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Half-quantum vortices in nematic and chiral phases of 3He
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We report theoretical results for the stability of half-quantum vortices (HQVs) in the superfluid phases of
3He confined in highly anisotropic Nafen aerogel. Superfluidity of 3He confined in Nafen is the realization of
a “nematic superfluid” with Cooper pairs condensed into a single p-wave orbital aligned along the anisotropy
axis of the Nafen aerogel. In addition to the nematic phase, we predict a second “chiral” phase that onsets
at a lower transition temperature. This chiral phase spontaneously breaks time-reversal symmetry and is a
topological superfluid. Both superfluid phases are equal-spin pairing condensates that host arrays of HQVs as
equilibrium states of rotating superfluid 3He. We present results for the structure of HQVs, including magnetic
and topological signatures of HQVs in both the nematic and chiral phases of 3He-Nafen.
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Introduction. The discovery of superfluidity in liquid 3He
infused into a low-density, highly anisotropic porous aerogel
called Nafen was the realization of a “nematic superfluid”
with Cooper pairs condensed into a single p-wave orbital
aligned along the anisotropy axis of the Nafen aerogel [1].
This nematic superfluid, or “polar phase,” is not realized as
a stable bulk phase of pure 3He, but is predicted to be the
stable ground state when confined in 100 nm channels [2,3].
In the case of 3He infused into Nafen aerogel, its structure
is well understood in terms of a highly porous random solid
of long alumina strands, aligned on average, with typical
strand diameter of order 8–9 nm and interstrand distances of
order 30–50 nm [1]. The Nafen structure provides the uniaxial
confinement that stabilizes the polar phase of 3He [4–6]. In
lower density Nafen the effect of weaker confinement is to
allow Cooper pairs with in-plane orbitals, p̂x,y, to nucleate,
leading to a phase transition from the polar phase to an A-like
phase, or chiral phase, with a strong polar distortion, hereafter
referred to as the “polar-distorted chiral phase.” These newly
stabilized phases of 3He-Nafen are also condensates of spin-
triplet Cooper pairs with equal amplitudes for two oppositely
aligned spin polarization states, |↑↑〉 and |↓↓〉. Thus they
belong to the class of equal-spin pairing condensates that can
support “half-quantum vortices” (HQVs), topological defects
with one-half the usual quantum of circulation predicted for
vortices in a superfluid, i.e., 1

2 (h/2 m3), where h is Planck’s
constant and m3 is the mass of the 3He atom [7].

Indeed the discovery of HQVs in 3He infused into Nafen
was reported soon after the discovery of the polar phase based
on the nuclear magnetic resonance (NMR) signature of pairs
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of HQVs created by rotating the polar phase of superfluid 3He-
Nafen [8]. In addition, these authors observe that the NMR
signature of the HQV pair persists into the polar-distorted
chiral phase of 3He-Nafen. That discovery comes 40 years
after HQVs were predicted theoretically as a novel class of
topological defects in condensed matter [7]. The prediction
of HQVs, combined with more recent theoretical ideas for
developing topological condensed matter as platforms for
quantum information processing [9], led to searches for HQVs
in diverse condensed matter systems, from Bose-Einstein con-
densates of optically trapped spin S = 1 23Na atoms [10] to
spin-triplet superconductors thought to be electronic analogs
of superfluid 3He-A [11].

Here we report theoretical predictions for the structure
of HQVs, their stability, and the pressure-temperature phase
diagram for two phases of rotating superfluid 3He confined
in Nafen aerogels which host HQVs. Our analysis is based
on an anisotropic impurity model for Nafen combined with
strong-coupling Ginzburg-Landau (GL) theory that quanti-
tatively accounts for the relative stability of the confined
equal-spin pairing (ESP) superfluid phases in 3He-Nafen re-
ported in Ref. [1]. This strong-coupling GL formalism also
accounts for the relative stability of the A and B phases of
pure superfluid 3He over the entire pressure-temperature range
[12], as well as the vortex phase diagram of rotating 3He-B
[13]. Using the strong-coupling GL theory, with the addition
of the impurity model for the Nafen described below, we
predict the pressure-temperature phase diagram for superfluid
3He-Nafen. The theoretically predicted phase diagram is in
excellent agreement with the experimentally reported phase
transitions observed in the ESP phases of 3He-Nafen [1].

For rotating 3He-Nafen with � ‖ ẑ we find two distinct
vortex phases within the polar and polar-distorted chiral
phases. In the polar phase region we find a stable array of
pairs of HQVs. The cores of the HQVs are found to be the
spin-polarized β phase. At lower temperatures HQVs with
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additional internal structure are found embedded in the polar-
distorted chiral phase. This HQV phase is the equilibrium
state of rotating 3He-Nafen at temperatures below the po-
lar to chiral phase transition, which is characterized by an
anisotropic chiral order parameter and spontaneous supercur-
rents flowing along the axis of the HQVs and confined near
their cores. Observation of these effects would provide key
signatures for the identification of HQVs in both the polar and
chiral phases of 3He-Nafen.

Order parameter. The GL free energy is a functional of
the order parameter, the pairing self energy for the condensate
amplitude of Cooper pairs, �σσ ′ (p) = g 〈ψσ (p)ψσ ′ (−p)〉,
where g > 0 is the pairing interaction in the p-wave, spin-
triplet channel. Thus �̂(p) = (iσασy) · dα (p) is a 2×2 matrix
in spin space,

(
�↑↑ �↑↓
�↑↓ �↓↓

)
=

(−dx(p) + idy(p) dz(p)
dz(p) dx(p) + idy(p)

)
, (1)

where dα (p) for α = {x, y, z} transforms as a vector under spin
rotations, and can be expanded in the vector basis of l = 1
spherical harmonics, dα (p) = ∑

i=x,y,z Aα ip̂i. Thus a general
spin-triplet, p-wave condensate is described by a 3×3 ma-
trix of complex amplitudes, Aαi, that transform as the vector
representation of SO(3)S with respect to the spin index α and
as the vector representation of SO(3)L with respect to the or-
bital momentum index i. This 18 dimensional order parameter
space allows for a wide variety of topologically stable defects
in superfluid 3He [14,15].

A special class of equal-spin pairing (ESP) states are those
for which �↑↓ = 0 and |�↑↑| = |�↓↓| for all p for a fixed
direction d̂ in spin space. For 3He confined in low density
Nafen, there are two bulk ESP phases: (1) the polar phase
described by an order parameter of the form AP

αi = �P d̂α n̂i,
where n̂ is the direction of the orbital pair wave function, and
(2) the chiral phase described by an order parameter of the
form AC

αi = �C d̂α (n̂i ± iεm̂i ), where a second p-wave orbital
develops with m̂ ⊥ n̂ and out of phase by ±π/2. This type of
in-plane chiral phase was also found to be a stable equilibrium
phase in 100 nm cylindrical pores [2].

The orbital axis n̂ of the polar phase is locked along the
anisotropy axis of Nafen, i.e., n̂ = ẑ. The direction of the spin
quantization axis, d̂, is weakly coupled to the orbital state
via the nuclear dipolar energy which aligns d̂ ⊥ n̂, i.e., d̂ =
cos αx̂ + sin αŷ. The angle α ∈ {0, 2π} is thus a degeneracy
variable for the ESP phase. The other degeneracy variable is
the global phase, ϑ ∈ {0, 2π}, of the amplitude, � = |�|eiϑ ,
for either the polar or chiral phase.

Half-quantum vortices. Quantized vortices with global
phase winding, �ϑ = 2π , correspond to vortices with the
standard quantum of circulation, κ = ∮

vs · dl = h/2m3,
where vs = h̄

2m3
∇ϑ is the superfluid velocity field. For ESP

phases, vortices with half the standard quantum of circulation,
i.e., global phase winding �ϑ = ±π , are possible. These
HQVs are topologically stable line defects in which the sign

change resulting from the π phase winding, �
C−→ −�, is

compensated by a sign change in the direction of the spin

quantization axis, d̂
C−→ −d̂, upon traversing a closed circuit

C . The far-field structure of the HQV is particularly clear in

the ESP basis [16],

�↑↑ = |�|ei(ϑ+α) Y (p), �↓↓ = |�|ei(ϑ−α) Y (p), (2)

where Y (p) is the orbital order parameter, e.g., Y (p) = n̂ · p̂
for the polar state and Y (p) = (n̂ + iεm̂) · p̂ for the chiral
phase. The spin-polarized amplitudes depend on the phase
variables, ϑ+ = ϑ + α and ϑ− = ϑ − α. Thus there are two
distinct HQVs with �ϑ = π corresponding to �α = +π or
�α = −π ; equivalently �ϑ+ = 2π and �ϑ− = 0, or �ϑ+ =
0 and �ϑ− = 2π , respectively. Thus an HQV is a 2π phase
vortex in only one of the two ESP condensates, which ac-
counts for mass circulation of half the normal value. It is also
clear that the two types of HQVs correspond to spin current
vortices with opposite spin polarizations. Equations (2) corre-
spond to the far-field asymptotic forms of the order parameter
of the HQVs. The general form for the HQV order param-
eter is expressed in terms of the full matrix order parameter,
Aαi(r). We first discuss the stabilization of the polar and polar-
distorted chiral phases of superfluid 3He infused into Nafen
aerogel.

Impurity model for 3He in Nafen. Ginzburg-Landau theory
has been formulated to calculate the order parameter and ther-
modynamic properties of inhomogeneous phases of superfluid
3He [2,3,12,13]. Here we develop the strong-coupling formu-
lation of GL theory for superfluid 3He infused into Nafen
aerogels.

The Ginzburg-Landau free energy functional is expressed
in terms of linearly independent invariants constructed from
Aαi, A∗

αi and their gradients, ∇ jAαi and ∇ jA∗
αi. In particular,

the GL functional can be expressed in terms of free energy
densities,

F [A] =
∫

V
d3r{ fb[A] + fZ[A] + fd[A] + f∇[A] + fimp[A]},

(3)

where the bulk free energy density, fb, is given by one second-
order invariant and five fourth-order invariants, the nuclear
Zeeman energy, fZ, and nuclear dipole-dipole energy, fd,
which are also second order in A, and the gradient energy,
f∇ , which is second order in gradients of A. These terms,
and the pressure-dependent material coefficients that define
the strong-coupling GL functional, are discussed in detail in
Ref. [13] and summarized in the Appendix. The last term
in Eq. (3), fimp, is the free energy density associated with
pair breaking by the Nafen strands. Impurities in a p-wave
superfluid are pair breaking. Elastic scattering of quasiparti-
cles comprising Cooper pairs leads to suppression of the order
parameter over a region of order the coherence length, ξ , and a
loss in condensate energy that depends on the density of impu-
rities and the quasiparticle-impurity cross section. Nafen is a
highly porous anisotropic material comprised of long strands
of crystalline Al2O3; cf. Fig. 1 of Ref. [17]. Nafen-90, with
density, ρ = 90 mg/cm3, has a mean interstrand distance of
Ls = 47.8 nm, strand lengths of order millimeters, and mean
strand radius of rs = 4.0 nm [17].

For our analysis of the effects of Nafen on liquid 3He in-
fused into the Nafen structure, we model Nafen as an array of
nonmagnetic line impurities of local areal density ns(r). The
effects of the array of anisotropic impurities on the superfluid
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phases of 3He are described to leading order in A by the
pair-breaking free energy density,

fimp = Aαi Ii j (r) A∗
α j, (4)

where Ii j (r) is a uniaxial tensor under orbital space rotations
that depends on the local areal strand density, ns(r). In general
the nematic axis varies in space. Here we treat the Nafen
strands as globally aligned along an axis, ẑ, and neglect fluc-
tuations in the orientation of the nematic axis [18]. Thus, for
uniaxial nematic aerogels, the impurity free energy density is
defined by

Ii j (r) = 1
3 Nf ξ0 ns(r) σi j, (5)

where σi j = σ⊥(δi j − ẑi ẑ j ) + σ‖ ẑi ẑ j (6)

is a uniaxial tensor that parametrizes the anisotropic scat-
tering of quasiparticles by Nafen strands with areal density,
ns(r). The coefficients σ⊥ and σ‖ determine the cross radii for
quasiparticle scattering normal to the impurity strands and at
grazing incidence along the strands, respectively. This form
for Ii j is consistent with the pair-breaking energy resulting
from scattering by impurities embedded in superfluid 3He in
Refs. [5,19]. The prefactor, 1

3 Nf ξ0, is the scale set by the
coefficient of the second-order term for the bulk condensation
energy, i.e., fb = α(T )Tr{AA†} with α(T ) = 1

3 Nf ln(T/Tc),
and the coherence length ξ0 ≡ h̄v f /2πkBTc that enters the
GL material parameters for the gradient energy density, f∇
[see Eqs. (4) and (9) of Ref. [13]]. Note that Tc is the super-
fluid transition temperature of pure, bulk 3He, Nf = 3

4 n/E f

is the normal state density of states at the Fermi level, E f =
1
2 p f v f is the Fermi energy, p f is the Fermi momentum,
v f = p f /m∗ is the Fermi velocity, m∗ is the effective mass
of the 3He quasiparticles, and n = p3

f /3π2 h̄3 is the density
of liquid 3He. All of these Fermi liquid properties, as well
as the stiffness coefficients, K1,2,3, defining the GL gradient
energy, f∇ [Eqs. (4) and (9) of Ref. [13]] and the strong-
coupling β parameters [Eqs. (2), (7), (8), and (12) of Ref. [13]]
defining the bulk free energy density, fb, depend on pres-
sure and are given in, or can be obtained from, Table II of
Ref. [13].

The second-order impurity contribution given by Eq. (4) is
essential, not only because it breaks rotation symmetry, but
also because it competes with α(T, p) Aμi A∗

μi, where α(T, p)
is vanishingly small in the GL limit, i.e., near the bulk Tc.
Uniaxial symmetry imposed on 3He by Nafen allows for
additional anisotropic impurity corrections to the the gradi-
ent energy density, f∇, as well as the fourth-order bulk free
energy density, fb. However, the gradient coefficients, e.g.,
K1 ∼ Nf ξ

2
0 , are finite near Tc. Thus Nafen with mean impu-

rity density, n̄s = 1/L2
s , generates perturbative corrections to

the gradient energies of relative order f imp
∇ / f∇ = σ||,⊥ξ0/L2

s ,
which varies from 0.06 at high pressure to 0.20 at p = 0 bar.
Thus the transition line Tc2 (p) shown in Fig. 2, as well as the
spatial variations of the order parameter, are well described by
retaining the leading order impurity term in the GL functional,
Eq. (4). The uniaxial corrections to the gradient terms and
fourth-order terms may be related to the small deviations
from experiment in the calculated transition line Tc2 (p) at

FIG. 1. Polar phase order parameter amplitude, �P(r), embed-
ded in a square lattice impurity model for Nafen-90. The amplitude
is shown for T = 0.95Tc and p = 15 bar, and is scaled in units of the
bulk polar amplitude, �P = √|α(T )|/2β12345. The parameters for the
lattice model for Nafen-90 are described in the text.

the lowest pressures, as shown in Fig. 2, but the analysis
required to check this conjecture is outside the scope of this
paper.

Phase diagram of 3He-Nafen. Nematic impurities break
the orbital rotation symmetry of pure normal 3He. As a re-
sult they split the three-dimensional p-wave representation
of SO(3)L into a one-dimensional (p̂z) orbital representation
for Cooper pairs aligned with the nematic impurities, and
a two-dimensional representation (p̂x, p̂y) for Cooper pairs
with orbital wave functions normal to the array of nematic
impurities. Pair breaking leads to suppression of the orbital
components of the p-wave Cooper pairs and a corresponding
loss in condensation energy. In particular for σ⊥ > σ‖ � 0
there is stronger suppression of the orbital components in the
plane perpendicular to the strands, i.e., p̂x,y, compared to that
for Cooper pairs in the p̂z orbital state. In this limit we expect
the onset of superfluidity into the polar phase with p-wave
orbital p̂z.

The areal density for impurities is given by ns(r) =∑Ns
i=1 δ(2)(r − ri ), where ri is the position in the two-

dimensional plane of the ith line impurity and Ns is the total
number of Nafen strands. The local density of a single line
impurity is reasonably represented by the two-dimensional
delta function when the geometric radius of the Nafen strand
is small compared to the coherence length, i.e., rs � ξ0, which
is the case for 3He infused into Nafen aerogel [20].

We investigate the pair-breaking effects of Nafen aerogel
on superfluid 3He by embedding 3He in a square lattice of
line impurities with mean areal density n̄s = 1/L2

s , where Ls

is the average interstrand distance of Nafen; cf. Fig. 1. The
second-order transition from the normal state to the polar state
is obtained from linear instability analysis as described in the
Appendix. The transition temperature is generally suppressed
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FIG. 2. Pressure-temperature phase diagram for 3He-Nafen. Ex-
perimental data for transitions from the normal to polar phase (red
squares) and for the polar to chiral phase (red diamonds) for 3He in
Nafen-90 are reproduced from Ref. [1]. The solid black curve is Tc1

calculated from Eq. (7) for σ|| = 2.565 nm. The solid blue curve is
the transition line Tc2 (p) for σ⊥ = 10.16 nm obtained by numerical
minimization of the strong-coupling GL free energy functional. The
dashed black curve is the best fit of Tc1 neglecting the Q �= 0 modes
with σ|| = 2.707 nm, while the dashed blue curve is the result for
Tc2 (p) based on the Q = 0 mode given by Eq. (A29) in the Appendix
with σ|| = 2.565 nm and σ⊥ = 8.021 nm. Insets: superfluid density
plots for the HQV pairs in the polar and chiral phases.

and given by

Tc1 = Tc

[
1 − (

n̄sξ
2
0 + β

)σ‖
ξ0

]
(7)

to leading order in σ‖/ξ0, where n̄sξ
2
0 is the dominant contribu-

tion from the Q = 0 mode, while β ≈ 0.19 ln(0.10 Ls/rs) is
a correction from the Q �= 0 modes (see the Appendix). Note
that for σ‖ = 0, corresponding to specular scattering along the
strands, i.e., p′

z = pz, there is no suppression of the superfluid
transition relative to that of pure 3He; scattering from the
strands leads only to suppression of pairing into the in-plane
px, py orbitals [21].

The experimental data (red squares in Fig. 2) for the normal
to polar transition in Nafen-90 shows that Tc1 < Tc, implying
nonspecular scattering along the strands. The theoretical result
(black line) for Tc1 from Eq. (7) is shown in Fig. 2 for a pres-
sure independent scattering cross section of σ‖ = 2.565 nm.
We also used the experimentally reported areal density, or
strand spacing Ls = 47.8 nm, and strand radius rs = 4.0 nm.
Note that the pressure dependence of Tc1 arises from the pres-
sure dependence of Tc(p) for pure 3He and the corresponding
coherence length, ξ0(p) = h̄v f /2π kB Tc, which were taken
from Table II of Ref. [13].

For Tc2 < T < Tc1 an inhomogeneous polar phase is the
equilibrium phase with order parameter, Aαi = �P(r) d̂α ẑi.
The inhomogeneity of the polar phase order parameter, in-
duced by pair breaking from the Nafen impurities, is shown
in Fig. 1. For Nafen-90 we find a second transition at Tc2 (p),
calculated and shown in Fig. 2 for in-plane scattering cross
section σ⊥ = 10.16 nm = 3.961×σ||, at which the Cooper
pairs generate p̂x,y orbitals in the presence of a dominant polar
amplitude [22]. An approximate analytic result for Tc2 (p)

based on the dominant Q = 0 mode of the linear instabil-
ity equation is shown for comparison and discussed in the
Appendix [23]. We find an order parameter that is an ESP
state with Aαi(r) = d̂α [�P(r)ẑi ± i �⊥(r)m̂i], with m̂ ⊥ ẑ.
This phase breaks time-reversal symmetry with the chiral axis
in plane, l̂ = ẑ×m̂. The strong-coupling GL theory and the
impurity lattice model for Nafen-90 accurately account for the
relative stability of the superfluid phases of 3He-Nafen [24].
Strong-coupling corrections to the GL functional are essential
for the stability of the polar-distorted chiral phase. Weak-
coupling theory predicts a polar to polar-distorted B phase
and no polar-distorted chiral phase [25,26]. Within strong-
coupling GL theory, with strong uniaxial anisotropy, the polar
to polar-distorted chiral transition persists over the full pres-
sure range for strongly anisotropic Nafen-90. Strong-coupling
effects weaken at pressures below the bulk triple point, but are
still present down to p = 0 bar. The polar-distorted B phase is
stabilized at lower temperatures for uniaxial anisotropy cor-
responding to Nafen-90, but we find that the polar-distorted
chiral phase always appears between the polar phase and the
polar-distorted B phase, if the latter is stable. See Fig. 4.2 and
the related discussion in Ref. [6].

Note that the nuclear dipolar energy [Eq. (5) in Ref. [13]]
is minimized for d̂ ⊥ ẑ for both the polar phase and the
polar-distorted chiral phase, as is the Zeeman energy for fields
parallel to the nematic axis, H ‖ ẑ. This is the configuration
suitable for topologically stable half-quantum vortices.

Half-quantum vortex pairs in the polar phase. In a ro-
tating cryostat superfluid 3He corotates with the confining
cell by nucleating an array of quantized vortices with mean
areal density given by the Feynman-Onsager relation, nv =
2�/κ3, where � is the angular speed of rotation and κ3 =
h/2m3 � 0.67×10−3 cm2/s is the quantum of circulation
for singly quantized vortices. For an array of half-quantum
vortices the circulation quantum is κ3/2 and thus corotation
requires twice the areal density of HQVs. In a cylindrical cell
of cross-sectional area 1 cm2 rotating at 1 rev/s corotation
requires approximately 1.9×104 singly quantized vortices
with mean spacing dv ≈ 70 μm. By comparison the radial
extent of the vortex core is of order 2ξ0 ≈ 0.16 μm. This
separation of length scales allows us to introduce a compu-
tational cell that is large compared to vortex-core structures
in order to determine the relative stability of different vor-
tex states for fixed areal density per circulation quantum. In
particular, for fixed rotation speed we can compare the total
energy of an array of singly quantized vortices with an array
of HQVs.

There are two distinct HQVs, as described in Eq. (2), in
which one spin component hosts a 2π phase vortex while the
time-reversed spin component is vortex free. The matrix rep-
resentation of the order parameter corresponding to the HQV
with 2π phase winding of the �↑↑ component is A+

αi(r) =
1
2 [�+(r) eiφ (x̂ + iŷ)α ẑi + �−(r) (x̂ − iŷ)α ẑi], while that for
the HQV with 2π phase winding in �↓↓ is A−

αi(r) =
1
2 [�+(r) (x̂ + iŷ)α ẑi + �−(r) eiφ (x̂ − iŷ)α ẑi]. Superfluid ro-
tation via HQVs involves pairs of these spatially separated
HQVs,

Aαi(r) = 1
2 [�+(r)eiφ+0 (x̂+iŷ)α+�−(r)eiφ−0 (x̂−iŷ)α]ẑi, (8)
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with φ±0 = arctan[y/(x ∓ x0/2)], where x0 is the distance
between the phase singularities of the HQV pair. Note that
�±(r) have zeros at ±x0/2, and that for x0 = 0 the pair of
HQVs collapse to a singly quantized vortex (SQV) in the polar
phase with spatially uniform d̂ = x̂.

We calculated the equilibrium and metastable vortex so-
lutions for corresponding pairs of HQVs, as well as SQVs,
per unit cell by numerical minimization of the strong-coupling
GL free energy functional for vortex phases in both the polar
and chiral regions of the phase diagram shown in Fig. 2. The
calculations are based on a square grid 1600 nm×1600 nm
with grid spacing h = 0.15ξ (p, T ), where ξ (p, T ) is the
GL coherence length, which is ξ ≈ 110 nm for p = 15 bar
and T/Tc = 0.95. The Nafen impurity model parameters for
Nafen-90 were used as described in the previous section, and
the self-consistent order parameter is scaled in units of the
pure polar phase amplitude, �P = √|α(T )|/2β12345. Station-
ary states of the GL functional are obtained by numerical
solution of the Euler-Lagrange equations for the order pa-
rameter, Aαi(r), using the L-BFGS numerical optimization
algorithm described in Refs. [13,27]. Convergence to a partic-
ular stationary solution generally depends on the initialization
of the order parameter and asymptotic boundary conditions.
To obtain the stable HQV pair we initialize with a starting
HQV order parameter profile. For the initial profile we use
�(r) = �P tanh(|r|/√2ξ ) for each HQV. Similarly, we ob-
tain stationary SQVs by setting x0 = 0.

In both regions of the phase diagram we find stable vor-
tex phases that are pairs of HQVs with separation of x0 �
1030 nm within a unit cell of dimension dv ≈ 70 μm. Figure 3
shows the amplitudes and phases of the pair of HQVs, where
C±0 = 1

2�±eiφ±0 are complex amplitudes expressed in terms
of the spin and orbital angular momentum tensors, λμν

αi , μ, ν ∈
{−1, 0,+1} [13]. The 2π phase winding of φ±0 for each HQV
is correlated with the zero of the corresponding amplitude.
Note that there is no difference in the vortex structure, or
relative stability, for axially aligned fields H = 0–370G �̂, as
expected for d̂ ⊥ H.

Supercurrents and spin-polarization. Key signatures of the
pair of HQVs in the polar phase are the broken axial symmetry
of the supercurrents and the local magnetic moment associ-
ated with the two spin-polarized components of the HQV pair.
The much denser array of line impurities leads to suppression
of the polar amplitude, �P(r), relative to the bulk amplitude,
�P, while inhomogeneity of the order parameter induced by
local pair breaking from line impurities leads to weak pin-
ning of the HQV cores at impurity sites. The superfluid mass
current in the rest frame of the excitations, i.e., the frame
corotating with the cell, is

ji = j0 Im
(
A∗

α j∇ jAαi + A∗
α j∇iAα j + A∗

αi∇ jAα j
)
, (9)

where j0 = 4m3 K1/h̄ with the gradient coefficient given by
K1 = [7ζ (3)/60]Nf ξ

2
0 and m3 is the atomic mass of 3He.

The resulting vortex supercurrents for the pair of HQVs in
the polar phase break local axial symmetry, compared to the
currents of an SQV, as shown in the bottom panel of Fig. 3.

Each member of the HQV pair is also spin polarized.
The resulting zero-field magnetization density for the HQV
pair is given by m(r) = m0(|C+0|2 − |C−0|2)�̂, where m0 =
g′

z|�P|2. The GL material parameter g′
z leads to a magne-

FIG. 3. Upper panel: amplitudes for the two components, |C±0|,
of the HQV pair at p = 15 bar and T = 0.95Tc calculated on a square
grid with linear dimension 1600 nm ≈ 15ξ (T ). The corresponding
phase plots showing the 2π vortices for each component of the HQV
pair are shown in the second panel. Third panel: the magnetization
densities of the HQV pair in the ESP basis. Bottom panel: vector plot
showing the broken axial symmetry in the mass current density for
the HQV pair.

tization density of order m0 ≈ n(γ h̄) ln(E f /kBTc)(�P/E f )2

[28,29]. The magnetization density of the HQV pair in the
ESP basis is shown in the third panel of Fig. 3. Note that the
m↑↑ and m↓↓ contributions to the magnetic moment exactly
cancel, i.e., the net magnetic moment induced by vortex flow
vanishes identically, i.e., there is no vortex-induced Barnett
effect for the HQV pair in the polar phase. This result contrasts
with the vortex-induced Barnett effect for vortices in 3He-B or
3P2 vortices in neutron matter [13,28–30]. Our interpretation
is that for the polar state the intrinsic orbital angular momen-
tum of the pair condensate vanishes [31], and thus there is
no transfer of intrinsic orbital angular momentum into spin
angular momentum induced by rotation.

HQVs in the chiral phase. At temperatures T < Tc2 we also
find stable HQV pairs within the polar-distorted chiral phase.
This phase is obtained by nucleating in-plane Cooper pairs
in orbital, say p̂y, in the presence of the polar phase. Strong-
coupling corrections to weak-coupling BCS theory favors a
chiral A-like phase of the form AC

αi = �C x̂α (ẑi ± iεŷi ), with
the chiral axis in plane, e.g., in this case l̂ = ±x̂. This is also an
ESP state that can host HQVs. Indeed HQVs were originally
proposed as topologically stable line defects in the A phase of
bulk 3He [7]. Consideration of the cost in dipole energy, which
prefers d̂|| ± l in pure 3He-A, favors collapse of the HQV pair
into an SQV; however, the dipolar energy is not destabilizing
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FIG. 4. Spontaneous supercurrent flowing along the polar axis
ẑ, in units of j0, despite having zero phase gradient along this axis.
Taken at p = 15 bar and T = 0.85Tc.

for HQV pairs in the polar phase [32,33]. Similarly, for the
chiral phase in Nafen, the polar component is dominant, and
thus the dipolar energy does not lead to instability of the HQV
pairs.

The basic structure of HQV pairs in the polar-distorted
chiral phase is a simple generalization of Eq. (8) obtained
by the replacement ẑi → ẑi + iε(r)ŷi, where ε(r) defines the
local chiral amplitude. Initialization of the HQV pair pro-
ceeds similarly to that for HQVs in the polar phase with the
additional initialization of ε � 1 to that for the equilibrium
chiral phase in the absence of rotation. In addition, for Aαi

with i = x, y, we impose a condition of zero gradient on the
computational boundary.

Axial supercurrent. A signature of the polar-distorted chiral
phase is the existence of supercurrents flowing parallel to
the vortex axis. The existence of the axial supercurrent is
easily deduced from the first and third terms of Eq. (9) for the
polar-distorted chiral phase with in-plane orbital components.
There are two counterpropagating axial currents centered on
the two HQV cores as shown in Fig. 4. Similar axial currents
were found earlier for the in-plane chiral phase confined in a
cylindrical pore [2]. However, in that case the currents reside
on disclination lines pinned to the boundary wall. These cur-
rents are related to the topology of chiral phases. Any defect
or boundary that suppresses the chiral phase generates edge
currents confined near the defect or boundary [34]. This fact
also explains the background axial current shown in Fig. 4.
These are edge currents generated by the array of line impuri-
ties representing the Nafen strands [35].

An idea for observing the axial currents, previously pro-
posed for the D-core vortex in 3He-B [13], is to inject
electrons perpendicular to the nematic axis of 3He-Nafen from
the outer cell boundary. In the presence of axial currents the
electrons will be transported in 3He parallel to the nematic
axis, and can be captured and detected by imaging on the
top and bottom surfaces of the cell. Such a detection of axial

supercurrents in the polar-distorted chiral phase of 3He-Nafen
would provide strong evidence of broken time-reversal sym-
metry and nontrivial topology in this phase of 3He.

Summary. The theoretical pressure-temperature phase
diagram based on strong-coupling GL theory and the line-
impurity pair-breaking free energy is in excellent agreement
with experimental results for the normal to polar transition
and a second transition identified as a polar to polar-distorted
chiral phase by Dmitriev et al. [1]. Both phases are ESP states
that support topologically stable half-quantum vortices. The-
oretical calculations of stable HQV pair vortex arrays support
the observation based on NMR of the detection of HQVs in
rotating superfluid 3He-Nafen, in both the polar and polar-
distorted chiral phase. We also report signatures of the HQV
pair arrays in 3He-Nafen, including anisotropic supercurrents,
locally ferromagnetic HQV cores, and axial supercurrents in
the chiral phase whose observation would provide key signa-
tures of HQVs in rotating superfluid 3He, and confirmation of
the identification of HQVs in these superfluid phases of 3He
confined in nematic aerogels.

Acknowledgments. We thank W.-T. Lin for discussions on
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This research was supported by the National Science Founda-
tion (Grant No. DMR-1508730).

APPENDIX: GINZBURG-LANDAU THEORY

The Ginzburg-Landau free energy functional [Eq. (3)] is
defined in terms of bulk, gradient, Zeeman, and impurity free
energy densities. The bulk condensation energy density is
given by six linearly independent invariants,

fb[A] = α(T )Tr{AA†} + β1|Tr{AAT }|2

+ β2[Tr{AA†}]2 + β3 Tr{AAT (AAT )∗}
+ β4 Tr{(AA†)2} + β5 Tr{AA†(AA†)∗}, (A1)

where A† (AT ) is the adjoint (transpose) of A. Spatial
variations of the order parameter, representing kinetic and
deformation energies, are described by three linearly indepen-
dent gradient terms,

f∇[A] = K1A∗
α j,kAα j,k + K2A∗

α j, jAαk,k + K3A∗
α j,kAαk, j, (A2)

where Aαi, j ≡ ∇ jAαi. The gradient energy contributes to the
total energy cost from impurity pair breaking, as well as
kinetic and core deformation energies of quantized vortices.

In the weak coupling limit the GL material parameters α,
βi, and Kj are given by

α(p, T ) = 1

3
Nf (T/Tc − 1), (A3)

2βwc
1 = −βwc

2 = −βwc
3 = −βwc

4 = βwc
5 , (A4)

with βwc
1 = − 7Nf ζ (3)

240(πkBTc)2
(A5)

and K1 = K2 = K3 = 7ζ (3)

60
Nf ξ 2

0 , (A6)

where ξ0 = h̄v f /2πkBTc is the zero-temperature Cooper
pair correlation length, Nf = m∗k f /2π2h̄2 is the single-spin
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normal-state density of states at the Fermi level, with p f =
h̄k f the Fermi momentum and m∗ = p f /v f the effective mass
for quasiparticles with Fermi velocity v f . The temperature-
dependent GL correlation length, which is the relevant healing
length scale for impurity pair breaking and vortex-core size, is
given by

ξ (p, T ) = ξGL√
1 − T/Tc

, (A7)

where ξGL = [7ζ (3)/20]1/2ξ0. Strong-coupling corrections
enter into the free energy functional through the fourth-order
β parameters,

βi(p, T ) = βwc
i (p, Tc) + T

Tc
�βsc

i (p), (A8)

where Tc(p) is the bulk superfluid transition temperature,
and the �βi values were calculated in Ref. [6]. Note that
the strong-coupling corrections are temperature and pres-
sure dependent, which extends the standard GL theory to
lower temperatures away from Tc(p), and in particular can
account for the A-B transition and triple point in the pressure-
temperature phase diagram of bulk 3He [12]. The most
accurate theoretical results for the strong-coupling beta pa-
rameters from Ref. [6] are tabulated in Tables I and II of
Ref. [13] for easy access.

The nuclear Zeeman energy for spin-triplet pairs also plays
a role in the structure of HQVs. There are two field-dependent
contributions to the GL functional,

fZ1 [A] = g′
zIm{εαβγ (A A†)αβ Hγ }, (A9)

fZ2 [A] = gz Hα (AA†)αβ Hβ, (A10)

where the quadratic Zeeman coupling is given by

gz = 7ζ (3)

48π2

Nf (γ h̄)2[(
1 + F a

0

)
kBTc

]2 > 0, (A11)

with γ being the nuclear gyromagnetic ratio of 3He and
F a

0 ≈ −0.75 the ferromagnetic exchange interaction between
3He quasiparticles. For both the polar and chiral ESP states
the quadratic Zeeman energy reduces to fZ2 = gz�

2 (d̂ · H)2,
and takes its minimum value for H||ẑ and d̂ ⊥ ẑ. This is
the d̂ vector configuration favored by the dipolar energy for
these two states, and is also the configuration that supports
topologically stable HQVs in these two phases of 3He-Nafen.
The linear Zeeman energy has a smaller material coefficient,
g′

z = λ (kBTc/E f ) gz � gz, where λ ∼ O (1), but is important
in that for nonunitary states, such as the β phase which de-
velops in the cores of HQVs in the two ESP condensates,
Eq. (A9) is the Zeeman energy associated with the intrinsic
magnetization of the nonunitary triplet state, i.e.,

mγ = −∂ fZ1

∂Hγ

= g′
z Im εαβγ (A A†)αβ. (A12)

Stability analyses. To determine inhomogeneous equilib-
rium phases in the presence of impurity disorder and under
rotation we minimize the strong-coupling GL functional by
solving the Euler-Lagrange equations with appropriate bound-
ary conditions, then select the lowest energy state among
the stationary solutions, e.g., an array of HQV pairs or the

SQV array. The computational procedures for 3He in confined
geometries, and under rotation via an array of topologi-
cally stable quantized vortices, are described in detail in
Refs. [2,3,6,12,13]. The new physics introduced here is the
term in the GL free energy functional for 3He-Nafen repre-
senting the pair-breaking energy from the array of nematically
aligned impurities, i.e., Eqs. (4)–(6). To leading order in the
order parameter, the effect of the array of line impurities
embedded in superfluid 3He is given by the quadratic terms,

F (2)
GL =

∫
V

d3r {α(p, T )Tr{AA†} + Aαi Ii j (r) A∗
α j

+ K1 (∇iAα j ∇iA
∗
α j + ∇iAαi ∇ jA

∗
α j + ∇iAα j ∇ jA

∗
αi )}.

(A13)

The second-order phase transition from the normal state to
the inhomogeneous superfluid state is obtained from linear
instability analysis applied to Eq. (A13). The corresponding
stationarity condition, δF (2)

GL /δA∗
αi = 0, becomes

α(T ) Aαi(r) + Aα j (r) I ji(r)

−K1 ∇2 Aαi(r) − 2K1 ∇i∇ j Aα j (r) = 0, (A14)

which is an eigenvalue equation for the order parameter and
transition temperature to the inhomogeneous superfluid phase
of 3He-Nafen. For 3He embedded in a periodic array of line
impurities we impose periodic boundary conditions in the
(x, y) plane, and seek a solution that is translationally invariant
along z. This allows us to express Aαi(r) in terms of a Fourier
series,

Aαi(r) =
∑

Q

Ãαi(Q) eiQ·r, (A15)

where Q = 2π
Ls

(nxex + nyey) with nx, ny ∈ Z. Fourier trans-
forming Eq. (A14) decouples equations for the orbital
components aligned with, and orthogonal to, the nematic axis
ẑ. Furthermore, for 0 � σ‖ < σ⊥ the onset of superfluidity is
to the polar phase with

Aαz(r) = −1

3
Nf n̄s ξ0σ‖

∑
Q

eiQ·r F (Q)

α(T ) + K1 Q2
Aαz(0),

(A16)

where Aαz(0) is the amplitude of the polar order parameter
at the position of the impurity centered in the unit cell. We
include the form factor F (Q) for the short distance structure
of the line impurity on the scale of the strand diameter, rs �
Ls, ξ0. The form factor regulates the short-wavelength diver-
gence that is an artifact of the delta function representation for
the local areal density. Specifically we model the local strand
density of a single impurity by a Gaussian areal density distri-
bution, nimp(r) = A e−r2/2r2

s , where A = 1/2π
√

π r2
s . Thus

nimp(r) −−→
rs→0

δ(2)(r). However, in Nafen the strand dimension

is small but finite, rs ≈ 4 nm � Ls, ξ0, and thus provides
an ultraviolet cutoff to the Fourier sum via the structure
factor,

F (Q) ≡
∫

d2r e−iQ·r nimp(r) = e−|Q|2 r2
s /2. (A17)
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The equation for the eigenfunction and eigenvalue (tran-
sition temperature) for the normal to polar transition is then
given by Eq. (A16):{

1 + 1

3
Nf n̄s ξ0σ‖

∑
Q

F (Q)

α(Tc1 ) + K1 Q2

}
Aαz(0) = 0. (A18)

For a nontrivial solution, i.e., Aαz(0) �= 0, we obtain the tran-
scendental equation for Tc1 ,

tc1 + (
n̄s ξ 2

0

) σ‖
ξ0

⎡
⎣1 + 2

∞∑
nx=1

∞∑
ny=1

tc1 e−Q2r2
s /2

tc1 + 7ζ (3)
20 Q2ξ 2

0

⎤
⎦ = 0, (A19)

where tc1 ≡ Tc1/Tc − 1. The first term inside the square
brackets is the contribution from the Q = 0 mode. The con-
tributions from the finite wavelength modes are calculated
with the leading term from the Euler-Maclaurin formula. Then
Q1 = 2π/Ls provides the long-wavelength cutoff to the inte-
gral approximation to the sum,

S ≡ 2
∞∑

nx=1

∞∑
ny=1

tc1 e−Q2r2
s /2

tc1 + 7ζ (3)
20 Q2ξ 2

0

� 10

7ζ (3)π n̄sξ
2
0

∫ ∞

Q1

dQ
Q e−Q2r2

s /2

Q2 − Q2
c

, (A20)

where Q2
c ≡ 20

7ζ (3) |tc1 |/ξ 2
0 . This long-wavelength scale is set

by the GL coherence length at Tc1 . In particular, Qc/Q1 =
Ls/2πξGL(Tc1 ) ≈ 0.08 for p ≈ 4 bar and |tc1 | ≈ 0.1. Thus
we have this hierarchy of wavelengths, Qc � Q1 � π

rs
, and

thus we can drop Qc in the denominator of the integral in
Eq. (A20), in which case we obtain

I =
∫ ∞

Q1

dQ

Q
e−Q2r2

s /2 = 1

2

∫ ∞
√

πrs/Ls

dt

t
e−t , (A21)

which is related to the exponential integral,

2I (x) =
∫ ∞

x

dt

t
e−t ≡ −Ei(−x) (A22)

= −γE − ln(x) −
∫ x

0

dt

t
(e−t − 1), (A23)

where γE ≈ 0.57722 is the Euler-Mascheroni constant [36].
Thus, in the limit 0 < x � 1, we have I (x) � − 1

2 ln(eγE x) +
O (x). Noting that Ls/rs � 1, then applying the leading order
result to Eq. (A21) gives us the sum over modes,

S ≈ 1

2π

5

7ζ (3)

(
n̄sξ

2
0

)−1
ln

(
e−2γE Ls

πrs

)
. (A24)

The resulting equation for Tc1 then becomes

Tc1 = Tc

[
1 − (

n̄sξ
2
0

) σ‖
ξ0

1 + 5
7ζ (3)π ln

(
e−2γE

π
Ls
rs

) σ‖
ξ0

]
. (A25)

To leading order in σ‖/ξ0 we obtain Eq. (7) with

β = 5

7ζ (3)π
ln

(
e−2γE

π

Ls

rs

)
� 0.19 ln

(
0.10

Ls

rs

)
, (A26)

which gives near perfect agreement with the experimentally
measured transition temperature over the full pressure range
with a pressure independent scattering cross section, σ‖ =
2.565 nm. Note that, while the Q �= 0 modes contribute a
measurable correction to Tc1/Tc, the dominant contribution
comes from the Q = 0.

Polar to chiral transition. The second-order polar to polar-
distorted chiral transition can also be analyzed using linear
stability analysis, in this case by expanding the full GL free
energy functional about the polar state to leading order in the
in-plane order parameter at temperature near T → Tc2 ; i.e.,
write

Aαi(r) = �P(r) d̂α ẑi ± i�⊥(r) d̂α x̂i, (A27)

and expand the full FGL functional to quadratic order in �⊥.
The expansion of Eq. (A1) for the fourth-order terms simpli-
fies considerably for these two ESP order parameters that have
orthogonal orbital components,

fGL = 1

2
α‖|�P(r)|2

+
[
α⊥ − α‖

β245 − β13

β245 + β13

]
|�⊥(r)|2, (A28)

where α||,⊥ = α(p, T ) + 1
3 Nf n̄s ξ0 σ||,⊥. The first term is the

condensation energy of the polar state, while the second
line are the terms quadratic in the transverse component of
the polar-distorted chiral phase order parameter. Since �P(r)
is also periodic within the lattice model for Nafen we can
express the linear instability equation for �⊥ in terms of
Fourier mode amplitudes. In addition to the form factor for
the impurity strand, F (Q), which provides an effective cut-
off at Q ≈ π/rs, the polar order parameter varies on the
longer wavelength scales, i.e., Q ≈ π/ξ . If we retain only
the Q = 0 contribution to the instability equation we obtain
the following analytic form for the polar to chiral transition
temperature:

Tc2 = Tc

{
1−n̄sξ0

[
β13(σ⊥+ σ‖)+β245(σ⊥− σ‖)

2β13

]}
, (A29)

where βi j...k = βi + β j + · · · + βk . Note that β245 is the com-
bination of β parameters that defines the condensation energy
of the bulk (chiral) A phase, while β13 = βP − βA, where
βP = β12345 is the combination of β parameters that defines
the condensation energy of the bulk polar phase. Note also
that, unlike Eq. (7), Eq. (A29) is a transcendental equation for
Tc2 since β245 and β13 are functions of pressure and tempera-
ture as defined by Eq. (A8). The normal to polar transition, Tc1 ,
given by Eq. (7), which includes the Q �= 0 correction associ-
ated with impurity pair breaking, describes the experimental
data over the full pressure range with a pressure independent
cross section, σ|| = 2.565 nm. The exact result for Tc2 (p),
obtained by numerical solution of the GL equations shown in
Fig. 2, includes the effect of the Q �= 0 modes from pair break-
ing by the array on line impurities. The phase boundary Tc2 (p)
shown as the solid blue line corresponds to σ⊥ = 10.16 nm.
The Q �= 0 modes from the fully established spatial variations
of the polar order parameter play a more significant role in
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determining the polar to chiral transition line. For comparison,
the Q = 0 approximation for Tc2 (p) calculated from Eq. (A29)

and Eqs. (A4), (A5), and (A8) is shown in Fig. 2 (dashed blue
line) for a pressure independent cross section σ⊥ = 8.021 nm.
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