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Mott insulating state and d + id superconductivity in an ABC graphene trilayer
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Motivated by the recently experimental reported signatures of the tunable Mott insulating state and supercon-
ductivity in an ABC graphene trilayer superlattice, we investigate the charge compressibility, the spin correlation,
and the superconducting instability within the Hubbard model on a three-layer honeycomb lattice. It is found that
an antiferromagnetically ordered Mott insulator emerges beyond a critical Uc at half-filling, and the electronic
correlation drives a d + id superconducting pairing to be dominant over other pairing patterns in a wide doped
region. The effective pairing interaction with d + id pairing symmetry is strongly enhanced with the increasing
of on-site interaction and suppressed as the interlayer coupling strength increases. Our intensive numerical results
demonstrate that the insulating state and superconductivity in an ABC graphene trilayer are driven by strong
electric correlation, and it may offer an attractive systems to explore rich correlated behaviors.

DOI: 10.1103/PhysRevB.104.035104

I. INTRODUCTION

Success in isolating atomically thin graphene systems has
led to an explosion of interests in exploring their novel cor-
related electronic properties [1–3]. The well-known example
is the magic-angle twisted bilayer graphene (TBG), a pair of
stacked monolayer graphenes rotated in a particular angle in
which the superconductivity and correlated insulating states
have been observed experimentally [4–6]. TBG captivates
researchers due to their structural simplicity, and it offers a
platform to explore the complex physics of superconductiv-
ity, which is a central problem in condensed-matter physics.
Along with the progress in bilayer graphene, more and more
attention turned to trilayer graphene (TLG), even multilayer
graphene, which has more complex interlayer interactions and
supplies a richer electronic structure.

Generally, there are two typical ways to stack the graphene
layers, i.e., bernal stacking and rhombohedral stacking. We
refer to bernal stacked graphene as ABA graphene and
rhombohedral stacked graphene as ABC graphene. As the
interlayer coupling strongly modifies the linear dispersion
of monolayer graphene, the electronic structures are various
in multilayer graphene films. The ABA-TLG shows linear
and parabolic dispersions, presenting a semimetallic prop-
erty with a small band overlap at the Dirac point, and the
ABC-TLG shows only parabolic dispersions, behaving such
as a semiconductor as a band gap about 20 meV near the
Dirac point [7–10]. The band structure can also be changed
by applying a perpendicular electric field. Theoretical [9–13]
and experimental [14,15] research have proved that the band
gap of ABC-TLG is tunable with the external electric field,
which is similar to the phenomenon reported in bilayer
graphene [16–19]. Coincidentally, recent experiments discov-
ered signs of the correlated insulating states [20] and tunable
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superconductivity [21] in ABC graphene trilayer on hexag-
onal boron nitride (hBN). Comparing to twisted bilayer
graphene [4,5], ABC-TLG/hBN also exhibits the moiré-
induced physics, such as the formation of the secondary Dirac
bands and the miniband structure. The combination of the en-
ergy dispersion in ABC-TLG and the narrow electronic mini-
bands induced by the moiré potential leads to the observation
of insulating states for the Mott insulator. Evidence found in
bilayers [4] and trilayers [20] both show that the long-period
moiré interference pattern significantly modifies the Dirac
dispersion, and a correlated Mott insulating state occurs when
such a miniband contains an integer number of electrons per
superlattice unit cell. Besides, gate tuning the charge density
away from the half-filling, the Mott insulator led to supercon-
ductivity with strong-coupling characteristics [5]. These fas-
cinating phenomena show a number of similarities with that
of doped cuprates [22] for which superconductivity occurs
proximate to a Mott insulator. The finding raises the intriguing
possibility of graphene moiré superlattices serving as a new
platform for studying unconventional superconductivity.

Motivated by the experimental discoveries, a great deal
of theoretical efforts have been undertaken on the detailed
properties of the possible nature of the exotic correlated elec-
tronic phases in the graphene superlattice [23–34]. However,
the mechanism of the superconductivity and the correlated
insulating state in ABC-TLG are still under very active de-
bate and a lot of works need to implement [35–38]. The
goal of the current paper is to understand the nature of
superconducting phases and the correlated insulating state
in ABC-TLG, specifically, to identify the doping-dependent
dominant superconducting pairing symmetry and magnetic
order at half-filling.

Considering the strong correlation effect dominates in the
system, the unbiased numerical techniques are believed to be
the appropriate approach to reveal its rich correlated behavior.
We focus on the Mott physics and superconducting pairing
correlation in ABC-TLG. By using the determinant quantum
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FIG. 1. (a) Three-dimensional crystal structure diagram and in-
terlayer hopping processes for the graphene trilayer with ABC
stacking order. (b) Planar structure schematic of the honeycomb lat-
tice with linear lattice size L = 6. The orange and blue full symbols
represent the A and B sublattices of the honeycomb structure together
with the empty symbols forming the underlying triangular lattice.
Here the designed honeycomb lattice has 2L2/3 sites, which is a 2/3
subset of the triangular lattice with L2 sites.

Monte Carlo method, the behavior of charge compressibility
and spin correlation at half-filling is examined, which re-
veal an antiferromagnetically ordered Mott insulator emerges
beyond a critical Uc. Our simulation shows that the supercon-
ducting pairing correlation with the d + id wave dominates
over other pairing symmetries, which is similar with our pre-
vious studies [31,39–41], suggesting that dominant pairing
symmetry of the superconductivity emerged in graphene sys-
tems is mainly determined by the inherent honeycomb lattice
structure of graphite. For further study, we considered the
effect of on-site interaction U and interlayer interaction tc, and
it is found that the superconducting pairing correlation with
d + id wave symmetry is readily enhanced by the existence
of U and slightly suppressed with tc. Our extensive numerical
results verify the viewpoint of that superconductivity in ABC
graphene trilayer arises in a doped Mott insulator.

II. MODEL AND METHODS

The structure of the ABC-stacked graphene trilayer is
sketched in Fig. 1. In this geometry, each lattice consists of
three layers which is staggered from each other, and each
layer has interpenetrating triangular A and B sublattices. Ev-
ery adjacent layer pair forms an AB-stacked bilayer with the
upper-B sublattice directly on top of the lower-A sublattice
and the upper A above the center of a hexagonal plaquette
of the layer below. Considering the electronic correlation, the
Hubbard Hamiltonian reads

H = − t
∑
〈i j〉σ

3∑
l=1

[a†
ilσ b jlσ + H.c.]

− t⊥
∑

iσ

[b†
i1σ ai2σ + b†

i2σ ai3σ + H.c.]

+μ
∑

iσ

3∑
l=1

(a†
ilσ ailσ + b†

ilσ bilσ )

+U
∑

i

3∑
l=1

(nila↑nila↓ + nilb↑nilb↓). (1)

Here a†
ilσ (ailσ ) are annihilation (creation) operators which

act at site Ra
li of l (l = 1–3) layer with spin σ (σ =↑,↓)

on sublattice A, and b†
ilσ (bilσ ) acts similarly on sublattice

B. Occupy number operators nilaσ = a†
ilσ ailσ and nilbσ =

b†
ilσ bilσ . t ≈ 2.7 eV denotes the in-plane hopping amplitude

between nearest-neighbor (NN), which is chosen to set the
energy scale in the following, and t⊥ denotes the interlayer
hopping energy in the perpendicular direction to the NN bond.
μ and U are the chemical potential and the on-site interac-
tion strength. The interlayer coupling energy tc = t⊥ is about
tc = 0.138t , which is taken from that of Ref. [14].

Our simulations are mostly performed on a lattice of L = 9
with periodic boundary conditions. L is the linear dimension
of the lattice, which corresponds to the linear dimension of
the underlying triangular lattice as shown in Fig. 1(b). It is
a much more tough job to simulate ABC-TLG numerically
than that of bilayer graphene systems. The choice of the basic
sketch in Fig. 1(b) allows us to have the finite-size scaling
for ABC-TLG, and lattices with L = 6, 9, 12, 15, and 18 are
simulated. The number of lattice sites in each layer is 2L2/3
[42] where the number 2 means two inequivalent triangular
sublattices, and the total number is Ns = 3 × 2 × L2/3. The
basic strategy of the finite-temperature determinant quantum
Monte Carlo method [43] is to express the partition function
as a path integral over the discretized inverse temperature over
a set of random auxiliary fields. The integral is then accom-
plished by Monte Carlo techniques. In our simulations, 4000
sweeps were used to equilibrate the system, and an additional
12 000–20 0000 sweeps were then performed, each of which
generated a measurement. These measurements were divided
into 20 bins that provide the basis of coarse-grain averages,
and errors were estimated based on standard deviations from
the average. In order to assess our results and their accuracy
with respect to the infamous sign problem as the particle-hole
symmetry is broken, a very careful analysis on the average of
sign is shown.

To study the possible metal-insulator transition, we ex-
amine the T -dependent dc conductivity calculated from the
wave-vector q and the imaginary time τ -dependent current-
current correlation function �xx(q, τ ),

σdc(T ) = β2

π
�xx(q, τ )

(
q = 0, τ = β

2

)
, (2)

where �xx(q, τ ) = 〈 ĵx(q, τ )〈 ĵx(−q, 0)〉, and ĵx(q, τ ) is the
(q, τ )-dependent current operator in x direction. The validity
of Eq. (2) has been proved for metal-insulator transitions in
the Hubbard model in many works [44–46]. We also define
N (0), the density of states at the Fermi level as N (0) �
βG(r = 0, τ = β/2) [44] to differentiate metal phase and
insulating phase, where G is the imaginary-time dependent
Green’s function.

With the aim of exploring the system evolving with the
variation in the magnetic order, we computed the antiferro-
magnetic (AFM) spin structure factor,

SAFM = 1

Ns

〈[∑
lr

(
Ŝz

lar − Ŝz
lbr

)]2〉
, (3)
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FIG. 2. (a) The AFM spin structure factor SAFM depends on β =
1/T with different lattice size and interaction strength; (b) scaling
behavior of the normalized AFM spin structure factor SAFM/NS for
corresponding U values at βt = 16. Solid lines represent third-order
polynomial fits to the data in 1/

√
NS . (c) the conductivity σdc at half-

filling versus the interaction U for different temperatures; (d) density
of states at the Fermi energy N (0) versus the temperature T for
various U ’s. With U increasing, N (0) gradually decreases, and when
N (0) tends to zero at T/t → 0, the system transitions from a metallic
phase to a Mott insulator.

which indicates the onset of long-range AFM order if
limNs→∞(SAFM/Ns) > 0. Here, Ns represents the number of
lattice sites, Ŝz

lar (Ŝz
lbr ) is the z-component spin operator on

the A (B) sublattice of layer l. SAFM for different interactions
are calculated on lattices with L = 6, 9, 12, 15, and 18 are
extrapolated to the thermodynamic limit using polynomial
functions in 1/

√
Ns.

III. RESULTS AND DISCUSSION

When the electronic properties are concerned, values of
T/t < 0.5 or so have been found sufficiently low for strong
electron correlations to manifest themselves [47,48]. Specif-
ically in the Hubbard model, the low- and high-temperature
regions could be determined by behaviors of spin fluctuations
and charge fluctuations, whose boundary is near T/t < 1.0
[49]. In order to address ground-state properties by use the
finite temperature quantum Monte Carlo method, we care-
fully monitor our simulations and make sure the results are
converged at low enough temperatures. As plot in Fig. 2(a),
the antiferromagnetic spin structure factor SAFM as a func-
tion of inverse temperature β = 1/T acquired on different
lattice sizes L and interaction strength U . The AFM order
increases as the temperature is lowered when T drops below
a lattice-dependent temperature, SAFM saturates and has very
little β dependence within statistical errors. So we reasonably
conclude that the physical observable has reached the T/t = 0
ground state if its value is convergent below some β0t ∼ 10,

which is consistent with the previous findings [46,50]. In the
following results, the lowest temperature has been reached,
at least, T/t = 0.1, which is sufficiently low to investigate
physics properties of the low-temperature region. To explore
the effect of interlayer coupling, we fix tc = 0.138t here and
tc will be varied in the following. From Fig. 2(a), one can see
that SAFM is almost independent with L in all zone at U/t =
3.5, whereas at U/t = 4.0, SAFM increases significantly with
increasing lattice size L for βt > 8, indicating a possibility
of a long-range order at U/t ∼ 4.0. Figure 2(b) presents the
finite-size scaling results of the AFM spin structure factor
SAFM/Ns. By extrapolating the data to the thermodynamic
limit, we estimate the critical point of the AFM long-range
order to be Uc/t ∼ 4.0, which is similar to the previous find-
ings [39,41,46].

To reveal a more interesting electronic property as Mott-
like insulating behavior in ABC-TLG, we present Fig. 2(c)
to show the conductivity σdc as a function of interaction U
at half-filling for different temperatures. The conductivity σdc

monotonically decreases with increasing U , for the same U ,
σdc values at higher temperature exceeds those of lower tem-
perature. The intersection of the curves defines the critical
field Uc, representing the transitions from metal to Mott in-
sulator, which emerges within the range of 3.5 < Uc/t < 4.0.
To further confirm the transition, we calculated the density
of states at the Fermi-level N (0) around the transition driven
by U in Fig. 2(d). The interaction-induced Mott insulator,
characterized by the opening of a Mott gap, results that N (0)
tends to 0 when T/t → 0 [51], which is observed in the range
of 3.5 < Uc/t < 4.0. A finite y-axis intercept in the T/t → 0
limit indicates that the metallic phase exists. Since conditions
at even lower temperatures are challenging, our polynomial
fittings at T/t → 0 (dashed lines) are to be interpreted on a
qualitative level.

The half-filled Hubbard model on a honeycomb lattice
exhibits a charge(Mott) excitation gap at a sufficiently large
U [46,52]. On the other hand, the noninteracting Anderson
insulator is gapless at the Fermi level [53,54]. So the gap can
also be used to establish the existence of the Mott insulator
even although there is no association between the gap and
the symmetry breaking. Basically the single-particle gap can
be extracted from the density of states, and here we deduce
the energy gap information by examining the behavior of
charge compressibility κ (μ) = d〈n̂(μ)〉/d (μ) at the Fermi
level, where 〈n̂(μ)〉 is the average density at chemical po-
tential μ. Results for κ (μ) evaluated at inverse temperature
βt = 10 are depicted in Fig. 3 for L = 9 with various tc’s and
U ’s. In the thermodynamic limit, κ of a system with an energy
gap will disappear at T/t = 0. However, due to the tempera-
ture broadening effect, the threshold of κ is finite on finite
lattices at nonzero temperature, and κ = 0 as a criterion will
overestimate the critical coupling strength [55]. Therefore,
we take κ ∼ 0.04 as an appropriate threshold to distinguish
between gapped and gapless phases analyzing the effect of
the finite T and the noninteraction limit [39,46].

Suggested from Fig. 3(a), for tc = 0.10t , the system be-
comes incompressible at Uc/t � 3.5–4.0, combining results
shown in Fig. 2, we identify that the state at half-filling
with U > Uc is an antiferromagneticlly ordered Mott insu-
lating state. Moreover, κ (μ) is insensitive with the change
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FIG. 3. (a) Charge compressibility κ and (b) electron filling 〈n〉
versus μ at βt = 10 for several interaction strengths and interlayer
hopping energy. The inset: the corresponding 〈sign〉 for different
values of U and tc at βt = 10.

in interlayer coupling strength. From Fig. 3(b), we can see
that 〈n(μ)〉 converges faster than κ vanishes. Tuning μ away
from half-filling breaks the particle-hole symmetry and leads
to a sign problem. For the present results, our numerical
results are reliable, in the inset of Fig. 3(a), one can see
that 〈sign〉 is mostly larger than 0.74 for κ at βt = 10 with
tc = 0.10t, 0.15t, 0.20t , and U/t � 4.0. Comparing to the
results of monolayer and bilayer graphene in previous studies
[39,46], one may argue that the location of critical point Uc

where the gap opens in graphene systems is mostly dominated
by the hexagonal lattice structure.

To investigate the superconducting property of ABC-TLG,
we studied the effective pairing interaction with different pair-
ing symmetries. Following previous studies [56–58], pairing
susceptibility is defined as

Pα = 1

NS

∑
li j

∫ β

0
dτ 〈	†

lα (i, τ )	lα ( j, 0)〉, (4)

where α stands for the pairing symmetry. Due to the constraint
of on-site Hubbard interaction in Eq. (1), the corresponding
order parameter 	

†
lα (i) reads

	
†
lα (i) =

∑
l

f †
α (δl)(ali↑bli+δl↓ − ali↓bli+δl↑)†, (5)

with fα (δl) being the form factor of the pairing function.
Here, in Eq. (5), the vectors δl(l = 1–3) denote the NN in-
tersublattice connections as sketched in Fig. 1(b) of Ref. [31].
Considering that the symmetry of the honeycomb lattice is
governed by the D6 point group, three possible NN pairing
symmetries are characterized by: (a) extended S(ES), (b)
d + id , and (c) the p + ip wave [31,33,34,39]. These extended
pairing symmetries are defined with different phase shifts
upon π/3 or 2π/3 rotations. The form factors of the singlet
ES wave and NN-bond d + id pairing are given by

fES (δl) = 1, l = 1–3, (6)

fd+id (δl) = ei(l−1)2π/3, l = 1–3, (7)

as for the NN-bond fp+ip pairings, the form factor of A and B
sublattices are different, where

fp+ip(δal) = ei(l−1)2π/3, l = 1–3, (8)

fp+ip(δbl) = ei[(l−1)(2π/3)+π], l = 1–3. (9)

FIG. 4. (a) Effective pairing interaction Pα of different pair-
ing symmetries and (b) product of superconducting vertex � and
no-vertex pairing susceptibility P̃α as a function of temperature.
Parameters are electron filling 〈n〉 = 0.95 and interlayer coupling
tc = 0.10t . If �P̃ → −1, a superconducting instability ensues. The
inset: the temperature-dependent 〈sign〉 at 〈n〉 = 0.95 with the corre-
sponding U for tc = 0.10t .

for A and B, respectively, which are pretty similar except
that there is a π phase shift. In addition to the NN-bond
pairings, we also studied longer-range pairings by the adding
next-nearest-neighbor bond pairing for d + id wave symme-
try, which have the following form factors:

fd+id (δl) = ei(l−1)2π/3, l = 1–3 · · · 6. (10)

Pα includes both the renormalization of the propagation
of the individual particles and the interaction vertex be-
tween them, whereas P̃α includes only the former effect.
In order to extract the effective pairing interaction in a fi-
nite system, one should subtract from Pα its uncorrelated
single-particle contribution P̃α , which is achieved by replacing
〈a†

li↓al j↓b†
i+δl↑b j+δl′ ↑〉 in Eq. (4) with 〈a†

i↓a j↓〉〈b†
i+δl↑b j+δl′ ↑〉,

and the effective pairing interaction Pα is defined as Pα =
Pα − P̃α .

Distinguished Pα and P̃α , we are allowed to extract the
interaction vertex �α ,

�α = 1

Pα

− 1

P̃α

. (11)

If �αP̃α < 0, the associated pairing interaction is attractive. In
fact, Eq. (4) can be rewritten as

Pα = P̃α

1 + �αP̃α

(12)

suggests that �αP̃α → −1 signals a superconducting insta-
bility. This is the analog of the familiar Stoner criterion
Uχ0 = 1, which arises from the random-phase approximation
expression χ = χ0/(1 − Uχ0) for the interacting magnetic
susceptibility χ in terms of the noninteracting χ0.

Figure 4(a) shows the temperature dependence of Pα for
different pairing symmetries at 〈n〉 = 0.95 with tc = 0.10t .
The effective pairing interaction for various symmetries in-
crease as the temperature is lowered and, most remarkably,
the d + id pairing symmetry dominates other symmetries at
relatively low temperatures. The effective pairing susceptibil-
ity Pd+id with U/t = 2.0 and U/t = 4.0 are also shown, in
comparison with U/t = 3.0 from which one can see that the
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FIG. 5. The tendency to (a) effective pairing interaction Pα and
(b) superconductivity �P̃ as functions of temperature at electron
filling 〈n〉 = 0.95 and interaction strength U/t = 3.0 for different
interlayer couplings tc. The inset: the temperature-dependent 〈sign〉
at 〈n〉 = 0.95 with the corresponding tc for U/t = 3.0.

d + id pairing interaction is enhanced greatly as the value of
U increases.

In Fig. 4(b), we examine the effect of the interaction vertex
�αP̃α , signaling a superconducting instability by �αP̃α → −1.
The tendency to pairing becomes greater as the temperature
is lowered, especially to the d + id wave where the effect
of temperature on �P̃ is more pronounced than other pairing
symmetries. One also can see that the growth in pairing vertex
from interaction strengths U/t = 2.0 to U/t = 4.0, which is
consistent with Fig. 4(a) that d + id symmetry is significantly
dependent on U .

We also studied the temperature dependence of effective
pairing interaction Pα and superconducting instability �P̃
with different interlayer couplings tc in Fig. 5. One can see that
both the effective pairing interaction and the superconducting
instability of d + id symmetry are almost independent with
the interlayer coupling strength. Suggested from Figs. 4 and 5,
the positive Pα indicates that there actually generates effective
attractions between electrons in the system at low tem-
peratures. This also demonstrates that the electron-electron

correlation plays a key role in driving the superconductivity. In
addition, 〈sign〉 is larger than 0.83 for tc = 0.10t, 0.15t, 0.20t
at U/t = 3.0 as shown in the inset of Fig. 5(a) and larger
than 0.80 for tc = 0.10t at U/t < 4.0 shown in the inset of
Fig. 4(a). At a larger U/t = 4.0, 〈sign〉 is mostly larger than
0.35 as βt � 8. For the cases of U/t = 4.0 and βt > 8, the
sign problem is worse which is not important as the dominant
pairing symmetry is robust on the temperature.

IV. CONCLUSIONS

To summarize, we perform a quantum Monte Carlo study
of the charge compressibility, spin correlation, and supercon-
ducting instability in the ABC graphene trilayer system. The
results of the charge compressibility and spin correlation show
that, at half-filling, an antiferromagnetically ordered Mott in-
sulator is proposed beyond a critical Uc/t ∼ 4.0. With finite
doping, the superconducting pairing with d + id symmetry
dominates over other pairing symmetries. We also analyze the
effect of the on-site interaction and the interlayer interaction
in superconductivity. It is found that the dominant d + id
superconducting pairing interaction increases with increas-
ing on-site interaction strength, which means that the d + id
superconductivity is driven by the strong on-site interaction.
The results presented here demonstrate the interaction-driven
superconductivity with a dominant d + id pairing symmetry
in ABC-TLG, and the superconductivity is arising from a
doped Mott insulator.
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