Hk) constructed
from an undirected H via Hermitian interconnection of walk
multiplets relative to {u, v}, it is both necessary and sufficient.
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