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Correlation-induced octahedral rotations in SrMoO3
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Distortions of the oxygen octahedra influence the fundamental electronic structure of perovskite oxides, such
as their bandwidth and exchange interactions. Utilizing a fully ab initio methodology based on density functional
theory plus dynamical mean field theory (DFT + DMFT), we study the crystal and magnetic structure of
SrMoO3. Comparing our results with DFT + U performed on the same footing, we find that DFT + U overesti-
mates the propensity for magnetic ordering, as well as the octahedral rotations, leading to a different ground-state
structure. This demonstrates that structural distortions can be highly sensitive to electronic correlation effects
and to the considered magnetic state, even in a moderately correlated metal such as SrMoO3. Moreover, by
comparing different downfolding schemes, we demonstrate the robustness of the DFT + DMFT method for
obtaining structural properties, highlighting its versatility for applications to a broad range of materials.

DOI: 10.1103/PhysRevB.104.035102

I. INTRODUCTION

ABO3 perovskite oxides exhibit a variety of exotic
and technologically interesting phenomena including high-
temperature superconductivity [1], non-Fermi liquid behavior
[2], multiferroicity [3], strong electron-lattice coupling [4],
and metal-insulator transitions (MITs) [5]. The key to pre-
dicting such phases is a quantitative understanding of the
relative importance of, e.g., strong electron correlations, spin-
orbit coupling, magnetic properties, and connected structural
distortions. In quantum materials, these may occur at similar
energy scales, requiring ab initio theoretical approaches to
simultaneously describe multiple phenomena with a high level
of accuracy.

In perovskite oxides, the type and degree of rotations of the
BO6 octahedra (Fig. 1) is fundamentally tied to the electronic
structure [6,7], as it determines the relative importance of
the kinetic energy versus electron-electron interactions [5].
Most often, density-functional theory (DFT), possibly includ-
ing an empirical or ab-initio chosen Hubbard U interaction
(DFT + U ), is relied on to provide the general structural
properties of perovskite oxides, i.e., those not a priori as-
sociated with strong electron-electron interactions [4,8–10].
Though quite successful in many materials [11], an accu-
rate electronic structure is necessary in general for correct
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structural predictions [6,7,12], which may require going be-
yond DFT/DFT + U [4,8,9,13,14].

By considering the case of SrMoO3 (SMO), we show
in this work that this may be the case even for materials
with moderate correlations. Specifically, we analyze the sen-
sitivity of the octahedral rotations to electronic correlation
effects. To this end we first perform structural calculations
for SMO on a static mean-field level using DFT + U , which
we then compare to calculations including the dynamic cor-
relations via combining DFT with dynamical mean-field
theory (DMFT) [15,16]. By calculating the effective screened
Coulomb interaction by means of the constrained random
phase approximation (cRPA) we perform ab initio calcu-
lations parameter free and compare DFT + U and DFT +
DMFT on the same footing. Thereby, we demonstrate that
octahedral rotations can be very sensitive to correlations, even
if the considered material shows no electronic phase transition
induced by the correlation effects.

SMO is found experimentally to be cubic (Pm3m) at room
temperature, undergoing transitions to I4/mcm at 266 K, and
to Imma at 124 K [17,18]. The structural transitions are char-
acterized by a gradual increase of rotation angle, see Fig. 1(b),
upon cooling [18]. SMO is one of the best conducting materi-
als among transition-metal oxides, with reported resistivities
as low as 5 μ�cm at room temperature [19], an interest-
ing property for possible applications to electronics. SMO
is a Pauli paramagnet, with no reported magnetic ordering
down to 2 K [17]. These observations, as well as specific
heat measurements yielding a quasiparticle mass renormal-
ization m∗/mb � 2 [19,20], hint at a moderate degree of
electronic correlations. However, previous DFT + U studies
show discrepancies with experimental structural and magnetic
properties [21–24], hinting at the role of correlations in the
structural properties.
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FIG. 1. Schematic depiction of common symmetry-lowering
structural distortions found in perovskites. (a) Undistorted perovskite
in the cubic space group Pm3m. (b) Out-of-phase tilts of BO6 octa-
hedra along the c axis lower the symmetry to Imma. (c) Additional
BO6 rotation around the c axis results in the Pnma space group.

Here we will compare the lattice energetics of SMO be-
tween DFT, DFT + U , and DFT + DMFT using a symmetry-
based mode decomposition [25,26]. This allows us to test
the relative stability of the high-temperature cubic, the low-
temperature orthorhombic Imma, and the orthorhombic Pnma
structure (recently found to be lowest energy by DFT + U
[24]) by systematically varying different symmetry-allowed
lattice distortions. The reported Imma and I4/mcm structures
[18] are almost identical besides the gradual increase of the ro-
tation angle. Both structures differ only in a marginal change
in lattice constant mismatch a �= b of ≈0.3% [18] in Imma
compared to I4/mcm where a = b. Furthermore, in Imma a
very small octahedral distortion (R+

5 mode) is found. Hence,
we discuss here only the Imma structure.

The rest of the article is organized as follows. In Sec. II we
present the theoretical framework. Then, in Sec. III we present
our results, split into five parts. We analyze first in Sec. III A
the structural predictions obtained by DFT and DFT + U ,
then we discuss in Sec. III B the downfolding and screening,
leading in Sec. III C to the analysis of the spectral properties.
In the last two parts of the results Sec. III D and Sec. III E we
discuss the DFT + DMFT structural properties. We end with
a brief summary in Sec. IV.

II. THEORETICAL FRAMEWORK

A. DFT + U

DFT calculations are performed using the projector aug-
mented wave (PAW) method [27], implemented in the
Vienna Ab initio Simulation Package (VASP) [28–30], and
the exchange-correlation functional of Perdew, Burke, and
Ernzerhof [31]. For the SrMoO3 DFT calculations we treated
the following valence states explicitly: Sr (4s, 5s, 4p, 4d),
Mo (4s, 5s, 4p, 4d, 4 f ), and O (2s, 2p, 3d). For calculations
in the cubic Pm3m cell we used a k-point mesh with 15 ×
15 × 15 grid points along the three reciprocal lattice direc-
tions, whereas for the larger orthorhombic unit cells we used
9 × 9 × 7 k-point grid throughout all calculations including
the charge self-consistent (CSC) DFT + DMFT calculations.
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FIG. 2. Energy versus R+
4 octahedral rotation-mode amplitude

for SrMoO3 calculated with DFT + U (with fixed J = 0.7 eV, ex-
cept for U=0, where J = 0). U = 2.3 eV corresponds to the value
predicted by cRPA. The energy is given relative to the cubic struc-
ture, and the experimentally found R+

4 amplitude is indicated by the
dashed vertical line. Nonmagnetic (NM), antiferromagnetic (AFM)
type-C, and ferromagnetic (FM) calculations are shown.

A plane wave energy cutoff of 550 eV was used in all cal-
culations, except for the phonon calculations, where a higher
cutoff of 1000 eV was necessary for convergence. Forces and
stress were computed with a precision down to 10−4 eV/Å.
To account for the local Coulomb interaction in the Mo d shell
on a static mean-field level we add an effective on-site inter-
action U and Hund’s rule exchange interaction J according to
Ref. [32].

For phonon calculations the frozen-phonon method as
implemented in PHONOPY [33] is utilized with a 2 × 2 × 2 q-
point grid.

For the symmetry-based mode decomposition [25] we
use the software ISODISTORT [26], where we normalize
all distortion modes with respect to the pseudo-cubic parent
structure (Ap amplitudes). Moreover, we choose a unit cell
setting with the Mo atom at the center of the cell. Within the
experimentally observed Imma structure only two distortion
modes are allowed, the R+

4 mode describing an octahedral ro-
tation as shown in Fig. 1(b), and the mode R+

5 which describes
a bending of the O-Mo-O in-plane bonds. The latter one is
found to be negligible in the experimental structure. Going
from the Imma to the Pnma space-group allows for additional
distortions. Most striking are the octahedral rotation mode
M+

3 [Fig. 1(c)] and the shearing mode X +
5 . More details of

the modes found in DFT + U can be found in Ref. [24]. For
our calculations in Figs. 2 and 4, we fix the lattice parameters
to the ones provided by experiment, satisfied by the fact that
the pseudocubic volume changes by less than 1% from 300 to
5 K [18].

B. DFT + DMFT

To perform DFT + DMFT calculations, we construct a
correlated subspace by performing projections using PAW
projectors [34] in VASP [35] (i.e., the same projectors used in
DFT + U ), and utilize the interface to the TRIQS/DFTTOOLS

software package [36,37] and the soliDMFT [38] software.
We compare two different choices of correlated subspaces
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FIG. 3. The SrMoO3 phonon dispersion in the cubic Pm3m
structure calculated with nonmagnetic DFT, showing no imaginary
phonon modes.

to underline consistency of the approach. First, we consider
a minimal subspace model (labeled t2g-t2g), where we only
construct local orbital projections related to the three Mo t2g

orbitals at the Fermi level from an energy window containing
only these t2g bands. Second, we construct the subspace using
a large energy window model containing all O 2p and Mo
4d orbitals; Wannier functions are projected on all Mo 4d
orbitals (labeled pd-d), which is comparable to the correlated
subspace used in DFT + U , allowing a direct comparison.

In the pd-d we find an occupation of ∼4 electrons in the
d shell due to the mixing with O 2p states. During the DMFT
calculation the impurity occupation changes by less than 0.05
electrons, depending on the rotation amplitude. In the t2g-t2g

model we find an occupation of exactly two electrons, i.e.,
the nominal occupancy of the Mo 4d state. This is because,
in this minimal subspace, a unitary transformation connects
local orbitals and Kohn-Sham states.

The resulting effective impurity problem within the DMFT
cycle is solved with a continuous-time QMC hybridization-
expansion solver [39] (cthyb) implemented in TRIQS/CTHYB

[40], taking into account all off-diagonal elements of the local
Green’s function in the crystal-field basis. We add a local
Coulomb interaction in the form of the Hubbard-Kanamori
Hamiltonian including all spin-flip and pair-hopping terms
[41] for the t2g-t2g and a density-density only interaction for
the pd-d model with parameters obtained from cRPA. All
calculations are performed fully charge self-consistent.

FIG. 4. On-site Coulomb interaction tensor values Uii j j (ω = 0)
for the t2g-t2g model as function of the R+

4 amplitude in the Imma
structure. The experimental R+

4 amplitude is shown by a vertical
dashed line.

To optimize the sign, we rotate into the orbital basis which
diagonalizes the impurity occupations. However, a treatment
beyond density-density seems to be not feasible for the five
orbital pd-d model; the sign problem is severe for calculations
with octahedral rotations, as the hybridization functions de-
velops off-diagonal elements. To correct the electron-electron
interaction within the correlated subspace already accounted
for within VASP, we use the fully localized limit DC correction
scheme [42,43] using the DMFT impurity occupations. For
the t2g-t2g we use the adapted form given in Ref. [16]. Within
our frontier-bands model the DC potential acts only as a trivial
shift that can be absorbed in the chemical potential, thus, not
influencing the important charge transfer energy between O
2p and Mo 4d states, which we fix to the DFT provided
value [44]. As seen in Fig. 5, both models give a very similar
spectral function around the Fermi level, showing that our
chosen DC scheme for the pd-d model behaves very similar
to the t2g-t2g model for the states close to the Fermi level.

Total energies are calculated using the formula given in
Ref. [34], where the impurity interaction energy is calculated
as the expectation value of 〈Ĥint〉. This is done by measuring
the impurity density matrix ρ̂ imp directly in the cthyb solver
within the Fock basis

〈Ĥint〉 = Trimp[ρ̂ impĤint], (1)

where Trimp sums over all impurity orbital and spin degrees.
This procedure is free of the high-frequency noise of the im-
purity self-energy and allows for very accurate determination
of the interaction energy [45]; we estimate the error to be
∼2 meV. This reduces the error in the total energy signifi-
cantly [45]. We sample the energy over ∼20 converged DMFT
iterations to obtain errors in energy <3 meV. Convergence is
reached when the standard error of the impurity occupation
within the last 10 DMFT iterations is smaller than 2 × 10−3.
Here, we neglect all entropy terms to the energy for simplicity.

In all DMFT calculations the impurity problem is solved at
a temperature of β = 40 eV−1 ≈ 290 K, except for the pd-d
calculations in Fig. 4, where we used β = 20 eV−1 ≈ 580 K
for increased numerical stability.

C. Screened Coulomb interaction

To calculate the screened Coulomb interaction for our
chosen correlated subspace we use the cRPA method as im-
plemented in VASP [46]. That is, we calculate the static part of
the screened Coulomb interaction U (ω = 0) by constructing
maximally localized Wannier functions (MLWF) [47] using
WANNIER90 [48], following the ideas of Ref. [41].

To reflect our chosen DMFT subspace the pd-d model is
constructed via MLWFs for all O 2p, Mo 4d , and Sr 3d states;
we find that this produces an analogous set of local orbitals
to the projected ones used in the DMFT [49]. In the t2g-t2g

model, we construct three Wannier functions corresponding to
the three t2g orbitals at the Fermi level. For the frontier bands
only model it has been shown that MLWF and projectors give
the same results when used within DMFT [44]. For the large
energy window the constructed MLWFs show a very similar
DOS compared to the projector DOS created in VASP. Thus,
we are confident that the screening is calculated within very
similar orbitals as used in the DMFT calculation. We note
that there can be small differences between projectors and
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MLWF [49], but we will assume that the relative error of the
RPA approximation is more severe that the choice of basis.
Furthermore, we tested several different choices to construct
the MLWFs by varying the number of input bands, number of
local orbitals, and tested the convergence of the disentangle-
ment procedure to ensure that we obtained the most localized
basis set for the Mo 4d orbitals possible.

For the cRPA calculation we used a k-point grid of 7 ×
7 × 5 in the Pm3̄m cubic structure with ∼300 empty bands,
and a grid of 5 × 5 × 3 for the orthorhombic cells with ∼500
empty bands. Both with an energy cutoff of 500 eV. The
polarization function is evaluated within the MLWF basis.
To extract symmetrized interaction parameters we spheri-
cally averaged the full four index interaction tensor assuming
spherical symmetry allowing us to obtain parameters for the
Hubbard-Kanamori Hamiltonian used for the t2g-t2g model,
and Slater parameters for the pd-d [41]. For the latter model
we assumed F 4/F 2 = 0.625 for better comparability with
DFT + U . When fitting the cRPA four index tensor directly
to the three independent radial integrals F 0, F 2, F 4 we find a
different ratio of F 4/F 2 = 0.83. However, values for U and
J stay the same. Investigating the reason and implications of
such change of the F 4/F 2 ratio is left open for future investi-
gations. We used the static averaged interaction parameters
from the cubic structure for almost all calculations, except
for those calculations in which we explicitly used the full
Ui jkl (ω = 0) tensor.

III. RESULTS

A. Structural predictions from DFT and DFT + U

In Fig. 2, we plot the total energy, calculated with DFT, and
DFT + U (for different choices of Hubbard U ) with respect to
the amplitude of the R+

4 octahedral rotation mode. This out-of-
phase rotation of the MoO6 octahedra around the c-axis takes
Pm3m, i.e., the experimental high-temperature structure of
SMO, to Imma, the low-temperature phase [25] [see Figs. 1(a)
and 1(b)]. The energy is referenced to that of the cubic phase,
i.e., with the R+

4 amplitude set to zero, but using the experi-
mental lattice parameters of Imma. The vertical dashed line
is the experimental R+

4 amplitude [18]. DFT with U = 0 eV
predicts a nonmagnetic (NM) cubic structure, even when start-
ing from a spin-polarized initial state for various orderings
[24]; as we see in Fig. 2, increasing the R+

4 amplitude only
serves to increase the energy. There is a significant range of
R+

4 amplitudes where the energy changes very little, indicating
that this mode is quite soft. This picture is confirmed by the
phonons calculated with DFT in the NM state (see Fig. 3),
which show no instabilities (modes of imaginary frequency),
but a very soft R+

4 mode with frequency of 1 Thz. Clearly we
must go beyond DFT to describe the low temperature structure
of SMO.

With the addition of U , magnetic order is stabilized [24]
(in contrast to experiments [17,18]); we consider both ferro-
magnetic (FM) and C-type anti-ferromagnetic (AFM) order
(which is lowest in energy [21,23,24]). This leads to a stable
orthorhombic structure, i.e., to a minimum at a finite R+

4 mode
amplitude. Thus, including an extra local Coulomb interaction
on the Mo 4d states drives the system toward the correct
structural phase. Note that suppressing the magnetic order by

performing NM DFT + U calculations (see gray squares in
Fig. 2), gives similar results to the NM DFT calculations, i.e.,
the octahedral rotations are suppressed.

The experimental reported R+
4 amplitude at 5 K is 0.23 Å,

which corresponds to a change in bond angle of 4.4◦ [18].
For U = 3 eV and AFM order, we find R+

4 = 0.52 Å, thus
octahedral rotations are more than twice as large compared
to experiment. By systematically varying U (keeping AFM
order) in a reasonable regime, we find that increasing U
gives larger equilibrium R+

4 amplitudes. For U = 5 eV we
find R+

4 = 0.58 Å, whereas for a smaller U = 2.3 eV (which
is the U value predicted by cRPA, more details below) we
find R+

4 = 0.43 Å. FM order results in slightly larger rota-
tion amplitude compared to AFM order (Fig. 2). Also, when
performing full structure optimizations, additional energy-
lowering octahedral rotation modes are activated, leading to
the Pnma structure instead of Imma [24] [see Figs. 1(b) and
1(c)]. Overall, we see from Fig. 2 that the stability of the
orthorhombic structure and the R+

4 amplitude are very sen-
sitive to the Coulomb interaction in the Mo 4d orbitals in any
magnetically ordered state, and are clearly overestimated by
DFT + U . For NM calculations, even with a finite U , the R+

4
rotations are completely suppressed. Thus, we also must go
beyond DFT + U to capture the correct ground-state structure
for SMO.

B. Downfolding and cRPA

As mentioned in Sec. II B we compare two different
choices of correlated subspaces. The minimal t2g-t2g subspace
model, where we only construct local orbital projections re-
lated to the three Mo t2g orbitals at the Fermi level. Second, the
large window pd-d containing all O 2p and Mo 4d orbitals.
The projected density of states are shown in Fig. 5(a). Com-
paring the two models allows us to understand the importance
of the eg orbitals in the active subspace (although they are
nominally unoccupied), and the hybridization to the ligand
states.

To cross-check the potential influence of the rotations on
the Coulomb interaction we performed a series of cRPA cal-
culations for different R+

4 amplitudes. The results are shown in
Fig. 4 for the t2g-t2g. We find that the average U is only reduced
by ∼5% from R+

4 = 0.0 Å to R+
4 = 0.8 Å. Furthermore, the

degeneracy between the onsite values is lifted slightly and
differ maximally by 5% for R+

4 = 0.8 Å. Therefore, we use
the orbitally averaged Coulomb interaction values assuming
F 4/F 2 = 0.63 [41]. The resulting effective parameters are
shown in Table I. This approach allows us to compare DFT +
U and DFT + DMFT directly, by using exactly the same form
of interaction and the same downfolding procedure in both
calculations. A detailed discussion about orbital dependent
results, including the full Coulomb interaction matrices are
presented in Appendix A.

For the t2g-t2g our Hubbard-Kanamori parameters are in
agreement with Refs. [41,50,51], which find a value of U ∼
3.1 eV using the same approach. Our parameters for the pd-d
model are also given in Table I and are consistent with
Ref. [51]. We see that going from the small (t2g-t2g) to the
large (pd-d) energy window does not increase in the Coulomb
interaction, even though the orbitals are significantly more
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are both displayed in comparison to the total DFT DOS (gray).

localized (reflected in the larger bare Coulomb interaction
V in Table I, and the increased J ). Therefore, including
the eg orbitals in the active space results in more effective
screening of the active subspace due to the the large eg-O 2p
hybridization [51].

In our calculations of the t2g-t2g model we use the Hubbard-
Kanamori form of the interaction Hamiltonian, including all
spin-flip and pair-hopping terms [41] parametrized by U and
J , and for the pd-d model we only include density-density
type interactions parametrized by UcRPA (i.e., F 0) and J; UcRPA

also serves as the cRPA prediction for the Coulomb interaction
appropriate for DFT + U , as discussed above.

C. DFT + DMFT: Spectral properties

We first perform DFT + DMFT calculations for both cor-
related subspaces in the low-temperature experimental Imma
structure. As stated in Sec. II B all calculations are performed
above 0 K in DMFT. However, this temperature corresponds
only to the electronic temperature of the system, and we
extract the total energy to approximate the zero temperature
limit. Furthermore, we checked that for SrMoO3 good quasi-

FIG. 6. Comparison of (a) qasiparticle scattering rate
−Im�(i0+) and (b) quasiparticle weight Z as function of the
R+

4 amplitude of Imma SrMoO3. The blue triangles show the results
when the full CSC DFT + DMFT calculation is performed using
the full Ui jkl tensor from cRPA. t2g-t2g calculations are performed at
T ≈ 290 K and pd-d calculations at T ≈ 580 K.

particle behavior is found already at very high temperatures
(see Fig. 10 in Appendix B). Hence, we expect little temper-
ature dependence on the spectral and structural properties in
DFT + DMFT.

Figure 5(b) compares the resulting DFT + DMFT spectral
function A(ω), obtained by analytical continuation of the self
energy to the real frequency axis [52,53], with the total DOS
from DFT. For both models, t2g-t2g and pd-d , we find a very
similar renormalization of the t2g states around the Fermi
level, with a quasiparticle weight of Z ≈ 0.6 for the t2g-t2g

model (Z ≈ 0.7 for the pd-d model). These values are con-
sistent with previous DMFT studies on the high-temperature
cubic structure [20,51] and indicate a moderately correlated
metallic state. We observe a small renormalization within the
O 2p states at −8 eV and of the lower end of the t2g states for
the pd-d model which can be not resolved in the t2g-t2g model
used in earlier studies [20]. However, both models show a very
similar p-d splitting to DFT.

We also extracted the scattering rate −Im�(i0+) [54,55]
for both models over a range of R+

4 amplitudes. In Fig. 6,
we display both Z [Fig. 6(a)] and −Im�(i0+) [Fig. 6(b)]
as a function of the R+

4 rotation amplitude. The scattering
rate is as low as ≈4 meV for the t2g-t2g model and ≈20 meV
for the pd-d model calculations at R+

4 = 0 indicating long

TABLE I. Screened Coulomb interaction values as calculated from cRPA in the static limit. The first three columns denote the model used
for the Wannier construction, crystal structure, and the energy window. The rest of the columns show the cRPA results, including the bare
Coulomb interaction V , screened orbitally averaged Coulomb matrix elements in the Wannier basis U , screening strength ratio of the two
U/V , Hund’s exchange in the Wannier basis J , and spherically averaged Slater parameter U = F 0 and J = (F 2 + F 4)/14.

model structure window (eV) V (eV) U (eV) U/V J (eV) UcRPA = F 0 (eV) J (eV)

t2g- t2g Pm3m [−2.5, 2.5] 11.68 3.15 0.27 0.33 − −
t2g- t2g Imma [−2.5, 2.5] 11.55 3.11 0.27 0.33 − −
t2g- t2g Pnma [−2.5, 2.5] 11.46 3.03 0.26 0.33 − −
pd-d Pm3m [−9.0, 9.0] 15.73 3.12 0.20 0.51 2.32 0.71
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quasiparticle lifetimes [ZIm�(i0+)]−1. See Appendix B for
a detailed analysis of the temperature dependence, which is
found to be consistent with the T 2 Fermi liquid behavior
observed experimentally for this compound over a rather ex-
tended temperature range (see Fig. 10).

Within DMFT, the effect of electron-electron interactions
enters the direct-current conductivity through the scattering
rate Im�(i0+), which we explain in detail in Appendix B. As
displayed in Fig. 6(b), this rate does not vary significantly for
R+

4 amplitudes between 0.0 Å and 0.3 Å. This is in agreement
with the experimental fact that no significant drop in resistiv-
ity is observed at the structural transition [19].

To check the influence of the full Coulomb interaction
tensor on structural predictions, in contrast to the averaged
values from the cubic structure used so far, we also performed
DFT + DMFT calculations in the t2g-t2g model using the full
Ui jkl (ω = 0) tensor for each of the calculated structures. For
the DC correction in those calculations we used the corre-
sponding averaged interaction values. Using the full Coulomb
interaction tensor from cRPA for each structure we find that
the average quasiparticle properties Z and Im�(i0+) do not
change (see Fig. 6), even though we observe small changes in
the orbital dependent properties.

D. DFT + DMFT: Octahedral rotations in Imma

Now, we turn toward the dynamic stability of the Imma
phase within DFT + DMFT and compare to the DFT + U
results. DFT + DMFT total energy calculations [56] are per-
formed in the paramagnetic state varying the R+

4 amplitude,
keeping all other structural parameters fixed to experimental
values. To obtain high-accuracy results, we sample the en-
ergy over several converged DMFT iterations and measure
the interaction energy directly in the impurity solver via the
impurity density matrix [45]; we estimate the error in the
energy to be <3 meV.

Figure 7 displays our results, where the NM DFT and AFM
DFT + UcRPA from Fig. 2 are shown for comparison. First,
we perform calculation for the minimal t2g-t2g model (orange
line). The resulting total energy as function of the R+

4 ampli-
tude shows a clear minimum at around 0.29 Å, compared to
DFT + UcRPA at 0.43 Å. For the pd-d (purple curve in Fig. 2)
we obtain an even better agreement to experiment with R+

4 =
0.24 Å. These values where obtained by performing a polyno-
mial fit of fourth order to the data points, with very small error
as seen in Fig 7. Further, we emphasize that the pd-d model
and the DFT + U formalism use the very same projectors
within VASP for the construction of the correlated subspace.
Hence, results can be compared on a quantitative level, to
elucidate the role of dynamic correlations, as well as the
difference between the magnetically ordered state considered
in DFT + U and the paramagnetic state in DFT + DMFT.
Furthermore this shows, that the different models t2g-t2g and
pd-d result in very similar energetics.

We stress that these calculations are performed with com-
pletely analogous computational parameters as DFT + U , as
we averaged the cRPA obtained Coulomb interaction tensors,
thus allowing for a direct comparison between the different
levels of theory. We find that DFT + U gives considerably
larger R+

4 amplitudes, overestimating those in experiment,

FIG. 7. Energy versus R+
4 octahedral rotation mode amplitude for

SrMoO3 as calculated within DFT and DFT + DMFT, relative to the
cubic structure. The experimental R+

4 amplitude is indicated by the
dashed vertical line. The NM DFT result (blue) and the DFT + UcRPA

result (green) are identical to Fig. 2. The DFT + DMFT results are
shown for the t2g-t2g model (orange) and for the pd-d model (purple)
using UcRPA. Lines represent a fourth-order polynomial fit, and the
error bars for DMFT are estimated to be 2 meV.

while DFT + DMFT results in rotations more comparable to
experiment. Furthermore, the results depend on the chosen
form of magnetic order (see Fig. 2).

The DFT + DMFT calculations are performed within a
truly paramagnetic state as observed in experiment [17,18,20].
In our calculations we did not observe any tendencies to
form long-range magnetic order in DFT + DMFT. To this end
we calculated the static spin-susceptibility down to 40 K in
DMFT, displaying a very small linear response (not shown),
with no indications of long-range order. As DMFT is known
to overestimate ordering temperatures due to a lack of true
spatial fluctuations we have significant confidence in the para-
magnetic state predicted here [57–59].

When performing the total energy calculations with the full
Ui jkl (ω = 0) tensor (not shown) we observe a shift to slightly
larger R+

4 amplitudes closer to the DFT + UcRPA (fixed cubic
UcRPA) predicted value. We observe that the nonsymmetric
interaction tensor reduces the interaction energy when the R+

4
amplitude is increased compared to a symmetrized Kanamori
interaction, which leads to a larger equilibrium R+

4 amplitude.
This is due to the fact that the averaged interaction energy de-
creases with increasing R+

4 amplitude, and because the orbitals
can reorganize occupations so that the interaction energy is
minimized. However, such results should be interpreted with
caution, as an orbital dependent interaction would also need
an appropriate orbital dependent DC scheme, for example
the exact DC scheme proposed by Haule [60] or the orbital
dependent corrections proposed by Refs. [61] and [62], which
is beyond the scope of this work. Note, that the question of
DC is especially problematic as one has to compare small
structural energy differences of the order of meV with large
Coulomb interaction changes in the order 0.1 eV, that need
to be correctly captured by the DC scheme. Parameterizing
the interaction parameters fixes the dependence allowing for
a better comparability between DFT + U and DFT + DMFT,
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FIG. 8. Relative energy of Imma versus Pnma structure for
AFM DFT + UcRPA and DFT + DMFT (t2g-t2g model) on a linearly
interpolated path between the experimentally observed Imma struc-
ture (x = 0) and the AFM DFT + UcRPA predicted Pnma structure
(x = 1). The DFT + DMFT Imma R+

4 amplitude of 0.3 Å is kept
fixed for DFT + DMFT (orange), and the additional Pnma distor-
tions are introduced according to the relaxed DFT + UcRPA structure.
The DFT + UcRPA calculations are performed for fixed R+

4 = 0.3 Å
(blue) and R+

4 = 0.4 Å (cyan), where the latter corresponds to the
DFT + UcRPA predicted value. Lines represent a polynomial fit, and
the error bars for DMFT are estimated to be 3 meV.

as it is also common practice when comparing structures in
DFT + U .

E. Comparison between Imma and Pnma

As mentioned above, the AFM DFT + UcRPA relaxation re-
sults in a Pnma structure with additional octahedral rotations
that are not observed in experiment [18]. To check whether
DFT + DMFT correctly predicts the Imma structure to be
most stable, we perform calculations on linearly interpolated
structures between the experimental Imma and DFT + UcRPA

predicted Pnma structure, while keeping lattice parameters
constant. In practice this means that we fix R+

4 amplitude
and systematically introduce the additional Pnma distortions
M+

3 and X +
5 on top of the Imma structure (see Fig. 1). For

the DFT + UcRPA calculations, we fix R+
4 to the DFT + UcRPA

predicted value of 0.4 Å for Imma/Pnma, as well as the
DFT + DMFT predicted value for Imma (R+

4 = 0.3 Å); for
DFT + DMFT (t2g-t2g model), we perform the calculation
only for R+

4 = 0.3 Å.
The results are depicted in Fig. 8. The DFT + UcRPA calcu-

lations for both R+
4 amplitudes (blue +’s and cyan x’s) show a

clear lowering of energy toward the Pnma structure of 10 meV
to 15 meV per formula unit compared to Imma. This is in
agreement with recent results from Ref. [24]. In contrast, the
DFT + DMFT result (orange circles) shows a clear increase
of energy toward the Pnma structure of about 10 meV, pre-
dicting the Imma structure to be lowest in energy in agreement
with experiment. We note, that the energy accuracy in DFT +
DMFT is not as good as in Fig. 7 as the impurity solver has
to cope with small off-diagonal elements in the hybridization
due to the additional distortions. Nevertheless, the data shows

a very clear trend beyond the size of the estimated error of
3 meV.

We conclude that our treatment of the correlations on the
level of DFT + DMFT predicts the crystal structure as well
as the octahedral rotations for SrMoO3 consistent with ex-
perimental observations. This is a result of the calculations
correctly capturing the paramagnetic state of the material and
describing dynamic correlation effects.

IV. SUMMARY

We utilized a fully ab initio DFT + DMFT methodol-
ogy in combination with symmetry-adapted distortion modes
to accurately predict the level of octahedral rotations of
SrMoO3 compared to experiment, while showing that DFT
and DFT + U compared on the same footing give drastically
different results. We find that magnetic DFT + U calcula-
tions, even when performed with exactly the same Coulomb
interaction, give rise to significantly larger octahedral ro-
tations. Thereby, we highlight the importance of correctly
addressing the correlations and the paramagnetic state for
structural predictions in SrMoO3. The tight coupling of the
electronic and crystal structure in SMO is likely a result of
the relatively flat potential energy surface from NM DFT
with respect to R+

4 octahedral rotations. This work demon-
strates that the structural properties of perovskite oxides can
depend sensitively on the treatment of electron correlations,
even when the structure is not obviously connected to a spe-
cific electronic phase transition, e.g., magnetic order, charge
order, or MIT. Hence, showing that a quantitative under-
standing of the coupling between octahedral rotations and
correlation effects is crucial for electronic structure engi-
neering of perovskites, e.g., via heterostructuring or applying
strain.
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APPENDIX A: FULL U TENSOR FROM cRPA

For completeness we list here the averaged reduced
screened interaction matrices for ω = 0 for parallel and anti-
parallel spin for the t2g-t2g model (cubic, exp. Imma, and
DFT + U predicted Pnma structure) and the pd-d model
(cubic), which are defined as [41]

U σ σ̄
i j = Ui ji j, (A1)

U σσ
i j = Ui ji j − Ui j ji︸︷︷︸

Ji j

. (A2)

Here, m = {dxz, dyz, dxy} for the t2g-t2g model, and m =
{dz2 , dxz, dyz, dx2−y2 , dxy} for the pd-d model. From cRPA we
obtained for the t2g-t2g model in the cubic structure (all values
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in eV)

U σ σ̄
i j =

⎛
⎝3.151 2.457 2.457

2.457 3.151 2.457
2.457 2.457 3.151

⎞
⎠,

U σσ
i j =

⎛
⎝ 0 2.128 2.128

2.128 0 2.128
2.128 2.128 0

⎞
⎠,

for the t2g-t2g model in experimental Imma structure we ob-
tained (all values in eV)

U σ σ̄
i j =

⎛
⎝3.094 2.398 2.424

2.398 3.094 2.424
2.424 2.424 3.155

⎞
⎠,

U σσ
i j =

⎛
⎝ 0 2.071 2.091

2.071 0 2.091
2.091 2.091 0

⎞
⎠.

Here, we see that the changes from the cubic to the Imma
structure are relatively small, inducing a slightly larging
screening on the dxz/yz orbitals. For the AFM DFT + UcRPA

predicted Pnma structure we obtained (all values in eV)

U σ σ̄
i j =

⎛
⎝3.059 2.351 2.337

2.351 3.036 2.329
2.337 2.329 2.997

⎞
⎠,

U σσ
i j =

⎛
⎝ 0 2.023 2.01

2.023 0 2.003
2.01 2.003 0

⎞
⎠.

This demonstrates the effect of the additional distortions in
Pnma, which reduces the onsite Coulomb interaction value
for dxy compared to Imma. Finally, for the pd-d model in the
cubic structure we obtained (all values in eV)

U σ σ̄
i j =

⎛
⎜⎜⎜⎝

3.286 2.286 2.286 2.015 1.921
2.286 3.017 1.965 2.043 1.965
2.286 1.965 3.017 2.043 1.965
2.015 2.043 2.043 3.286 2.408
1.921 1.965 1.965 2.408 3.017

⎞
⎟⎟⎟⎠,

U σσ
i j =

⎛
⎜⎜⎜⎝

0 1.874 1.874 1.379 1.309
1.874 0 1.451 1.497 1.451
1.874 1.451 0 1.497 1.451
1.379 1.497 1.497 0 2.063
1.309 1.451 1.451 2.063 0

⎞
⎟⎟⎟⎠.

Table I shows a list of the fitted cRPA results, including
a comparison between the Pm3m and the Imma structure.
Figure 4 shows the on-site Coulomb interaction tensor values
as function of the R+

4 amplitude in the t2g-t2g model.

APPENDIX B: QUASIPARTICLES WITHIN DMFT:
PHYSICAL PROPERTIES AND TRANSPORT

In Fig. 9 the imaginary part of the DMFT d-orbital self-
energies on the Matsubara axis are shown for various R+

4
amplitudes, both for the t2g-t2g and the pd-d model. A fit to
a fourth-order polynomial over the first Matsubara frequen-
cies yields a determination of the two key quantities Z and

FIG. 9. Imaginary part of the DMFT impurity Matsubara self-
energies �imp(iωn) calculated for different R+

4 amplitudes, using the
cRPA interaction values. (a) Imaginary part of �imp(iωn) for the
t2g-t2g model averaged over all three t2g orbitals. (b) Imaginary part
of �imp(iωn) for the pd-d model. Solid lines represent the aver-
aged t2g orbitals, whereas dashed lines show the eg orbital averaged
�imp(iωn).

Im�(i0+) involved in the low-frequency expansion:

Im�(iω) = Im�(i0+) + iω

(
1 − 1

Z

)
+ · · · , (B1)

with 1/Z = 1 − ∂Im�(iωn)/∂ωn|iωn→0. Inserting this into the
expression of the Green’s function, G−1 = iω + μ − H (k) −
�, expanding at low frequency, and focusing on the partially
filled t2g states, one sees that the low-energy quasiparti-
cles carry a spectral weight Z , and are characterized by an
effective mass enhancement m∗/mb (with mb the band mass)
and quasiparticle lifetime τ ∗ given by

m∗

mb
= 1

Z
,

1

τ ∗ = −ZIm�(i0+). (B2)

The conductivity can be calculated from linear response
theory with the Kubo formula. Because the self-energy is

FIG. 10. Comparison of (a) Quasiparticle scattering rate -
Im�(i0+) and (b) quasiparticle weight Z as function of temperature
for the t2g-t2g model using cRPA interaction values for the exper-
imental Imma structure. (a) shows clear T 2 behavior (a = 5.56 ×
10−5 meV/K2), whereas (b) shows a modest linear temperature de-
pendence (c = 5.25 × 10−5 K−1).
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spatially local in the DMFT approximation, vertex corrections
vanish and hence the transport lifetime can be directly re-
lated to single-particle quantities (see, e.g., Refs. [54,63,64]).
Specifically, one obtains for the direct current (dc) conductiv-
ity (quoting the formula for a single band for simplicity)

σdc = ω2
P0 τtr, (B3)

in which ωP0 is the plasma frequency obtained within band-
structure theory (i.e., unrenormalized by correlations) and
τ−1

tr = −2Im�(i0+) [64]. Note that, importantly, the quasi-
particle weight Z does not enter this expression and drops out
from transport properties. This can also be understood from
a Boltzmann transport description in terms of quasiparticles
[54]. In that view, the plasma frequency is the renormalized
one involving the quasiparticle effective mass, and thus is
multiplied by Z as compared to the bare one, and the lifetime

is related to the quasiparticle lifetime τ ∗ given above. As
a result, Z drops out form the product and we recover the
expression above for σdc.

In Fig. 10(a) the temperature dependence of −Im�(i0+) is
shown, which is found to be consistent with the T 2 Fermi liq-
uid behavior observed experimentally [19]. Remarkably, the
quadratic behavior found in our calculations of −Im�(i0+)
extends to very high temperatures up to 1200 K, indicated by a
aT 2 fit in Fig. 10(a). At temperatures below 200 K small devi-
ations from the fit can be observed, which are probably due to
uncertainties in the calculation of −Im�(i0+). Calculating the
scattering rate by fitting a polynomial to the lowest Matsub-
ara frequencies at different temperatures, and the numerical
noise at lower temperatures, complicates the evaluation of the
scattering rate. Overall, we find good agreement with our fit,
indicating correctly the trend to a vanishing −Im�(i0+) at
0 K for the inelastic scattering described by DMFT.
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