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Phonon Hall viscosity from phonon-spinon interactions
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Motivated by experimental observations, Samajdar et al. [Nat. Phys. 15, 1290 (2019)] have proposed that the
insulating Néel state in the parent compounds of the cuprates is proximate to a quantum phase transition to a
state in which Néel order coexists with semion topological order. We study the manner in which proximity to
this transition can make the phonons chiral, by inducing a significant phonon Hall viscosity. We describe the
spinon-phonon coupling in a lattice spinon model coupled to a strain field, and also using a general continuum
theory constrained only by symmetry. We find a nonanalytic Hall viscosity across the transition, with a divergent
second derivative at zero temperature.
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I. INTRODUCTION

Quantum spin liquids (QSLs) are exotic phases of matter
arising from highly correlated spins with frustrated interac-
tions, in which zero-point fluctuations are so strong that spin
ordering is prevented even down to zero temperature [1,2].
QSLs often host a wide variety of collective phenomena, in-
cluding topological degeneracy and long-range entanglement
[3–6] that make them ideal for theoretical study. Most re-
markably, QSLs are characterized by nonlocal fractionalized
excitations [7], such as charge-neutral “spinons” coupled to
emergent gauge fields [8]. The spinons can be either gapped
or gapless and may be bosons or fermions, depending on the
scenario [9,10].

While there have been extensive experimental efforts to-
wards detection of QSLs, unambiguous evidence remains
elusive [11]. The measurement of topological properties of
QSLs is difficult since unlike conventional quasiparticles,
spinons are invisible to local probes. One current line of think-
ing therefore aims to study QSLs by looking for signatures
of fractionalization through the interactions of spinons with
other degrees of freedom in the system.

In this paper, we will study the coupling of spinons to
lattice excitations. Specifically, we will be interested in a
response coefficient called the Hall viscosity [12,13]. Similar
to the Hall conductance, the phonon Hall viscosity can ap-
pear for phonons coupled to a gapped electronic system that
breaks time-reversal symmetry. The Hall viscosity tensor ηi jkl

characterizes the system’s viscoelastic response to a strain
deformation as 〈

∂H

∂εi j

〉
= λi jklεkl + ηi jkl ε̇kl , (1)

where εi j ≡ (∂iu j + ∂ jui )/2 is the symmetrized strain tensor,
and the time derivative is represented by the overdot. In the

*These authors contributed equally to this work.

presence of C4 symmetry in two dimensions (2D), there is
only one independent component of the Hall viscosity tensor
ηxxxy [14]. Contrary to a viscosity that is dissipative, the Hall
viscosity is antisymmetric with respect to the pairs of indices
(i j) and (kl ) and, hence, nondissipative [15].

The Hall viscosity was first studied in the context of the
quantum Hall effect, in which it was shown to be proportional
to the square of the electron filling density for integer quantum
Hall fluids [13,16–25]. In these systems, the Hall viscosity
can be calculated as the response of an appropriate continuum
field theory to a variation of the underlying geometry or spatial
metric gi j . This Hall viscosity, which acts as a Chern-Simons–
type term for the frame field, was termed the gravitational
Hall viscosity in Ref. [20]. Instead, our focus will be on the
response of systems of phonons and the resulting phonon Hall
viscosity. While the Hall viscosity originates from the chiral
spinons, we use the term phonon Hall viscosity to indicate
that the stress tensor is coupled to the lattice acoustic phonons
instead of a background spatial metric. This is appropriate
because the resulting equations of motion for the phonons
have a corresponding Hall viscosity term.

Theoretically, the phonon Hall viscosity has been studied
for electronic systems and topological insulators [19,20,26–
28]. For lattice systems, such as discrete tight-binding models,
there are a priori many different ways to model the viscoelas-
tic response, including coupling to a lattice frame field [26]
or using momentum polarization methods [29,30]. We will
adopt a more physical “geometric bond stretching” approach,
realizing the strain as a modification to the tight-binding over-
lap integrals originating from the lattice sites being displaced
from their equilibrium positions. This coincides with the ap-
proach of viewing the phonon Hall viscosity as the adiabatic
response of a system to acoustic phonons [20], analogous
to the Hall conductance. Using the Kubo formula, the Hall
viscosity can also be recognized as a type of Berry curvature
of the ground-state wave function.

While a measurement of the Hall viscosity would provide
valuable information for identifying phases with topological
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order, it has been difficult to do so in practice. Nevertheless, it
is possible to experimentally detect the phonon Hall viscosity
through other physical quantities that share the broken sym-
metries. For example, one such quantity is the phonon thermal
Hall conductivity, which can be nonzero only with broken
time-reversal and (in-plane) mirror symmetries. In fact, recent
experiments by Grissonnanche et al. [31] and Boulanger et al.
[32] suggest that chiral phonons are responsible for the large
thermal Hall conductivities measured in the insulating phase
of several cuprate superconductors. A nonzero phonon Hall
viscosity could be a mechanism for intrinsic phonon chirality
in these systems. The phonon Hall viscosity leads to both
intrinsic and extrinsic contributions to the thermal Hall con-
ductivity: the intrinsic contribution is discussed in Sec. VI,
while the extrinsic contribution is discussed in Ref. [33].

We will study the phonon Hall viscosity induced by lattice
strain couplings to a chiral spin liquid on the square lattice. In
particular, we are interested in a spin-liquid ansatz in which
the orbital coupling of the applied magnetic field drives the
conventional confining Néel insulator to a state with semion
topological order [34,35]. Recent optical experiments by de
la Torre et al. [36] indicate the presence of mirror-plane-
symmetry breaking which is compatible with this scenario. In
our paper, we will analyze the behavior of the Hall viscosity in
both the lattice tight-binding model and the continuum Dirac
field theory. We find that the above-mentioned quantum phase
transition (QPT) in the spinon sector is reflected by a diver-
gence in the second derivative of the phonon Hall viscosity.

The rest of the paper is organized as follows. We begin in
Sec. II by reviewing the general definition of the phonon Hall
viscosity and linear response theory. Section III introduces
the mean-field chiral spin-liquid model on the square lattice.
We study the spinon-phonon interactions in two settings. On
the lattice, we consider phonon-fermion coupling by “bond
stretching” in Sec. IV, whereas for the continuum field theory,
we couple phonons and spinons based on symmetry con-
siderations in Sec. V. After commenting on some physical
consequences in Sec. VI, we summarize and discuss our re-
sults in Sec. VII.

II. PHONON HALL VISCOSITY

A. Phonon effective action with broken time-reversal symmetry

For gapped fermionic systems, the low-energy dynamics
of acoustic phonons is captured by an effective action for
u(r), describing the displacement of an atom from its original
location. The effective action obtained by integrating out the
fermionic degrees of freedom is

Z =
∫

Dψ̄ Dψ Du e−S(u,ψ̄,ψ ) =
∫

Du e−Seff (u). (2)

In the long-wavelength limit, the phonon effective action is
determined by the mass density ρ and the elastic moduli
tensor λi jkl ,

Seff = 1

2

∫
dd x dt (ρu̇ j u̇ j − λi jkl∂iu j∂kul ). (3)

For gapless states such as metals, the phonon action will
generally be nonlocal and thus cannot be written as above.

When time-reversal symmetry is broken, there is an al-
lowed, nondissipative Hall viscosity term [12,13,20]

δS = 1

2

∫
dd x dt ηi jkl∂iu j∂ku̇l , (4)

with ηi jkl = −ηkli j antisymmetric under the exchange of
pairs of indices. The number of independent components
of ηi jkl can, in general, be determined using symmetry. For
example, one can show that ηi jkl will always vanish for a
three-dimensional isotropic system. As we are concerned with
phonons in a spin-liquid background, we will restrict our-
selves to d = 2 in the subsequent analysis. For simplicity, we
will also assume C4-rotation symmetry, though this require-
ment can easily be relaxed.

Following Ref. [20], we can knead the Hall viscosity in
Eq. (4) into a more convenient form by defining the strain
tensor εi j and the vorticity (also called rotation) tensor θi j

according to

εi j ≡ 1
2 (∂iu j + ∂ jui ), θi j ≡ 1

2 (∂iu j − ∂ jui ). (5)

Dropping boundary terms, Eq. (4) can then be rewritten as

δS = 2
∫

d2x dt[ηH (εxx − εyy)ε̇xy + ηM (εxx + εyy)θ̇xy]. (6)

Here, we have defined ηH = (ηxxxy + ηxxyx )/2 and ηM =
(ηxxxy − ηxxyx )/2. While boundary terms can modify surface
phonon dispersions for topological insulators and generate
interesting effects such as phonon Faraday rotation [26,37],
we will ignore these phenomena in our discussion. Finally, it
can also be useful to rewrite the action δS in Eq. (6) directly
in terms of the deformation field u. In that case, there ends
up being one effective Hall viscosity coefficient η ≡ ηxxxy =
ηH + ηM ,

δS =
∫

d2x dt

[−η

2
(∇2uxu̇y − ∇2uyu̇x )

]
. (7)

In the calculations hereafter, however, we will follow Eq. (6)
and discuss ηH and ηM separately.

B. Definition as a response function

We can also view the Hall viscosity as a response func-
tion. To begin, we make the adiabatic assumption that the
timescale of the lattice motion is infinitely slower than that
of the fermions’ motion, so that the electronic configuration
is always in its instantaneous ground state with respect to its
lattice configuration. This implies that the electronic quasi-
particles only couple to phonons that are well below their
energy gap. The lattice deformation fields u then act to modify
the effective hopping terms in the tight-binding Hamiltonian
Ht.b. for the electronic system and can be treated as external
parameters.

In Fourier space, viewing u(q) =∑n u(r)eiq·r/
√

L as pa-
rameters in Ht.b., we can first define the two-component Hall
tensor from linear response theory through the Kubo formula
[18,20]

ηab(q) = lim
ω→0

1

ω

1

Ld

∫
dt eiωt

〈[
∂Ht.b.(t )

∂ua,q
,
∂Ht.b.(0)

∂ub,−q

]〉
, (8)
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where it is clear that the Hall tensor is, by construction, anti-
symmetric, i.e., ηab = −ηba. This leads to an effective action
of the form

δS = 1

2

∫
dd q dt

(2π )d
ηab(q)ua(−q, t )u̇b(q, t ). (9)

From Eq. (9), we can obtain the Hall viscosity tensor by taking
the appropriate derivatives

ηi jkl = 1

2
lim
q→0

∂

∂qi

∂

∂qk

η jl (q). (10)

III. SPIN-LIQUID ANSATZ ON THE SQUARE LATTICE

Our model of interest, studied in Ref. [34], describes S = 1
2

antiferromagnets on the square lattice with the spin Hamilto-
nian Hspin = H0 + HB, where

H0 =
∑
i< j

Ji jSi · S j + · · · , (11a)

HB = Jχ

∑
�

Si · S j × Sk −
∑

i

BZ · Si. (11b)

H0 describes nearest-neighbor spin interactions and other
possible exchange terms that are invariant under all space-
time symmetries. HB describes the coupling of the electrons
to an applied magnetic field [38]. The Jχ term couples to the
scalar spin chirality and is induced by the orbital coupling
of the magnetic field to the electrons. The value of Jχ is
proportional to the small magnetic flux penetrating the square
lattice. The second term in HB is the Zeeman coupling of the
magnetic field, with the electron magnetic moment absorbed
in the definition of BZ . Therefore, the physical magnetic field
is included in our model through both an orbital coupling (Jχ )
and a Zeeman coupling (BZ ). While Hspin could, in principle,
also include Dzyaloshinskii-Moriya exchange terms, we do
not consider the effect of spin-orbit interactions here.

Numerical studies of Hspin on the square [39] and other
lattices [40–46] have found evidence of a chiral spin-liquid
phase at small nonzero Jχ , and it was argued in Ref. [34]
that near a critical spin liquid, Jχ would be a relevant per-
turbation leading to semion topological order. Consequently,
one finds an enhanced thermal Hall conductivity κxy even
in the antiferromagnetic Néel state [34] stemming from the
discontinuity of the zero-temperature thermal Hall response
|�κxy/T | = (π/6)(k2

B/h̄) between the trivial and topological
phases [47]. On the other hand, we will find the phonon Hall
viscosity to be continuous (but nonanalytic) across this QPT.

A. Mean-field theory

We begin our mean-field analysis by considering the
square-lattice Néel state as the confining phase of an SU(2)
gauge theory of fluctuations about a π -flux mean-field state
[35]. Transforming to the parton representation [48,49], the
spin operator at each site is decomposed as

Si = 1
2 f †

i σ fi. (12)

Here, fi ≡ ( fi↑, fi↓)T represents the two-component
fermionic spinon operator while σ denotes the Pauli matrices.
The mapping from the spin- 1

2 Hilbert space to the fermionic

FIG. 1. The mean-field spinon ansatz defined by Eq. (13), with
nearest- (t1, black) and second-nearest-neighbor (t2, red) hopping
matrix elements. The applied magnetic field induces an orbital cou-
pling it2, and there is a uniform π/2 flux through each elementary
triangle. The inset in the bottom-right corner illustrates the bottom-
most red and yellow atoms with the dx2−y2 orbitals deviating from
their equilibrium positions by u(n) and u(n + x), respectively. The
result of this deviation can be captured by changing the bond length
between the two atoms from the equilibrium length r0 to the new
length r0 + [u(n + x) − u(n)], as discussed further in Sec. IV A.

one expands the Hilbert space, and we must impose a
single-site occupancy constraint in order to remain within
the physical Hilbert space. Therefore, the fermionic band
structure of spinons is always constrained to be at half-filling.
Furthermore, Eq. (12) has an SU(2) gauge redundancy [50,51]
and a full treatment of Hspin would also require analysis of the
SU(2) gauge field associated with f [52–54].

In our mean-field treatment, we ignore the SU(2) gauge
fluctuations. Instead, we will be interested in a mean-field
saddle point which breaks this SU(2) gauge symmetry down
to U(1) [3,55]. Inserting the parton representation of Si into
Hspin and mean-field factorizing while respecting the space-
time and gauge symmetries, we obtain the spinon Hamiltonian
[3,34,35,56,57]

Ht.b. = −
∑
i< j

(ti j f †
j fi + t∗

i j f †
i f j )

− 1

2

∑
i

(BZ + ζiN) · f †
i σ fi. (13)

Our ansatz for the spinon hopping terms ti j is shown in
Fig. 1. The nearest-neighbor hopping terms t1 arise from
the factorization of the Heisenberg exchange couplings in
H0 [Eq. (11a)]. The second-nearest-neighbor hopping terms
±it2 originate from the scalar spin chirality Jχ in Eq. (11b),
and they have the same symmetry as the orbital coupling
of the electrons to an applied magnetic field orthogonal to
the lattice plane. In particular, the field-induced couplings t2
break time-reversal and reflection symmetries but preserve
their composition. We have also assumed a nonzero Néel
order N, with ζi = ±1 on the two checkerboard sublattices
(A/B) of the square lattice. The Néel order is temperature
dependent in general but for simplicity, here, we regard N as
fixed. In order to minimize the energy of the antiferromagnet
with a Zeeman coupling, we take BZ · N = 0. The Zeeman
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FIG. 2. The two phases of the spinon mean-field Hamiltonian
Ht.b in Eq. (13) are shown as a function of the second-nearest-
neighbor spinon hopping t2 and the strength of the Zeeman field
|BZ |. Here, we take the Néel order to be N = 0.5ẑ and measure
all energies in units of the nearest-neighbor spinon hopping t1. As
discussed in the main text, both t2 and |BZ | are assumed to be linear
functions of the applied magnetic field. The red dots show the points
for which we plot the temperature dependence of ηH in Fig. 5(b), and
the dashed green line illustrates the trajectory for which we plot the
field dependence of ηH in Fig. 5(c).

coupling along the ẑ axis originates from the perpendicular
applied external field, so N lies in the xy plane. As there is no
spin-orbit coupling, we will perform a rotation in spin space
for convenience, so that BZ ∝ x̂ and N ∝ ẑ. Equation (13) can
be written in momentum space, with fk ≡∑i eik·ri fi/

√
L =

( fkA↑, fkB↑, fkA↓, fkB↓)T ), as

Ht.b. = −
∑

k

f †
k hk fk , (14)

hk = 2t1 cos(kx )τ x − 2t1 sin(ky)τ y

+ 4t2 sin(kx ) cos(ky)τ z + N

2
σ zτ z + |BZ |

2
σ x, (15)

where the Pauli matrices acting in sublattice and spin spaces
are denoted by (τ x, τ y, τ z ) and (σ x, σ y, σ z ), respectively.

The mean-field phase diagram for this ansatz is sketched
in Fig. 2. With our choice of a two-site unit cell, we obtain
a total of four spinon bands, which are half-filled. When
the net Chern number of the occupied bands is zero, one
obtains a conventional Néel state, and the theory for the gauge
fluctuations will have no Chern-Simons term, leading to con-
finement. However, when the net Chern number of the filled
bands is two, we obtain a state with semion topological order
coexisting with the Néel order. With a fixed Néel order, one
can thus move between the two phases by tuning the orbital
(t2) and Zeeman (BZ ) couplings of an applied field. We discuss
this point further in Sec. IV C.

While this specific ansatz may appear to break lattice sym-
metries at first sight, the representation (12) is invariant under
the local gauge transformations

fi → fie
iϑi , ti j → ti je

i(ϑi−ϑ j ). (16)

Accordingly, the representation of lattice symmetries can be
supplemented by an appropriate gauge transformation, and

FIG. 3. (a) Spinon-phonon interaction vertex, as defined by
Eq. (22). (b) The Feynman diagram representing the phonon self-
energy, which contributes to the one-loop effective action and
determines the phonon Hall viscosity. Note that we work in the
q = 0 limit when computing the Hall viscosity on the lattice. For
our calculations in the continuum, we also evaluate the same diagram
though the precise notations differ.

so the spinons f form a projective representation of the lat-
tice symmetry group, called the projective symmetry group
[3,55,58]. With this gauge freedom in mind, the spinon lattice
model Ht.b. in Eq. (13) indeed preserves all the symmetries of
the original spin Hamiltonian Hspin, as shown in Ref. [34]. We
will also consider the projective symmetries in detail when we
analyze the continuum spinon theory in Sec. V.

In what follows, we consider the total spinon-phonon ac-
tion

Stotal = Ssp + Sph + Ssp-ph (17)

in both the lattice and continuum settings. The first term in
Eq. (17) is obtained from our ansatz Ht.b. in Eq. (13), while
the second term is obtained from the quadratic phonon action
in Eq. (3). On the lattice (Sec. IV) we deduce the necessary
elastic coupling to the fermions, Ssp-ph, from geometric bond
stretching whereas in the continuum (Sec. V), we will derive
the allowed elastic coupling to the fermions from symmetry
considerations. Our goal will be to integrate out the spinon de-
grees of freedom to obtain an effective theory for the acoustic
phonons (see also Fig. 3).

IV. HALL VISCOSITY FROM SPINON COUPLINGS
TO LATTICE STRAIN FIELDS

Given our tight-binding ansatz in Sec. III, we will model
the spinon-phonon coupling through the microscopic defor-
mation of the hopping amplitudes as the result of lattice strain,
i.e., bond stretching. As mentioned previously, we assume
that the spinons only couple to low-energy phonons with
frequencies well below the spinon energy gap. There are two
equivalent ways of computing the resulting response to the
lattice distortion by bond stretching. The first is to compute
the one-loop phonon effective action by integrating out the
spinons [shown in Fig. 3(b)]; the second is to use the linear
response formalism and compute the adiabatic Berry curva-
ture as the result of the variation of the strain field [20,26]. We
use the first approach here as it more closely makes contact
with our later continuum calculations.

A. Geometric coupling through bond stretching

To introduce the method of geometric bond stretching, we
will consider a generic tight-binding model

Ht.b. =
∑

i j

ti jc
†
j ci, (18)
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where the hopping amplitude ti j represents the overlap integral
between the orbitals at site i and site j with bond length
(spatial separation) |r0|. In models with multiple orbitals with
nontrivial symmetry properties, the change of hopping ampli-
tudes can also have an angular dependence. In our case here,
however, Eq. (13) is a model with only one type of orbital
(dx2−y2 ) on each site of the square lattice, so, to leading order,
the hopping amplitude only depends on the distance between
the two sites. Following the approach of Ref. [26], suppose
now that the bond length becomes a variable r so that we can
introduce a bond stretching of δr = r − r0, illustrated in the
inset of Fig. 1. Assuming that ti j is a smooth function of such
small deformations, the hopping amplitude then becomes

t (r) ≡ tri,r j
≈ t (r0) + δr · ∇t (r)|r0 + O(δr2). (19)

For example, the nearest-neighbor (horizontal) hopping am-
plitude from site n to n + x is tn,n+x = t (x) where x = ax̂.
Letting ux(n) and ux(n + x) be the deformations along the x̂
axis of the two sites, the hopping amplitude is approximated
as

tn,n+x ≈ t (x) + ∂t

∂r

∣∣∣∣
x
[ux(n + x) − ux(n)] + O(δr2)

= t (x) + a
∂t

∂r

∣∣∣∣
x
(∂xux ), (20)

where, on the second line, we have assumed that the lattice
distortion is a smooth function on the lattice scale. This is
consistent with our assumption of considering only adiabatic
spinon-phonon interactions. Carrying through this procedure
with our mean-field ansatz defined in Eq. (13), we obtain the
modified hopping amplitudes as

|tn,n±x| ≈ t1 + λ1εxx, (21a)

|tn,n±y| ≈ t1 + λ1εyy, (21b)

|tn,n±(x+y)| ≈ t2 + λ2(εxx + εyy + 2εxy), (21c)

|tn,n±(x−y)| ≈ t2 + λ2(εxx + εyy − 2εxy) , (21d)

expressed in terms of the strain tensor εi j in Eq. (5). The
coupling constants λ j are formally given by λ1 ≡ a (dt1/dr)|a
and λ2 ≡ (a/

√
2)(dt2/dr)|√2a in the bond-stretching picture.

Since λ j has the same symmetry as t j , we will take the two
to be linearly related; their dimensionless ratio λ j/t j will be
treated as an unknown, phenomenological parameter.

Replacing the fixed hopping amplitudes in Eq. (13) by
their strain-dependent generalizations in Eq. (21), one can
systematically derive all spinon-phonon coupling terms; for
example, the term in Eq. (21a) leads to a coupling term of the
schematic form f †(λ1εxx )[cos(kx )τ x] f , where the cos(kx )τ x

piece in sublattice space originates from Eq. (15).
Before listing the precise structures of all of these cou-

plings, we comment on further-neighbor couplings. While we
only include terms involving up to second-nearest neighbors

FIG. 4. Spinon ansatz with fourth-nearest-neighbor (4NN) hop-
ping amplitude t4 allowed by projective symmetry.

(2NN) in our spinon ansatz, higher-neighbor terms are still
allowed by symmetry. Usually, these couplings are not nec-
essary as they are expected to be weak in magnitude and can
often effectively be taken into account by renormalizing the
NN or 2NN terms. However, it turns out that additional fourth-
nearest-neighbor (4NN) terms are crucial for our analysis:
while their coupling strengths may be numerically small, their
induced phonon coupling alters the divergent behavior of ηH

at the critical point, as we will see below and also consistently
reproduce later in the continuum analysis of Sec. V. To in-
clude their effects, we use the projective symmetry of Eq. (13)
to find allowed 4NN terms with hopping strength t4, as shown
in Fig. 4. Following the bond-stretching procedure, we define
an analogous parameter λ4 ≡ (a/

√
5)(dt4/dr)|√5a. As the t4

coupling will not modify the critical behavior of the spinon
Hamiltonian, we will take t4 → 0 so that it only enters through
the spinon-phonon coupling Hamiltonian.

Moreover, while it is formally possible to consider time-
dependent deformations u̇, we will not include them in our
analysis since these terms will be suppressed by the ratio
of the sound velocity to the Fermi velocity (∼t1). We com-
ment on potential interesting effects from these terms in
Appendix B. Lastly, we note that couplings similar to the
ones induced by λ4 can also arise from bond stretching in a
multiorbital model; for coupling between s-p and d-p orbitals,
Eq. (20) would include terms that take into account the relative
rotation between sites.

Summarizing all the relevant bond stretching coupling
terms, we can write the spinon-phonon coupling as Kk,� =
γμν,kεμν (�), which couples the spinon operators:

Ssp-ph = 1

L2β2

∑
ω,�,k

f †
k,ω+�

Kk,� fk,ω. (22)

This interaction vertex is displayed in Fig. 3(a), but we will
take the limit in which the strain field ε carries no momentum,
as terms dependent on the phonon momentum will lead to
higher-order, anharmonic viscosity terms in the phonon effec-
tive action. The interaction vertex γμν,k then reads as

γμν,k ≡
∑

i

γ i
μν,kτ

i =
⎧⎨⎩

−2λ1 cos(kx )τ x − 4λ2 sin(kx ) cos(ky)τ z, μν = xx
−2λ1 sin(ky)τ y − 4λ2 sin(kx ) cos(ky)τ z, μν = yy
−8λ2 cos(kx ) sin(ky)τ z − 16λ4[cos(ky) sin(2kx )τy + sin(2ky) sin(kx )τx], μν = xy

(23)
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where γ i
μν,k defines the coefficient multiplying the Pauli ma-

trix τ i in γμν,k.

B. Evaluation of the phonon self-energy

Given the couplings from the previous section, we will now
integrate out the spinons (ψ) from the total partition function
[20,59,60],

Z =
∫

Dψ̄ Dψ Du e−[Sph (u)+Ssp(ψ̄,ψ )+Ssp-ph (ψ̄,ψ,u)]

=
∫

Du e−Seff (u). (24)

This is equivalent to evaluating the phonon self-energy to
lowest order in the interaction couplings and leads to a term
in the phonon effective action:

δSeff = − 1

2L2β2

∑
ωn,�m, k

Tr
[
Kk,i�m

G(k, iωn)

× Kk,−i�m
G(k, iωn + i�m)

]
(25)

which can be represented by the Feynman diagram in Fig. 3(b)
with the external momenta q = 0. In the absence of the Zee-
man field (BZ = 0), the two spin sectors are decoupled so
we write the block-diagonal spinon Green’s function for the
spin-up (+) and spin-down (−) sectors as

G±(k, iωn) = iωmI + H±,k · τ

(iωm)2 − H2
±,k

, (26)

in which H is defined from the momentum-space Hamiltonian
in Eq. (15),

H±,k ≡
(

− 2t1 cos kx, 2t1 sin ky,−4t2 sin kx cos ky ∓ N

2

)
.

(27)

Leaving the details of the derivation to Appendix A, Eq. (25)
leads to a Hall viscosity

ηH = − 1

L2

∑
k,±

(
[1 − 2nF (|H±|) + 2|H±|n′

F (|H±|)]
4|H±|3

)
× [Hy

±γ z
xxγ

x
xy + Hz

±γ x
xxγ

y
xy − Hx

±γ z
xxγ

y
xy − Hy

±γ x
xxγ

z
xy

]
,

(28)

where nF (E ) = 1/(1 + eE/T ) denotes the Fermi distribution
function with chemical potential at 0, and n′

F (E ) denotes its
first derivative with respect to E . We have also suppressed
the momentum indices of H±,k and γ i

μν,k for ease of notation.
The terms multiplying the thermal factor in Eq. (28) should be
thought of as an effective Berry curvature for the phonon Hall
viscosity, with the summation being over occupied spinon
states.

The phonon Hall viscosity is shown in Figs. 5(a)–5(e). Let
us first concentrate on the zero Zeeman field limit BZ = 0
described by Eq. (28). Figures 5(a) and 5(b) show the Hall
viscosity for λ4 = −0.1 while Figs. 5(c) and 5(d) display the
viscosity for λ4 = 0.1. Recall, as mentioned previously, that
we take λ1 ∝ t1 and λ2 ∝ t2. We first observe that ηH is an
odd function of t2: this property arises from the second line

of Eq. (28) via either the Green’s function component Hz or
the interaction vertex γ i

xy. The viscosity vanishes when t2 = 0
in consistency with the fact that it can only be nonzero when
time-reversal and mirror symmetries are broken. The viscosity
also monotonically increases with increasing t2 across the
critical points N = ±8t2. As discussed in Sec. III, t2 originates
from the orbital coupling of the magnetic field, so tuning t2
should be understood as tuning the magnetic flux threading
the square lattice. Furthermore, from Figs. 5(a) and 5(c), we
notice that although the viscosity is continuous, it exhibits a
kink at zero temperature at the quantum critical point, signal-
ing a discontinuous first derivative. The exact difference in the
slope of ηH on either side of the critical point is nonuniversal
and depends on the choice of couplings. In our ansatz, we see
that a negative (positive) λ4 leads to a smaller (larger) slope
for ηH in the topological phase.

The behavior of ηH as a function of temperature is also
of experimental relevance. Figures 5(b) and 5(d) illustrate the
temperature dependence of ηH for different values of t2 (while
keeping BZ = 0), which are indicated by the red dots in the
phase diagram of Fig. 2. We observe, in both cases, a plateau
of ηH at small T , which scales with the distance of t2 from the
critical point (here, t2,c = N/8 = 0.0625). From the plots, the
extent of the plateau can be seen to be the smallest for t2 =
0.06 and increases with changing t2 in either direction away
from the critical value. The plateau originates from the spinon
energy gap, whose scale is set by |t2 − t2,c|. At temperatures
below this gap, thermal excitations fail to excite higher spinon
bands so we expect ηH to retain its zero-temperature behavior.

An interesting feature of the temperature dependence
sketched in Figs. 5(b) and 5(d) is that at intermediate temper-
atures above the energy gap, there is a peak in the viscosity
for λ4 = 0.1 but not for λ4 = −0.1. This peak is nonuniversal,
being dependent on our choice of parameters, but its behavior
can actually be understood from the behavior of the kink in
ηH across the QPT. Intuitively, this can be seen as follows.
In passing through the QPT, the effective Berry curvature
is exchanged between the highest occupied and lowest un-
occupied bands when the spinon gap closes. This is similar
in essence to the process of changing temperature, which
also involves accessing the effective Berry curvature of the
lowest-energy unoccupied spinon bands as ηH gains (loses)
Berry curvature from the unoccupied (occupied) bands due
to thermal excitations. For the case of λ4 = −0.1, the slope
of ηH with respect to t2 decreases across the QPT. At the
QPT, Berry curvature is exchanged between the occupied and
unoccupied bands, so at a fixed t2, a similar redistribution
of the Berry curvature between the occupied and unoccu-
pied bands should decrease ηH . This is exactly what occurs
at intermediate temperatures because of thermal excitations,
and geometrically, this Berry curvature exchange deforms the
viscosity towards the secant through the kink, as illustrated
in Fig. 5(a). Therefore, it is expected that ηH decreases with
increasing temperature. A similar analysis for λ4 = 0.1 with
the kink in Fig. 5(c) predicts that ηH will increase to a local
maximum at intermediate temperatures as thermal excitations
capture larger Berry curvature contributions from the lowest
unoccupied bands. Regardless of our choice of couplings,
however, the Hall viscosity will eventually decay to zero at
high temperatures because the Berry curvatures from states at
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FIG. 5. Hall viscosity as functions of t2, T, B and its derivative with respect to m1. We set N = 0.5, λ1 = t1, and λ2 = 0.5t2. In (a), (b) and
(e), (f), we choose λ4/t1 = −0.1. In (c), (d), we choose λ4/t1 = 0.1 for comparison. (a) Hall viscosity as a function of t2 for temperatures
T/t1 = 0, 0.1 and BZ = 0. The dashed lines indicate critical points at N = ±8t2. The inset shows the kink at T = 0 after zooming in, signaling
a QPT as discussed in the main text. (b) Hall viscosity ηH as a function of temperature for different orbital coupling t2 and BZ = 0, shown by
the red dots in phase diagram Fig. 2. (c), (d) The same as in (a) and (b), respectively, but with the opposite sign of λ4. (e) Field dependence of
ηH for different T . As discussed in the main text, the orbital and Zeeman couplings scale linearly with the applied external field, and here, we
take B = |BZ | = 7t2, which is shown by the dashed trajectory in phase diagram Fig. 2. (f) The divergence in the second derivative of ηH with
respect to mass m1 near the critical point. The blue curve shows that the mass derivative of the Hall viscosity d2ηH/dm2

1 evaluated at m1 = 0
diverges at T = 0; the yellow curve demonstrates that d2ηH/dm2

1 has no true divergence at finite T .
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all energies will then contribute, and the net curvature from all
spinon bands is necessarily zero.

Under a nonzero Zeeman coupling, we expect the location
of the critical points to be renormalized without any qualita-
tive changes in the nature of the QPT [34]. In Fig. 5(e), we turn
on the Zeeman coupling BZ . As discussed below Eq. (11a), Jχ

and BZ are proportional to an externally applied, perpendicu-
lar field. Since t2 arises from Jχ , for simplicity, we take t2 and
BZ to be linear functions of the applied out-of-plane magnetic
field B, with B = |BZ | = 7t2 as shown by the dashed trajectory
in Fig. 2. We find that ηH scales linearly with B at small field
strengths.

C. Hall viscosity near the spinon critical point

Compared to the quantized thermal Hall conductivity or
the ordinary Hall conductance, the Hall viscosity plotted in
Fig. 5 is continuous and, at first sight, does not seem to encode
any signatures of a QPT. However, as seen in Fig. 5(a), it
is possible for the derivatives of the Hall viscosity to have a
discontinuity or divergence at the critical point.

In the mean-field ansatz given in Eq. (13), by choosing ap-
propriate mean-field orbital coupling parameters t2 and Néel
order N = N ẑ, one can tune across the topological phase
transition. In particular, at BZ = 0, the critical points at
N = ±8t2 describe the transition between a confining Néel
state and a state where the Néel order coexists with a chiral
spin liquid. At both critical points, the spectra have pairs of
Dirac cones at ±Q where Q = (π/2, 0). For example, when
N = 8t2, fermions in the spin-down (−) sector have a Dirac
cone at Q so that |H−,Q| = 0; a similar statement follows
for the spin-up (+) sector. To examine ηH near the QPT, we
expand the spinon momentum around −Q as k = −Q + q for
small momentum q. Then, we find, to leading order in q, for
ηH at T = 0

λ4

[(
t2 − N

8

)
q2

xλ1 − t1λ2q2

8
∣∣q2 + 4

(
t2 − N

8

)2∣∣3/2 +
(
t2 + N

8

)
q2

xλ1 − t1λ2q2

64
∣∣t2 + N

8

∣∣3
]
.

(29)

As mentioned earlier, we observe that the nonvanishing lead-
ing terms above arise from the 4NN spinon-phonon couplings
in Eq. (23). The second term in Eq. (29) vanishes as we
approach −Q. The first term appears divergent but is actually
finite when we take into account the summation over momen-
tum, which comes with measure |q|d|q|.

While ηH seems well behaved, its derivatives with respect
to the time-reversal breaking t2 can have singularities and
signal a QPT of the spinons. It is convenient to rewrite our
expression as a function of the Dirac masses m1,2 = 2t2 ∓ N

4 ,
which vanish at the critical points. For instance, taking the
second derivative of ηH with respect to m1 at the critical point
m1 = 0 (and k ≈ −Q + q) leads to a δ-function divergence

∂2ηH

∂m2
1

∝
∼

λ4m2

∑
q

∂2

∂m2
1

q2

|H+,k|3
∼ m2∂

2
m1

|m1| −−−→
m1→0

∞,

(30)

where we have written λ2 ∝ t2 ∝ m1 + m2. As previously
noted, the second derivative’s divergence manifests as a kink
in ηH at the QPT. Note that without a nonzero λ4, the singu-

larity in ηH would only show up in its fourth derivative. The
divergent behavior of ηH is present only at zero temperature,
as illustrated in Fig. 5(f). In the limit of N → 0, the two Dirac
masses coincide (m1 = m2), and ηH is better behaved, with the
divergence appearing in the third derivative. This is actually
the behavior seen in previous works [25,26] that explored the
case of two-orbital Chern insulators on the square lattice; we
discuss this point further in Sec. V D.

V. HALL VISCOSITY FROM SPINON COUPLINGS
TO CONTINUUM STRAIN FIELDS

In previous sections, we studied how phonon chirality
could emerge from an underlying chiral spin liquid on the
square lattice. The calculation of the continuum phonon Hall
viscosity is qualitatively the same as that for the lattice phonon
Hall viscosity: we begin by defining the spinon Hamilto-
nian Hsp and symmetry considerations constrain the allowed
spinon-phonon couplings. However, instead of taking into ac-
count lattice displacements through the strain dependence of
tight-binding parameters, we will see how phonon couplings
emerge from a projective symmetry analysis of the underlying
spin liquid. In particular, the lattice space group can have sig-
nificant effects on the topological quantization of the phonon
Hall viscosity. Our representation-theoretic approach follows
Ref. [59]. We also note that the symmetry-based approach to
electron-phonon interactions has been well studied in the case
of graphene [61–66].

A. Continuum low-energy theory

To define our continuum theory, we begin with our original
square-lattice Néel state N = N ẑ, given by Ht.b. in Eq. (13).
We will also work in the regime of no Zeeman coupling, BZ =
0. While the low-energy theory and projective symmetry
group of Ht.b. was already studied in Ref. [34], we will find it
convenient to first perform a local U(1) gauge transformation
in order to match the π -flux ansatz considered in Ref. [59].
Our new ansatz, which is nevertheless gauge equivalent to
Eq. (13), will have different couplings. The resulting projec-
tive symmetries [67] realized on the low-energy continuum
fields will dictate the allowed spinon-phonon interactions.
First, we consider a position-dependent gauge transformation
of Ht.b. in Eq. (13),

fn → eiπn1/2 fn for n2 even, (31a)

fn → eiπ/2eiπn1/2 fn for n2 odd, (31b)

where n ≡ n1x + n2y. As a result, our nearest-neighbor
spinon hopping terms are given by

tn,n+x = i, tn,n+y = (−1)n1 i, (32)

with second-nearest-neighbor chiral couplings

tn,n±x±y = it2 for n1 even, (33a)

tn,n±x±y = −it2 for n1 odd. (33b)

Now, we relabel our unit cell with four sites as in Fig. 6.
The resulting Bravais lattice vector is r = r1a1 + r2a2, with
r1, r2 ∈ Z labeling the unit cell, and a1 = 2x, a2 = 2y. The
full form of the Hamiltonian is given in Appendix C.
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FIG. 6. The nearest- (t1, black) and second-nearest-neighbor (t2,
red) hopping matrix elements for the ansatz in Sec. V. It is gauge
equivalent to the mean-field ansatz in Fig. 1 using the transformations
outlined in Eqs. (31a) and (31b).

Within the Brillouin zone kx, ky ∈ [−π/2, π/2), our
(gauge-equivalent) Hamiltonian has degenerate Dirac points
at � = (0, 0). Near �, the dispersion can be described by
four two-component (s = 1,2) Dirac fermions ψ s

ασ . The four
“flavors” (α, σ ) are associated with the two spin polarizations
σ = ↑,↓, and an additional valley index α = 1,2. In the
following, we will suppress the (sublattice) spinor index s of
ψ s

ασ . We can perform an expansion of the momentum-space
Hamiltonian [see Eq. (C2)] around � using the continuum
spinor fields ψασ :

ψ1σ (k) ∼ 1√
2

(
i fk2σ + fk4σ−i fk1σ − fk3σ

)
, (34a)

ψ2σ (k) ∼ 1√
2

(
i fk3σ + fk1σ−i fk4σ − fk2σ

)
, (34b)

from which the resulting Dirac Hamiltonian is

HDirac =
∫

d2k
(2π )2

ψ†
ασ

[
vF (kxτ

x + kyτ
y)

− 2t2(kxμ
xτ x+kyμ

yτ y)+2

(
2t2τ

z−N

4
σ zμzτ z

)]
ψασ ,

(35)

where we have labeled vF = 2t1. We have defined the Pauli
matrices τ to act on the spinor (sublattice) indices, μ to act on
the valley indices α, and σ to act on the spin indices. The
continuous fields also realize a projective representation of
our lattice symmetries, the details of which are summarized in
Appendix C. Away from the critical points, the Dirac fermions
ψασ are gapped with a mass m1,2 = 2t2 ∓ N/4 given by a
combination of the orbital current t2 and the Néel order, as
in Sec. IV C. Therefore, when t2 ≈ N/8 close to the critical
point, we can safely integrate out the two higher-energy bands
to obtain the effective spinon Hamiltonian

Hsp = 2
∫

d2k
(2π )2

�†
a (kxτ

x + kyτ
y + mτ z )�a, (36)

where we have set t1 = 1 and defined

m ≡ m1 = 2t2 − N/4, �a(k) =
{
ψ1↑(k) a = 1,

ψ2↓(k) a = 2,
(37)

and, as previously mentioned, the Pauli τ matrices only act
on the spinor indices. From here on, we will also denote the
higher-energy Dirac mass as M ≡ m2 = 2t2 + N/4. Interest-
ingly, the effects of the orbital current t2 and Néel order N
counteract each other in the low-energy theory [34], so that
even though Hsp explicitly breaks time-reversal symmetry, it
reemerges in the low-energy theory.

B. Spinon-phonon coupling vertex

In this section, we will describe a general framework
for deriving the spinon-phonon interaction Hamiltonian from
symmetry considerations and then apply it to our model,
Eq. (36). Approaches based on symmetry have also been used
to find the phonon couplings in graphene [62,66], but the main
difference in our spin-liquid system is that the analysis needs
to account for the projective symmetry group of our ansatz.
A universal procedure that does exactly this is provided by
Serbyn and Lee [59], and we will reproduce their method here
to provide background.

We begin by specifying the form of the spinon-phonon
interaction Hamiltonian,

Hsp-ph =
∫

d2k d2q
(2π )4

�†
a (k + q)hsp-ph(k, q)�a(k). (38)

Expanding k around the Dirac points at �, we allow the
presence of terms of zeroth order, h(0)

sp-ph(q), and linear order,

h(1)
sp-ph(k, q), in the spinon momentum k so that the total inter-

action Hamiltonian can be written as

hsp-ph(k, q) = h(0)
sp-ph(q) + h(1)

sp-ph(k, q). (39)

Often, only the zeroth-order contribution h(0)
sp-ph(q) needs to be

considered, but as we will find for the nonchiral π -flux state,
h(0)

sp-ph(q) = 0 by symmetry. In the case of nonzero t2, there
is a single symmetry-allowed zeroth-order phonon coupling.
Either way, to obtain a nonzero ηH , it will be necessary to
also take h(1)

sp-ph(k, q) into account. The h(1)
sp-ph term can be

understood as a deformation of the spinon band structure near
the Dirac points at � by acoustic phonons.

Acoustic phonons can only couple to the spinons through
spatial derivatives of the phonon field, so they enter into
hsp-ph(k, q) through the q Fourier component of u(r). As in the
previous section, we expect couplings to the time derivative
of u to be suppressed by the ratio of the sound and Fermi
velocities, so we will ignore them in our analysis. Since both
the phonon fields and the phonon momenta transform under
the vector representation E1 of C4v , we can decompose the set
of terms ∂iu j (r) ∼ −iqiu j (q) into irreducible representations
as

Eph
1 ⊗ Eph

1 = ⊕ jD
ph
j , (40)

where Dph
j labels irreducible representations of C4v . As

spinons are fermionic while phonons are bosonic, the leading-
order coupling of phonons must be to bilinears of the
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continuum spinon fields ψ . Even though ψ realizes a pro-
jective representation of the lattice symmetry group C′

4v , the
space of local spinon bilinears,

Gψ†ψ = {ψ†Iψ, ψ†τ iψ, ψ†μiψ, ψ†(μiτ j )ψ}, (41)

realizes regular representations in our Abelian U(1) spin liq-
uid because the U(1) gauge factors cancel. For non-Abelian
SU(2) spin liquids, as studied in Refs. [67–69], we must
restrict ourselves to spin-singlet bilinears to obtain regular
representations. We omit the spin degrees of freedom since we
assume that the phonons couple to both ψ↑ and ψ↓ bilinears
equally. In similar fashion to the phonons, we can decompose
the representation of all bilinears into irreducible representa-
tions

Gψ†ψ = ⊕ jD
ψ†ψ
j . (42)

As h(1)
sp-ph includes terms that couple spinon momenta k (trans-

forming in the vector representation) and bilinears, we must
also consider

E sp
1 ⊗ Gψ†ψ = ⊕ jD

k,ψ†ψ
j . (43)

We observe that Hsp-ph, which could possibly contain terms
like ∑

i j

(
Dph

i ⊗ Dψ†ψ
j + Dph

i ⊗ Dk,ψ†ψ
j

)
, (44)

must be invariant under all symmetries. This is only possi-
ble if the representations are equal; that is, Dph

i = Dψ†ψ
j or

Dph
i = Dk,ψ†ψ

j . Therefore, pairing together basis functions of
equivalent irreducible representations between Eqs. (40), (42),
and (43) will give us all possible couplings in hsp-ph. Further-
more, the additional SU(2) symmetries of time reversal and
charge conjugation will impose further constraints on allowed
couplings, as the phonon strain field ∂iu j is invariant under
both symmetries.

Applying this formalism to our lattice symmetry group C4v ,
the underlying symmetry group of the phonons, we have

⊕ jD
ph
j = A1 ⊕ A2 ⊕ B1 ⊕ B2, (45)

in Eq. (40), with basis elements ∂xux + ∂yuy, ∂xuy −
∂yux, ∂xux − ∂yuy, and ∂xuy + ∂yux, respectively. For the
spinon sector, we can decompose the bilinears into represen-
tations of C′

4v ,

Gψ†ψ = A1 ⊕ A2 ⊕ · · · , (46)

E sp
1 ⊗ Gψ†ψ = A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ · · · , (47)

where the ellipsis stands for irreducible representations of
C′

4v that transform nontrivially under lattice translations; these
cannot be coupled to the phonons, which transform trivially
under translations. The full results and explicit basis elements
are tabulated in Sec. III of Ref. [59].

The ostensibly allowed couplings between the (A1, A2)
components in Gψ†ψ and Eph

1 ⊗ Eph
1 turn out to be forbidden

by time-reversal symmetry, as the (A1, A2) components in
Gψ†ψ ,

Dψ†ψ
A1

= {ψ†Iψ}, Dψ†ψ
A2

= {ψ†τ zψ}, (48)

are both time-reversal odd. However, there is an allowed cou-
pling to the A2 channel through the orbital current t2. Since
the orbital current t2 also transforms as A2, by coupling t2 ∝
(m + M ) and Dψ†ψ

A2
together, we obtain a term that transforms

trivially (as A1). This term is permitted because Dψ†ψ
A2

, like t2,

is time-reversal odd, so the product t2Dψ†ψ
A2

can couple to the
phonon density fluctuations. Therefore, we find

h(0)
sp-ph(q) = ig0(m + M )τ z(qxux + qyuy), (49)

with g0 labeling some phenomenological coupling coefficient.
Note that we cannot couple mτ z to phonons as m itself is not
an irreducible representation (it includes the Néel order), but
the combination m + M = t2 is irreducible.

The bilinears in Eq. (47) suffer no such restriction as they
are all time-reversal and charge-conjugation invariant. The ba-
sis elements for the irreducible representations in Eq. (47) are
analogous to those in Eq. (45), with the replacement ui → τ i.
Now, we can couple each of the first four irreducible repre-
sentations in Eq. (47) to its partner in Eq. (45). For example,
the A1 spinor-bilinear component is of the form

Dkψ†ψ
A2

= {ψ†(kxτ
x + kyτ

y)ψ}, (50)

so that the A1-A1 coupling contribution to hsp-ph will be of
the form igA1 (qxux + qyuy)(kxτ

x + kyτ
y) for some coupling

constant gA1 . After some simplification, the end result is

h(1)
sp-ph(k, q) = i(g1qxkxτ

x + g2qykyτ
x + g3qykxτ

y

+ g4qxkyτ
y)ux + (x ↔ y), (51)

for phenomenological couplings gi. The gi label combina-
tions of irreducible representations, with g1,4 = gA1 ± gB1 and
g2,3 = gB2 ± gA2 .

C. Evaluation of phonon polarization and Hall viscosity

As in Eqs. (24) and (25), we will now integrate out
the fermion fields to obtain the Hall viscosity for the
phonon fields. From Eqs. (49) and (51) we can define our
spinon-phonon coupling vertices to be (rewriting in terms of
the low-energy Dirac fields �)

Hsp-ph =
∫

d2k d2q
(2π )4

�†
a (k + q)λi

k,qui�a(k), (52a)

λx
k,q = i(g1qxkxτ

x + g2qykyτ
x + g3qykxτ

y

+ g4qxkyτ
y + g0qx(m + M )τ z ), (52b)

λ
y
k,q = i(g1qykyτ

y + g2qxkxτ
y + g3qxkyτ

x

+ g4qykxτ
x + g0qy(m + M )τ z ). (52c)

The last term coming from the coupling of the orbital current
t2 = m + M in λ

x,y
k,q has no dependence on spinon momentum

k. We can write the phonon self-energy, as in Fig. 3(b), in
Matsubara frequency space as

�xy(q, i�m) = −1

2

∫
k,ωn

2 Tr
[
λ

y
k,qG(k, iωn)λx

k+q,−q

× G(k + q, iωn + i�m)
]
, (53)
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where G(k, iωn) denotes the Dirac fermion Green’s function

G(k, ω) = ωI + Hk · τ

ω2 − H2
k

, Hk ≡ (kx, ky, m). (54)

In Eq. (53), we define
∫

k,ωn
≡ T

∑
ωn

∫
d2k/(2π )2, and we

have also included a factor of 2 to account for the two species
of Dirac fermions. The Hall viscosity originates from the off-
diagonal, antisymmetric component of �xy. In real frequency,
Eq. (53) contributes a term to the phonon effective action of
the form

δSeff =
∫

q,�

�μν (q,�)uμ(−q,−�)uν (q,�) (55)

from which we can extract

ηH = lim
q→0

lim
�→0

− 1

�Ld
∂2

q Im[�xy(q,�)]. (56)

In our continuum model, we did not consider any coupling
to the rotational strain field, so ηM = 0. Other terms in
the phonon self-energy, such as the diagonal and symmetric
components, will renormalize the real part of the phonon
propagator. This is a small effect that does not contribute to
phonon chirality, so we will not consider it here. As we are
only interested in the leading-order contributions of q and �,
we use

λ
μ

k+q,−q = λ
μ

k,−q + O(q2) (57)

and neglect the anharmonic contributions. Relegating the de-
tails of the computation to Appendix D, we find that

�xy(q, i�m) = q2(g1g2 − g3g4)
m�

8π
(� − 2|m|)

+ q2g0(g2 − g3)(m + M )
�

8π
(� − 2|m|),

where � is a UV cutoff near the Dirac points. Then, Eq. (56)
gives us

ηH = 1

4πL2
[(g1g2 − g3g4)m

+ g0(g2 − g3)(m + M )](� − 2|m|), (58)

after analytic continuation to real �. To compare the con-
tinuum result to the lattice, we need to extract the leading
nonanalytic contribution

ηH ∼ −[g0(g2 − g3)(m + M )]|m| ∼ M|m|; (59)

we see that the second derivative ∂2ηH/∂2m ∝ δ(m) is diver-
gent in the limit m → 0, in agreement with what we found in
Eq. (30) on the lattice.

From Eq. (58), we notice that the Hall viscosity ηH scales
with the two effective couplings g1g2 − g3g4 and g0(g2 − g3).
This can be understood in the representation theory frame-
work presented earlier, as both g1g2 − g3g4 and g0(g2 − g3)
transform in the A2 channel of C4v , which descends to the A1

channel of C4 as reflection symmetry is broken in our ansatz.
Further discussions on this point are included at the end of
Appendix D.

D. Discussion and comparison to the lattice results

Our analysis highlights that the lattice symmetries strongly
constrain the allowed spinon-phonon couplings. Therefore,
though most spin-liquid phases of interest have similar Dirac
excitations and effective theories in the continuum, the al-
lowed spinon-phonon interactions and resulting Hall viscosity
ηH in the continuum are sensitive to microscopic information
about the phase.

We contrast our result with the quantized Hall viscosity
found in Refs. [60,70] for Majorana fermions in the gap-
less B phase of the Kitaev honeycomb model [71]. This is
a special feature of the lattice symmetry group C6v , as in
addition to a trivial density fluctuation coupling, the zero-flux
phase [59,62] on a honeycomb lattice allows a spinon-phonon
interaction in the E2 channel of the form

h(0)
sp-ph(q) ∼ [(qxux − qyuy)τ x − (qxuy + qyux )τ y]μz (60)

to zeroth order in the spinon momentum k near the Dirac
point, where q is the phonon momentum. This additional
coupling, in which the spinon momentum k does not appear,
should be understood as a consequence of the special sym-
metries of the honeycomb lattice. Integrating out the spinons
on the honeycomb lattice then leads to a discontinuous Hall
viscosity [60,70],

ηH ∼ sign(m), (61)

that depends only on the sign of the Dirac mass m. Moreover,
it was found in Ref. [60] that for the Kitaev spin liquid, ηH

decreased as the magnitude of the time-reversal symmetry-
breaking perturbation increased.

In our analysis for the square lattice, we see that the
nonanalytic behavior of the continuum ηH agrees with the
lattice result (28) at low energies and near the Dirac point.
However, it should be noted that the continuum viscosity is in
general regularization dependent, and only the difference in
ηH between two phases is universal [24,25]. With this in mind,
we observe that the difference in ηH across the QPT scales, at
leading order, linearly with the Dirac mass m = 2t2 − N/4 in
both the lattice and continuum formulations. This differs from
the Hall viscosity obtained for the Dirac Chern insulator on a
square lattice [26] in which case the Hall viscosity of the tight-
binding Hamiltonian scales quadratically with the Dirac mass.
For the continuum Dirac field theory of the Chern insulator,
introducing suitable Pauli-Villars regulators and counterterms
eliminates the dependence of the viscosity on the UV cutoff
� and also leads to a quadratic dependence of ηH on m [25].

In our chiral spin-liquid ansatz in Eq. (13), the phonons are
coupled directly to the orbital current t2 but not the effective
Dirac mass m = 2t2 − N/4. This is caused by the presence of
Néel order, which does not couple to lattice distortions as it is
purely an onsite term [see Eq. (13)]. In the limit N → 0, the
two Dirac masses coincide and for our calculation on the lat-
tice, ηH ∼ M|m| = m|m|, as in the case of the Chern insulator.
In the continuum, we reproduce the field theory of the Chern
insulator as in Refs. [24,25], and with further regularization,
the same scaling is obtained for the Hall viscosity. In both the
lattice and the continuum, the divergence in ηH is then only
visible in its third derivative with respect to m.
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FIG. 7. Finite-temperature scaling of the continuum phonon Hall
viscosity from Eq. (62), with F1 = 2F2 = 2 and M = � = 5. The
inset shows the low-temperature plateaus of ηH with a scale set
by m.

Finally, our analysis can be extended to include the finite-
temperature result [see Eq. (D18) in Appendix D],

ηH = (F1M + F2m)[D�(T, m)

− 4T log[2 cosh(|m|/2T )]], (62)

for some function D dependent on m, T , and a UV cutoff
�. The constants F1 and F2 are combinations of the spinon-
phonon couplings. In the limit that � � m, T , we have

ηH = (F1M + F2m)[4T log[(2 cosh(�/2T )]

− � − 4T log[2 cosh(|m|/2T )]]. (63)

As the hyperbolic cosine is an even and positive function, we
find that the viscosity is smooth at finite T ; this is expected be-
cause the Matsubara summation, at finite temperatures, does
not introduce any nonanalyticities. In the limit of M � m, we
see that the �-independent part of ηH/(MT ) is only a function
of the ratio |m|/T . The temperature and m dependence of
ηH arising from Eq. (62) is illustrated in Fig. 7. The zero-
temperature value of ηH depends on the momentum cutoff �.
We observe, in particular, that ηH decays at high temperature
and plateaus near zero temperature, with the size of the plateau
dependent on the mass gap m. These universal features were
also present in our lattice calculation, in Figs. 5(b) and 5(d).

VI. PHYSICAL CONSEQUENCES

For acoustic phonons, the dispersion is assumed to be
ωph ∝ |q| + O(q2), so, according to Eq. (4), the Hall viscos-
ity’s contribution to the phonon effective action is of order
∂u∂ u̇ ∼ |q|3u2. This is more relevant than the leading anhar-
monic correction, which is of order q4. Note that the other
possible O(q3) contribution to the phonon action∫

d2x dt Di jklm∂i∂ juk∂l um (64)

vanishes in the presence of inversion symmetry. In two-
dimensional isotropic systems, it was found that the Hall

viscosity mixes the longitudinal and transverse modes and
renormalizes the phonon spectrum [20,60]

�ωph ∼ η2q3. (65)

However, the exact numerical prefactor of the correction, es-
timated to be very small by Barkeshli et al. [20], requires
knowledge of the energies associated with the appropriate
spin-lattice couplings, and the phonon spectrum cannot distin-
guish the sign of the Hall viscosity. Another consequence of a
Hall viscosity is phonon Faraday rotation, which describes the
rotation of the linear polarization vector of transverse acoustic
phonons due to splitting in the circularly polarized velocities
[26,72,73].

Recently, the thermal Hall effect has emerged as a pow-
erful probe of neutral excitations such as spinons, prompting
extensive experimental and theoretical studies in a variety of
correlated quantum materials, including the cuprate super-
conductors [31,34,74–79] and Kitaev materials like α-RuCl3
[70,80–89]. Here, we observe that a phonon Hall viscosity, in
general, implies a nonzero phonon thermal Hall conductivity
by imparting a Berry curvature to the phonon energy bands.
Moreover, their relative signs can be determined given the
coupling constants. As previously studied, a phonon thermal
Hall response can arise from a coupling of phonons to the
magnetization of the system [90]. More recently, in ferro-
electric insulators [78], the flexoelectric coupling of acoustic
phonons to the dipole density was shown to lead to a thermal
Hall response. In our case, the Hall viscosity appears in the
phonon effective action as a term analogous to those flexo-
electric couplings. For example, consider isotropic phonons
in two dimensions,

Sph = 1

2

∫
d2x dt ρu̇2 + μ1∇u2 + μ2(∇ · u)2, (66)

with mass density ρ and elastic constants μi. Assuming the
Hall viscosity in Eq. (7), the thermal Hall conductivity [91],
in the low-temperature limit, reads as

κ2d
xy (T ) = −η

3ζ (3)k3
B

π h̄2

[
g1√
μ1

− g2√
μ1 + μ2

]
T 2,

g1 ≡ 4μ1 + μ2

2
√

μ1μ2
; g2 ≡ 4μ1 + 3μ2

2μ2
√

μ1 + μ2
. (67)

Hence, given that η plateaus at low temperature from our
analyses in Secs. IV B and V D, we see that κ2d

xy /T ∝ T as
T → 0 (note that we expect that κ3d

xy /T ∝ T 2 at low tempera-
ture [91]). While we are unable to make quantitative estimates
of the strength of this response, we have demonstrated that this
effect generically exists for both the conventional Néel phase
and the Néel state coexisting with semion topological order in
Fig. 2, providing an intrinsic source of phonon chirality. With
an eye towards recent experiments on the phonon thermal Hall
response in cuprates [31,32], our proposal lays the foundation
for work on possible enhancement of heat transport due to
extrinsic mechanisms in these topological systems [33].
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VII. CONCLUSION AND OUTLOOK

In this paper, we have analyzed the phonon Hall viscosity
arising from the coupling to spin degrees of freedom on the
square lattice in a magnetic field.

We employed a fermionic spinon formulation and obtained
a low-energy effective action for the phonon fields by in-
tegrating out the spinons. Two complementary approaches
were studied: first, starting from the lattice spinon model of
Ref. [34], we introduced the coupling to lattice vibrations
using the physical model of bond stretching (or, equivalently,
adiabatic response). In the second approach, only the relevant
low-energy spinon degrees of freedom were retained, and
the resulting continuum Dirac theory was coupled to lattice
vibrations purely by symmetry considerations.

Even in the continuum limit, microscopic details about the
lattice symmetry were shown to have drastic effects on the
critical behavior of ηH : as opposed to the discontinuity of ηH

when changing the sign of the effective Dirac mass m at the
transition on the honeycomb lattice, we demonstrated that the
symmetries of the square lattice lead to a Hall viscosity that
varies linearly with the effective Dirac mass m, in both the
continuum and the lattice theory. We also calculated ηH at
finite temperature and determined a scaling form for the ratio
ηH/(T M ).

The Hall viscosity is a measure of time-reversal symmetry
breaking in the spinon sector, and its nonanalyticities can
serve as signatures of the field-driven topological quantum
phase transition. We found that the second derivative of the
Hall viscosity with respect to the mass ∂2

mηH diverges at the
transition (m = 0) between the two phases in Fig. 2 at zero
temperature. This leads to a kink in the field dependence of
ηH [see Figs. 5(a) and 5(c)]. We showed that this enhanced
singular behavior, as compared to the square-lattice Chern
insulator where ∂3

mηH diverges [26], can be traced back to the
presence of Néel order.

In addition to previous studies which have proposed mea-
suring the Hall viscosity through various phononic properties

of the material, we have shown how the Hall viscosity also
leads to an intrinsic thermal Hall response. This response can
potentially be enhanced by extrinsic scattering mechanisms
and may be detectable in experiments which indicate that
phonons are the dominant contribution to heat transport. As
more and more experiments probe the exotic nature of topo-
logical phases and possible spin-liquid candidates, we believe
that the phonon Hall viscosity can be a powerful tool for
detecting fractionalization and quantum critical phenomena.

Finally, we note that our computations were carried out in
the setting of a spinon mean-field theory. Gauge fluctuations
can potentially change the spinon phase diagram as well as
renormalize the spinon-phonon couplings [79]. However, we
expect the nonanalytic signature of a quantum phase transition
to persist. The exact effects of gauge-field fluctuations on
phonon dynamics remain an open question, and their conse-
quences are avenues for further study.

Note added. Recently, we learned of the related work in
Ref. [92].
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APPENDIX A: HALL VISCOSITY IN THE ABSENCE
OF A ZEEMAN FIELD

To evaluate the effective action, we have to compute (using
Tr[τατβτ δ] = 2iεαβδ , ε being the Levi-Civita tensor) the trace

Tr[τβG(k, iωn)ταG(k, i(ωn + �m))] =
∑
±

2εαβδ�mHδ
±,k(

H2
±,k + ω2

n

)
[H2

±,k + (ωn + �m)2]
=
∑
±

2εαβδ�mHδ
±,k(

H2
±,k + ω2

n

)2 + O
(
�2

m

)
, (A1)

where we have only kept the terms antisymmetric and linear in � since these are the only ones that will contribute to the Hall
viscosity. This approximation is valid because we are only extracting the first order (in �) contribution to the effective action.
The Matsubara summation yields

T
∑
ωn

1(
H2

±,k + ω2
n

)2 = 1 − 2nF (|H±,k|) + 2|H±,k|n′
F (|H±,k|)

4|H±,k|3
. (A2)

Therefore, we can extract from

Seff = − 1

2L2β2

∑
ωn,�m,k

Tr
[
Kk,i�m

G(k, iωn)Kk,−i�m
G(k, i(ωn + �m))

]
(A3)

the Hall viscosity

ηH = − 1

L2

∑
αβδ

∑
k,±

εαβδγ α
xxγ

β
xyHδ

±,k · 1 − 2nF (|H±,k|) + 2|H±,k|n′
F (|H±,k|)

4|H±,k|3
. (A4)

Writing out the summation over α, β, δ explicitly leads to Eq. (28) of the main text.
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APPENDIX B: ROTATIONAL STRAIN FIELD COUPLING

The rotational strain field θi j = (∂iu j − ∂ jui )/2, representing a vorticity, is ordinarily not considered in geometric treatments
of phonon interactions. However, given the symmetries of our ansatz, we can couple the time derivative of ∂θi j/∂t to the orbital
current t2 [38,57]:

|tn,n±(x+y)| = |tn,n±(x−y)| ≈ t2 + λ3

∂θxy

∂t
. (B1)

Since the rotational strain field has only one polarization θxy, this gives an additional interaction term in Eq. (23) that couples to
θ̇xy,

γ̃ z
μν (�)τ z = 4�λ3 sin(kx ) cos(ky)τ z, μν = xy. (B2)

This additional coupling is interesting to consider since it can, in principle, lead to a finite Hall viscosity. Following the same
procedure for calculating ηH , we state the analytic answer for ηM below:

ηM = 1

L2

∑
k,±

γ̃ z
xy

[
2Hx

±,kHz
±,kγ

x
xx + [− (Hx

±,k

)2 − (Hy
±,k

)2 + (Hz
±,k

)2]
γ z

xx

4|H±,k|3
[1 − 2nF (|H±,k|) + 2H±,kn′

F (|H±,k|)]

+ γ z
xx

4|H±,k|
[−1 + 2nF (|H±,k|) + 2|H±,k|n′

F (|H±,k|)]
]
. (B3)

This expression simplifies at T = 0 to

ηM = 1

L2

∑
k,±

2γ̃ z
xy

Hx
±,kHz

±,kγ
x
xx − ((Hx

±,k

)2 + (Hy
±,k

)2)
γ z

xx

|H±,k|3
.

(B4)

At the critical point, where m1 = 0, expanding for momenta q
near the Dirac point at Q = ( π

2 , 0), we have

ηM |m1=0 ∼
∑

q

m2
2

|q| . (B5)

Although the above term seems to have a singularity, it is
remedied by the integration measure d2q ∼ |q|d|q|. There-
fore, ηM goes to a finite value as q → 0. Just as for ηH , we
can analyze ηM near the critical point. As we tune towards the
QPT, the second derivative of ηM is δ-function divergent,

∂2ηM

∂m2
1

∣∣∣∣
m1=0

∼
∑

q

∂2

∂m2
1

q2

|H+,k|3
∼ ∂2

m1
|m1| −−−→

m1→0
∞, (B6)

with essentially the same behavior as ηH .

APPENDIX C: HAMILTONIAN AND PROJECTIVE
SYMMETRY OF THE CHIRAL π-FLUX STATE

From the couplings given by Eqs. (32), (33a), and (33b),
we obtain the Hamiltonian for the gauge-transformed ansatz
in momentum space as (labeling the sublattices by indices
m, n)

Ht.b. = −
∑
k,σ

f †
kmσ

hmn(k, σ ) fknσ , (C1)

where the 4 × 4 matrix h is given by

h(k, σ )= it1

⎛⎜⎝ 0 −1 + K∗
1 0 −1 + K∗

2
1 − K1 0 −1 − K∗

2 0
0 −1 + K2 0 1 − K1

1 − K2 0 −1 + K∗
1 0

⎞⎟⎠

+ it2

⎛⎜⎜⎝
0 0 K̃A 0
0 0 0 K̃B

−K̃∗
A 0 0 0

0 −K̃∗
B 0 0

⎞⎟⎟⎠

+ Nσ

2

⎛⎜⎝1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎠. (C2)

For the equations above, we have defined

K1,2 ≡ eik·a1,2 , (C3)

K̃A ≡ −1 − K∗
1 − K∗

2 − K∗
1 K∗

2 , (C4)

K̃B ≡ 1 + K1 + K∗
2 + K1K∗

2 . (C5)

Expanding the Hamiltonian Ht.b. around the Dirac points at �

then leads to the effective Dirac Hamiltonian given in Eq. (35).
To specify the projective symmetry of the continuous

spinor fields ψασ defined in Eq. (34), we need to know how
the spinons transform under the relevant symmetry group
generators. Following closely the analyses of Ref. [59], we
begin by specifying the projective action of the symme-
try operations on the lattice fermions. The symmetries of
the π -flux ansatz, as in Sec. V, are generated by transla-
tion by ax̂, Tx : r → Txr = (rx + a, ry); reflection about the
x̂ axis, Rx : r → Rxr = (−rx, ry); and rotation by π/2,
C4 : r → C4r = (ry,−rx ); together, these make up the sym-
metry group C′

4v . Furthermore, there are two additional SU(2)
symmetries of our ansatz, given (in momentum space) by
time-reversal T : fkiσ → f †

kiσ and charge-conjugation sym-
metry C : fkiσ → f †

−ki−σ
. Note that T is also accompanied

by complex conjugation. While T flips the spin operator
Si = 1

2 f †
i σ fi, C leaves it invariant. To leave the Hamiltonian

invariant under these symmetry operations, we may need to
supplement the symmetries with additional gauge transforma-
tions; hence, the symmetry is implemented projectively. For a
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U(1)-symmetric ansatz, the gauge factors can be conveniently
chosen to be ±1. For example, Tx is implemented as

Tx : fr,1 → − fT −1
x r,2, fr,4 → fT −1

x r,3,

fr,2 → − fTxr,1, fr,3 → fTxr,4 (C6)

and the other transformations can be found similarly:

Rx : fr,1,3 → fRxr,2,4, fr,2,4 → − fRxr,1,3, (C7a)

C4 : fr,1 → − fC4r,2, fr,2,3,4 → fC4r,3,4,1, (C7b)

T : fk1,3 → f †
k1,3, fk2,4 → f †

k2,4, (C7c)

C : fkn↑ → f †
−kn↓, fkn↓ → − f †

−kn↑. (C7d)

From the form of Eq. (34), we can now deduce the action of
symmetry generators on the continuous fields:

Tx = μy, (C8a)

Rx = iμzτ y, (C8b)

C4 = 1
2 (μx + μy)(1 + iτ z ). (C8c)

For example, under Tx, we have ψ → Txψ . Likewise, for
time-reversal and charge-conjugation symmetries, we find

T : ψ → −μzτ z(ψ†)T , (C9a)

C : ψ → σ yμxτ x(ψ†)T . (C9b)

With the symmetries now defined, we can determine how the
fermion bilinears split into irreducible representations. Fur-
ther details, including background on representation theory
and the structure of C′

4v , can be found in Ref. [59].

APPENDIX D: CONTINUUM PHONON SELF-ENERGY

In order to find

�xy(q, i�m) = −1

2

∫
k,ωn

2 Tr
[
λ

y
k,qG(k, iωn)λx

k+q,−qG(k + q, iωn + i�m)
]

= −1

2

∫
k,ωn

2 Tr
[
λ

y
k,qG(k, iωn)λx

k,−qG(k + q, iωn + i�m)
]+ O(q3), (D1)

it will be convenient to first define

�̃
αβ

γ δ...(q, i�m) =
∫

k,ωn

Tr[(kγ kδ . . . )ταG(k, iωn)τβG(k + q, iωn + i�m)] (D2)

because �xy(q, i�m) is a linear combination of terms of the form q2�̃. As with the vertex in Eq. (57), we can make simplifications
based on the fact that we are working in the linear-response regime. We only consider terms of order �m and q2 in �xy for the
Hall viscosity, so we just have to keep terms of order O(�1

m), O(q0) in �̃. We can also observe that of the 25 possible contractions
of terms between λy and λx, most will not contribute to the Hall viscosity, either because they will be symmetric or because they
contain spinon momentum terms like kxky, which vanish after integrating over k. The end result is that

�xy(q, i�m) = q2(g1g2 − g3g4)�̃21
xx − q2g0(g2 − g3)(m + M )�̃31

y . (D3)

Here, we used �̃αβ
xx = �̃αβ

yy and Tr[τατβτ γ ] = 2iεαβγ to simplify the result. Including only the antisymmetric terms (under
2 ↔ 1) and terms of order O(�1

mq0), we can evaluate �̃21
xx as

�̃21
xx (q, i�m) =

∫
k,ωn

2m�mk2
x(

ω2
n + k2 + m2

)
[(ωn + �m)2 + (k + q)2 + m2]

(D4)

=
∫ 1

0
du
∫

k,ωn

2m�mk2
x[

u(ωn + �m)2 + (1 − u)ω2
n + k2 + u(1 − u)q2 + m2

]2 O(q2), (D5)

where we have introduced Feynman parameters in the second line and shifted k → k − uq. Due to the Pauli matrix contractions,
we have

�̃31
y (q, i�m) = −

∫ 1

0
du
∫

k,ωn

2�mk2
y[

u(ωn + �m)2 + (1 − u)ω2
n + k2 + u(1 − u)q2 + m2

]2 = −�̃21
xx (q, i�m)

m
. (D6)

Continuing, we define �(u) = u(ωn + �m)2 + (1 − u)ω2
n + u(1 − u)q2 + m2, so that

�̃21
xx (q, i�m) = 2m�m

∫ 1

0
du
∫

ωn

dkxdky

4π2

k2
x

[k2 + �]2
. (D7)

Imposing a UV cutoff � and taking the limit T → 0, we obtain

�̃21
xx (q, i�m) = m�m

8π

∫ 1

0
du (� − 2

√
u(1 − u)q2 + m2) + O

(
�2

m

)
. (D8)
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Now taking the q → 0 limit, we get

�̃21
xx (q, i�m) = m�m

8π
(� − 2|m|) (D9)

so that, using Eq. (56),

�xy(q, i�m) = q2(g1g2 − g3g4)
m�m

8π
(� − 2|m|) + q2g0(g2 − g3)(m + M )

�m

8π
(� − 2|m|) (D10)

⇒ ηH = 1

4πL2
[(g1g2 − g3g4)m + g0(g2 − g3)(m + M )](� − 2|m|). (D11)

Now, to obtain the finite-temperature result, we go back to Eq. (D7) to calculate

�̃21
xx (q, i�m) = 2m�m

∫ 1

0
du
∫

ωn

dkxdky

4π2

k2
x

[k2 + �]2
(D12)

= 2m�m

∫ 1

0
du
∫ dkxdky

4π2

k2
x

4ξ 3
k

[1 − 2nF (ξk ) + 2ξkn′
F (ξk )] + O

(
q,�2

m

)
, (D13)

where we have evaluated the Matsubara sum, which is of the same form as for the lattice calculation, and defined ξk ≡ √
k2 + m2.

Proceeding with the integral over u, we arrive at

�̃21
xx (q, i�m) = m�m

∫ �

0

dk 2πk

16π2

k2

ξ 3
k

[1 − 2nF (ξk ) + 2ξkn′
F (ξk )] (D14)

= m�m

4π
[−|m| − 2T log(1 + e−|m|/T )] + m�m

8π
D�(m, T ), (D15)

where we have defined the function

D�(m, T ) ≡
�2
(

2

e

√
�2+m2

T +1

− 3
)− 2m2

√
�2 + m2

+ 4T log
(
e

√
�2+m2

T + 1
)
. (D16)

This brings us to

�xy(q, i�m) = q2[(g1g2 − g3g4)m + g0(g2 − g3)(m + M )]
�m

8π
[D�(m, T ) − 2|m| − 4T log(1 + e−|m|/T )] (D17)

⇒ ηH = 1

4πL2
[(g1g2 − g3g4)m + g0(g2 − g3)(m + M )][D�(m, T ) − 2|m| − 4T log(1 + e−|m|/T )]. (D18)

In the limit m, T � �, we have D�(m, T ) → � + 4T log(1 + e−�/T ), and we can write the expression for ηH in the continuum,
at finite temperature, as

ηH = 1

4πL2
[(g1g2 − g3g4)m + g0(g2 − g3)(m + M )][� + 4T log(1 + e−�/T ) − 2|m| − 4T log(1 + e−|m|/T )], (D19)

the zero-temperature limit of which is in agreement with Eq. (D11). The finite-temperature continuum result allows us to rewrite
the cutoff independent part of ηH as

ηH ∼ |m| + 2T log(1 + e−|m|/T ) = |m| + 2T log[2e−|m|/2T cosh(|m|/2T )]

= 2T log[2 cosh(|m|/2T )], (D20)

which leads to Eq. (63). We observe that ηH is analytic at all T > 0 as cosh is an analytic and even function.
From Eq. (D18) above, we see that ηH scales with the effective couplings g1g2 − g3g4 and g0(g2 − g3). This can be understood

in the representation-theoretic framework. Writing out the gi’s in terms of irreducible representations as defined at the end of
Sec. V B, we find that both combinations

g1g2 − g3g4 ∝ gA1
gA2

+ gB1
gB2

, (D21a)

g0(g2 − g3) ∝ gA1
gA2

(D21b)

transform under the A1 ⊗ A2 = B1 ⊗ B2 = A2 representation of C4v . Now, we expect ηH to transform trivially under all
symmetries (under A1) as the phonon effective action must be invariant under all symmetries. This still holds true because
ηH can only exist in the presence of broken reflection symmetry, in which case, the symmetry of the phonon action is reduced
C4v → C4, and the A2 of C4v descends to the trivial A1 of C4. As a result, ηH has only one independent component with C4

symmetry. More precisely, as the four-indexed Hall viscosity tensor is antisymmetric upon exchanging pairs of indices (phonon
modes) while it is symmetric for exchange within each pair, we know that it has to transform under the antisymmetric A1 tensor
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representation, which we denote Aa
1. Since the phonon field transforms under the vector representation E1, this means that the

independent component(s) of ηH correspond to the component(s) of Aa
1 within

∧2 Sym2(E1) (with Sym2 and
∧2 denoting the

symmetrized and antisymmetrized tensor product, respectively). In our ansatz, we can illustrate this algebraically as∧2Sym2(E1) =∧2(A1 ⊕ B1 ⊕ B2) = Aa
2 ⊕ Ba

1 ⊕ Ba
2 (D22)

in C4v , which descends to Aa
1 ⊕ 2Ba

1 in C4, so the Hall viscosity has one component. This procedure can also be carried out for
other lattices. For example, as was shown for phonons with C6v symmetry [60] on the honeycomb lattice, we have∧2Sym2(E1) =∧2(A1 ⊕ E2) = Aa

2 ⊕ Ea
2 , (D23)

which descends to Aa
1 ⊕ Ea

2 in C6, giving one independent component of ηH . As Aa
2 originated from E2 ⊗ E2, we know that ηH

must scale as g2
E2

.
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