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We show that in type-II superconductors a magnetic field applied transversely to correlated columnar disorder
drives a phase transition to a distinct “smectic” vortex glass (SmVG) state. SmVG is characterized by an
infinitely anisotropic electrical transport, resistive (dissipationless) for current perpendicular to (along) columnar
defects. Its positional order is also quite unusual, long-ranged with true Bragg peaks along columnar defects
and logarithmically rough vortex lattice distortions with quasi-Bragg peaks transverse to columnar defects. For
low temperatures and sufficiently weak columnar-only disorder, SmVG is a true topologically ordered “Bragg
glass,” characterized by a vanishing dislocation density. At sufficiently long scales the residual ever-present point
disorder converts this state to a more standard but highly anisotropic vortex glass.
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I. INTRODUCTION

A. Background and motivation

The discovery of high-temperature superconductors, now
more than 30 years ago, in parallel with a search for the
microscopic “mechanism” (that continues to date) generated
vigorous studies of vortex states of matter in the presence of
thermal fluctuations, pinning disorder and electrical (“super”)
current in and out of equilibrium [1–6], predicting and finding
a rich magnetic field (H)–temperature (T ) phase diagram of
these type-II superconductors [7].

In contrast to a mean-field picture, thermal fluctuations
drive a first-order melting of a vortex lattice over a large
portion of the phase diagram into a resistive (though highly
diamagnetic) vortex liquid [8–11].

In the low-temperature vortex solid state, arbitrarily weak
point pinning disorder, on sufficiently long scale [12,13],
always disrupts translational order of the vortex lattice. Sup-
ported by experimental observations [14], it was argued
[3,15–17] that the resulting vortex glass state is characterized
by an Edwards-Anderson [18] order parameter, with vortices
collectively pinned, and thereby exhibiting a vanishing linear
mobility, implying a zero linear resistivity of the vortex glass
state [3]. For weak disorder, a distinct topologically ordered
vortex Bragg glass, characterized by a vanishing density of
unpaired dislocations and concomitant power-law decay of
crystalline order, was also proposed [19], supported by further
analytical [20–22] and numerical [23,24] analyses and by
neutron scattering experiments [25].

Introduction (via heavy-ion irradiation) of columnar pin-
ning defects significantly enhances pinning [26], and for a
magnetic field along columnar defects was predicted to lead
to an anisotropic vortex glass dubbed “Bose glass” [27,28]
because of its mathematical connection to interacting two-
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dimensional (2D) quantum bosons pinned by a quenched
(time-independent) random 2D potential [29].

One key feature of the vortex Bose glass that qualita-
tively distinguishes it from the corresponding isotropic vortex
glass is the existence of the “transverse” Meissner effect
[28], namely a vanishing response to a field H⊥ < Hc1

⊥ , ap-
plied transversely to columnar defects. This expulsion of the
transverse flux density, B⊥, which has received considerable
experimental [30] and simulation [31] support, corresponds
to an effectively divergent tilt modulus [28,32] inside this
anisotropic vortex glass, which in the quantum correspon-
dence maps onto a vanishing superfluid density in the Bose
glass phase. A detailed theoretical description of the trans-
verse Meissner effect (as well as other properties of the phase)
has been predominantly limited to noninteracting vortex lines
[28,33], supported by variable-range hopping [34] scaling
theories [28,31,33,35], analysis in reduced planar geometry
[36,37], and simulations [31,38].

As illustrated in Fig. 1(c), vortex Bose glass is thus con-
fined to the low-temperature and low-transverse-magnetic-
field part of the phase diagram [28]. To date, it has been tacitly
assumed that beyond the critical value Hc1

⊥ of the transverse
field, the tilted state is a vortex liquid or crystal (a conventional
vortex glass in the presence of residual point disorder [33])
with a finite resistivity and a finite tilt modulus, qualitatively
the same vortex phase appearing above melting transition at
Tg. Our goal here is to explore and characterize a highly tilted
vortex geometry illustrated in Fig. 1(a), which, in the absence
of point disorder at large tilting angle (∼π/2), H⊥ � Hc1

⊥ , we
show is a qualitatively distinct vortex glass phase, which we
dub as “smectic” vortex glass (SmVG). In fact, dating almost
20 years back, this regime has been explored experimentally
[39], finding interesting anomalous behavior in the magnetic
ac susceptometry and electrical transport, and motivating our
theoretical study, which has taken this long to formalize.

The rest of the paper is organized as follows. We conclude
the Introduction with a summary of our main results. In Sec. II
we introduce an elastic model to describe a vortex array,
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FIG. 1. (a) Illustration of the transverse magnetic field geometry
in a positionally random array of parallel columnar defects, leading
to the “smectic vortex glass” (SmVG) phase in (c). (b) Vortex lines’
tilt response to an applied field, applied transversely to a colum-
nar defect. (c) A schematic phase diagram, illustrating a transverse
Meissner effect up to field Hc1

⊥ (T ), at which at low T a fully super-
conducting “Bose glass” undergoes a transition to a SmVG.

tilted at a large angle relative to the random forest of parallel
columnar defects. Because pinning disorder does not couple to
displacements along columnar defects, in Sec. III we reduce
the system to an effective scalar model for a transverse-only
distortion characterized by long-range elasticity, resembling
an effective planar vortex glass model [15]. We analyze this
model within and beyond the Larkin length scale [12,13]
and thereby predict the existence of a new glassy state of
anisotropic vortex matter, which because of its periodic po-
sitional order along columnar defects we refer to as “smectic”
vortex glass. In Sec. IV we discuss the stability of the SmVG
to dislocations and conclude in Sec. V with the summary,
discussion, and open questions.

B. Summary of the results

As illustrated in Fig. 1(a), we focus on the large tilt angle,
around a configuration of vortex lines transverse to columnar
defects, staying away from the nontrivial vicinity of the criti-
cal field Hc1

⊥ [33,37].
In this geometry, in the absence of point disorder, we pre-

dict that a qualitatively distinct, highly anisotropic “smectic”
vortex glass [40] emerges. Structurally, it is characterized
by a periodic vortex order along the translationally invariant
columnar defects axis with smectic-like (but here δ-function

FIG. 2. A schematic form of the structure function S(qx, qz ) char-
acterizing smectic vortex glass order. In the absence of point disorder
it exhibits resolution-limited δ-function Bragg peaks along columnar
defects (qz) and universal quasi-Bragg peaks along the transverse
axis (qx).

“true”) Bragg peaks,

S(0, qz ) ∼
∑

n

InQzδ(qz − nQz ), (1)

illustrated in Fig. 2, with IQ(T ) a standard phonon Debye-
Waller factor.

In contrast, vortices are randomly pinned transversely by
cross sections of columnar defects (with each plane akin to
a Cardy-Ostlund planar vortex glass [15–17]), with “rough”
transverse distortions, which for weak disorder are logarith-
mically (rather than ln2 L) rough,

1
2 〈u(x) − u(0)〉2 ≈ Q−2

x η ln(x/a), (2)

with the universal amplitude η computed to lowest order in
ε = 5 − d expansion using functional renormalization group
analysis, with η ≈ 2π2/9 in 3D (identical to that found in
Ref. [19]). This asymptotic result is valid for lengths exceed-
ing the Larkin scale,

ξL = a
√

K̃2/�, (3)

where K̃ is the effective elastic constant and � the variance of
the random force pinning disorder.

We thus predict that SmVG displays quasi-Bragg peaks
[19], transverse to columnar defects,

S(qx, 0) ∼
∑

n

1

|qx − nQx|1−n2η
, (4)

illustrated in Fig. 2, with a universal power-law exponent η ≈
2π2/9. We note that if this approximate value of η is indeed
greater than 1, we then predict only cusp singularities, rather
than divergent quasi-Bragg peaks, to appear at the reciprocal
lattice vectors, nQx, n ∈ Z.

To the extent that the disorder imposed by columnar de-
fects is perfectly correlated along their axis (taken as z), we
predict that vortex planes of the SmVG, transverse to colum-
nar defects, exhibit true 2D topological “Bragg” glass order
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FIG. 3. A schematic illustration of infinitely anisotropic resis-
tance (in the absence of additional point disorder) along Rzz and
perpendicular Rxx to columnar defects characterizing the smectic
vortex glass state. In a more realistic case of residual point pinning,
at sufficiently low temperatures and long scales the state will freeze
into a fully dissipationless superconducting highly anisotropic vortex
glass.

[15,19,22,25,41,42], characterized by a vanishing dislocation
density, with only elastic single-valued distortions as illus-
trated in Fig. 1(a) and the inset of Fig. 2.

For strong disorder and/or high temperature, dislocations
may spontaneously proliferate, driving a topological transition
to a fully disordered vortex-glass-like state [3], with transverse
distortions characterized by a Lorentzian structure function
along qx.

Concomitantly, as illustrated in Fig. 3 we predict such
smectic vortex glass state (in the idealized case of no addi-
tional pinning disorder) to exhibit a striking infinite resistive
anisotropy. For current transverse to columnar defects and to
the magnetic field, a free motion of vortices along homoge-
nous columnar defects leads to a nonzero flux-flow resistivity
ρ⊥ ∼ (B/Hc2)ρn, with ρn resistivity arising from normal car-
riers residing in the vortex core, superfluid phase slip, and
time-dependent flux associated with moving vortices. In con-
trast, for current along columnar defects vortex motion is
impeded by columnar defects, exhibiting a vanishing linear
resistivity of the vortex glass state [3,15]. Thus, we predict a
vanishing of the resistivity ratio,

ρzz/ρxx → 0, (5)

inside the smectic vortex glass.
We also predict that the smectic vortex glass, viewed as an

effective elastic medium, exhibits a vanishing response ∂zux to
shear stress σzx in the zx plane transverse to applied magnetic
field (i.e., transverse to vortex lines), defined by the columnar
defects (z) axis. SmVG is thus characterized by a divergent
shear modulus,

μzx → ∞. (6)

However, unlike the Bose glass vortex state, where such
divergent tilt modulus can be readily probed via a vanishing
response to a magnetic field transverse to columnar defects—
the “transverse Meissner effect” [28,32,33]—here there does
not appear to be a simple way to probe the vanishing SmVG
response corresponding to (6).

We now turn to the vortex model in this transverse geome-
try and to the derivation of these results.

II. MODEL OF THE SMECTIC VORTEX GLASS

In a type-II superconductor, for fields above a lower-critical
field, Hc1, the magnetic flux penetrates in the form of in-
teracting vortex flux lines carrying a unit of a fundamental
flux quantum φ0 = hc/2e, with average density determined
by the applied magnetic field [7]. At low temperature and in
the absence of disorder, repulsive directed vortex lines crys-
talize into a periodic triangular array—an Abrikosov vortex
lattice—whose elastic description [1,43,44] can be derived
from the Ginzburg-Landau theory for the superconducting
order parameter, which itself, under certain conditions, is
derivable from the microscopic theory.

A. Elasticity and columnar pinning for
a transverse magnetic field

Transcending such a detailed derivation, on sufficiently
long length scale the elastic vortex lattice energy functional
can be deduced purely on symmetry grounds. In three-
dimensions, it is formulated in terms of a two-dimensional
Eulerian phonon vector field (Goldstone modes of the
spontaneously broken translational symmetry) u(r⊥, y) =
(ux(x, y, z), uz(x, y, z)) describing vortex lattice distortion in
the x-z plane [spanned by r⊥ = (x, 0, z)], transverse to the
vortex lines, which we take to run along the y axis, as illus-
trated in Fig. 1(a).

Such a triangular vortex crystal state is then characterized
by an elastic energy that, in the absence of other ingredients,
is an isotropic functional of u,

Hel =
∫

r

[
K

2
(∂yu)2 + μu2

i j + λ

2
u2

ii

]
, (7)

with
∫

r ≡ ∫
d2r⊥dy ≡ ∫

dxdz, x = (x, y, 0), K a tilt modu-
lus, and μ, λ the elastic Lamé coefficients [46].

A random array of parallel columnar defects (see Fig. 1)
oriented along ẑ transversely to vortex lines along ŷ intro-
duces a random highly anisotropic pinning potential V (x, y)
that couples to the two-dimensional [in a plane spanned by
r⊥ = (x, 0, z)] vortex density,

n(r) ≈ n0 − n0∇⊥ · u +
∑

Q

nQ eiQ·[r⊥+u(r)], (8)

and a random tilting potential δKi(x, y), which for the π/2
transverse-field geometry of Fig. 1(a) couples to the even
power of the vortex lattice tilt ∂yu, thereby preserving the
±∂yu symmetry. The resulting pinning energy functional is
given by [45]

Hpin =
∫

r

[
δKi(x, y)

2
(∂yui )

2 + n0V (x, y)∇⊥ · u

−V (x, y)
∑

Q

nQ eiQ·[r⊥+u(r)]

]
, (9)

where n0 is the average density and nQ are the Fourier com-
ponents of the vortex density at the discrete set of reciprocal
lattice vectors, Q. By symmetry, the average columnar defect
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density results in a biaxial lattice anisotropy [46] and the
tilt modulus, with correction δKi = δKi(x, y), expected to be
δKz < 0 and δKx ≈ 0. This can be accounted for by K → Ki.
Because δKi(x, y) is coupled to the square of the vortex tilt,
for weak heterogeneity fluctuations around its average are
subdominant at long scales.

Furthermore, because columnar defects are transla-
tionally invariant, the corresponding pinning potential
V (x, y) is z independent, and thus long-wavelength pinning∫

r n0V (x, y)∇⊥ · u reduces to
∫

r U0(x, y)∂xux, only coupling
to the ux(x, y) displacement transverse to the columnar defect.
As in other random pinning problems [19,41,42] standard
analysis shows that the long-wavelength part of the pinning
is perturbatively subdominant for weak disorder in 3D (in
contrast to the 2D Fisher-Cardy-Ostlund pinning, where it
leads to a super-rough glass [15–17] with ln2 r correlations).
However, as we will see it does play a role at asymptotic scales
in the physical 3D case.

The z independence of V (x, y) also reflects itself in the
averaging out of the short-scale density components nQ with a
nonzero Qzẑ reciprocal lattice vector. Thus, uz(r) only appears
harmonically, and the nonlinear short-scale pinning only acts
on ux(r). The full effective Hamiltonian then reduces to [45]

H =
∫

r

[
1

2
uîi ju j + U0(x, y)∂xux + U (x, y, ux (r))

]
, (10)

where we take U0(x, y) to be characterized by a zero-mean
Gaussian distribution with variance R0,

U0(x, y)U0(x′, y′) = R0δ(x − x′)δ(y − y′). (11)

The short-scale pinning potential,

U (x, y, ux (r)) =
∑

Q

UQ(x, y)eiQux (r), (12)

has Fourier component at Q ≡ Qx given by

UQ(x, y) = −
∫

∈unit-cell at x
dδxV (x + δx, y)nQeiQδx, (13)

and we take it to be zero mean, Gaussian correlated, and
characterized by a variance

U (x, y, ux )U (x′, y′, u′
x ) = R(ux − u′

x )δ(x − x′)δ(y − y′).
(14)

The periodicity of U (x, y, ux + 2π/Q) = U (x, y, ux ) [and
therefore of R(ux )] in ux reflects the identity symmetry of
vortex lines. The Fourier transform of the inverse propagator
̂i j (for now ignoring (here) unimportant anisotropies [46]) is
given by

i j (q) = (Kq2
y + μq2

⊥)PT
i j + [

Kq2
y + (2μ + λ)q2

⊥
]
PL

i j, (15)

with PT,L
i j (q⊥) the transverse and longitudinal projection op-

erators with respect to q⊥.

B. Reduction to a correlated random-field xy model

It is now quite clear how to proceed. Because uz only enters
the Hamiltonian harmonically, we can integrate it out exactly,
obtaining an effective xy model for a single phonon ux that is
nontrivially pinned by a z-independent random potential, that

is short-ranged in the x-y plane. Standard analysis gives an
effective Hamiltonian

H̃ =
∫

r

[
1

2
ux

ˆ̃ux + U0(x, y)∂xux + U (x, y, ux (r))
]
, (16)

where ˆ̃ is the effective elastic kernel, whose Fourier trans-
form ̃(q) = (xxzz − 2

zx )/zz = 1/(̂−1)xx is given by

̃(qx, qy, qz ) =
(
Kq2

y + μq2
⊥
)[

Kq2
y + (2μ + λ)q2

⊥
]

[
Kq2

y + μq2
⊥ + (μ + λ)q2

z

] . (17)

As expected, though long-ranged, it scales as q2, by power-
counting akin to a random field xy model.

Minimization of H in (10) over uz shows that in the ground
state (relevant for zero temperature), neglecting boundary
contributions and possible random symmetry breaking along
z (possible for strong disorder),

̂zzuz = −(μ + λ)∂z∂xux(x, y) = 0. (18)

Thus, as anticipated, vortex lattice phonons along colum-
nar defects, uz, experience no disorder-induced distortions
or pinning [45], fully controlled by thermally induced fluc-
tuations. The corresponding two-point correlator Czz(r) =
1
2 〈[uz(r) − uz(0)]2〉 is then given by

Czz(r) = T
∫

q

[
Kq2

y + μq2
⊥ + (μ + λ)q2

x

]
(1 − eiq·r )(

Kq2
y + μq2

⊥
)[

Kq2
y + (2μ + λ)q2

⊥
] ,

r → ∞ = u2
z,rms ≈ T

Ka
, (19)

where K is an effective stiffness (a function of K, μ, λ) whose
detailed form is unimportant, and a ∼ 2π/� is lattice cutoff.
As indicated above, the key point is that in 3D this integral
is convergent at small wave vectors and thus at long scales
the phonon correlator asymptotes to a finite r-independent
constant, and therefore at low temperature exhibits a stable
periodic (layered) smectic order along columnar defects. We
thus expect at low T the structure function for vortex config-
uration transverse to columnar defects, Fig. 1(a), to exhibit
true smectic Bragg peaks for momentum transfer along along
columnar defects (qz), with amplitude reduced by a Debye-
Waller factor, e−Q2

z u2
z,rms , as illustrated in Fig. 2.

As the temperature is raised, at sufficiently high T , such
that uz,rms increases to a fraction of a lattice constant—a Lin-
demann criterion—we expect that the smectic order will melt
at a temperature

Tmelt-Sm ≈ cLa3K, (20)

where cL is a Lindemann number of order 0.1–0.2, to be fitted
by experiments. At low temperature below Tmelt-Sm, the SmVG
state is stable and the nontrivial part of the problem reduces to
a pinning-induced distortion of a single phonon, ux, transverse
to columnar defects.

III. PINNING OF TRANSVERSE PHONONS

We now study Hamiltonian (16), analyzing the statistics
of the transverse phonon ux(x, y) in the presence of Gaussian
short-range correlated z-independent pinning potentials,
U (x, ux (x, z)),U0(x), and elastic kernel ̃(q), (17).
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A. Perturbative Larkin analysis

Vortex lattice ux(r) distortions are characterized by a
sum of thermal and random pinning contributions, Cxx(r) =
CT

xx(r) + C�
xx(r), where

CT
xx(r) = 1

2 〈[ux(r) − ux(0)]2〉c, (21)

C�
xx(x) = 1

2 〈ux(r) − ux(0)〉2, (22)

where subscript c denotes “connected” correlation function
〈φφ〉c ≡ 〈(φ − 〈φ〉)2〉 = 〈φφ〉 − 〈φ〉〈φ〉. Above, in contrast
to the thermal component, CT

xx(r), we explicitly indicated
C�

xx(x) to be a function of x, rather than full r = (x, z),
i.e., independent of z. At short scales, such that ux phonon
distortions are small compared to the lattice constant and
disorder correlation length, we can follow Larkin [12] and
expand the random potential U (x, ux (x)) in H , (10) or (16),
to linear order in ux(x) about an undistorted state (a random
force approximation equivalent to the Imry-Ma estimate),
which can be then analyzed exactly in this perturbative regime
[12,13,19,41,42].

At low temperature C�
xx(x) ≡ G�

xx(0) − G�
xx(x) dominates,

with phonon correlations captured by the propagator G�
xx(x) =

〈ux(r)〉〈ux(0)〉, and mean-squared distortions given by

G�
xx(0) ≈

∫
qx,qy

�

|̃(qx, qy, 0)|2 (23)

≈
∫

qx,qy

�[
Kq2

y + (2μ + λ)q2
x

]2

= �

π K̃2
L2, for d = 3, (24)

= Cd−2�

K̃2
L5−d , for d < 5, (25)

where K̃2 ≡
√

K (2μ + λ)3 is the effective elastic constant,
� ≡ �(0) = −R′′(0) is the random force correlator, and in
the last equality, for later convenience, we generalized the
analysis to d dimensions, denoting d-dimensional coordi-
nate vector r ≡ (x, z) and (d − 1)-dimensional coordinate
vector transverse to ẑ as x = (x⊥, y). Above, for conve-
nience we chose a cylindrical momentum cutoff with −∞ <

qy < ∞ and defined Cd = Sd/(2π )d = 2πd/2/(d/2)/(2π )d

[C1 = 1/π , C3 = 1/(2π2)], with Sd a surface area of a
d-dimensional unit sphere. In the above analysis we also
neglected the long-wavelength disorder U0(x), which is sub-
dominant at scales shorter than ξL, where it gives distortions
that scale logarithmically in d = 3, and are finite for d > 3.

The above strongly divergent urms distortions are expected
due to the correlated z-independent random columnar poten-
tial, contrasting with the corresponding point-disorder L4−d

growth [12,13,19,41,42]. For d < dlc = 5 the perturbative re-
sult (25) predicts its own breakdown at sufficiently long scales
L > ξL, where the Larkin correlation length [up to constants
of O(1)] is given by

ξL = (a2K̃2/�)1/(5−d ). (26)

Through this perturbative analysis, a combination of (19)
and (25) predicts that in the physical case of three dimen-
sions, vortex configurations transverse to columnar defects

[Fig. 1(a)] are characterized by a periodic order along colum-
nar defects, with uz

rms  a at low T and divergent distortions,
ux

rms perpendicular to columnar defects, which we will show
grow logarithmically on scales longer than ξL. Thus, as il-
lustrated in Figs. 1(a), 1(b) and 2, this 3D transverse vortex
state, which we dubbed a “smectic vortex glass,” is an array of
y-directed vortex sheets confined to the x-y plane, exhibiting
long-range periodic order along the ẑ-directed columnar de-
fects, with true Bragg peaks along qz (2), and, as we will show
below, quasi-long-range order (characterized by quasi-Bragg
peaks) within the x-y plane.

B. Replicated model

We now focus on the positional order within the x⊥-y
plane transverse to columnar defects, characterized by distor-
tions u(r) ≡ ux(r), where for simplicity of notation we have
dropped subscript x.

To compute self-averaging quantities (e.g., the disorder-
averaged free energy and correlation functions) it is conve-
nient (but not necessary) to employ the replica “trick” [18],
which allows us to work with a translationally invariant field
theory at the expense of introducing n replica fields, with the
n → 0 limit to be taken at the end of the calculation. For the
free energy this procedure relies on the identity for the ln z
function

F = −T ln Z = −T lim
n→0

Zn − 1

n
. (27)

After replicating and integrating over the random potential
U [u(r), x] using (14), we obtain

Zn =
∫

[duα]e−H (r)[uα (r)]/T . (28)

The effective translationally invariant replicated Hamiltonian
H (r)[uα (r)] is given by

H (r) = 1

2

n∑
α

∫
x,z

[uα
ˆ̃uα + μzx(∂zuα )2]

− 1

2T

n∑
α,β

∫
x,z,z′

R[uα (x, z) − uβ (x, z′)], (29)

where we added an additional elastic term, characterized by a
shear modulus μzx, which we expect to be generated under
coarse-graining. We will use this Hamiltonian (29) in our
subsequent renormalization group analysis of the system.

C. Physics beyond Larkin scale: Functional
renormalization group

As we saw in the Larkin analysis of Sec. III A, at scales
shorter than ξL, the transverse phonon distortions u are
small compared to the lattice constant and disorder cor-
relation length, and thus have been treated perturbatively
[12,13,19,41,42]. The growth of urms ∼ L(5−d )/2 in (25) is
indicative of highly nonlinear, nonperturbative effects of
disorder at scales beyond ξL, requiring a functional renormal-
ization group (FRG) treatment [41], which can be controlled
in an expansion in ε = 5 − d about the lower-critical dimen-
sion, dlc = 5.
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To this end it is convenient to work with the translation-
ally invariant replicated Hamiltonian, H (r), (29). We employ
the standard momentum-shell RG transformation [41,47],
by separating the phonon field into a long and short scale
contributions according to uα (r) = u<

α (r) + u>
β (r) and pertur-

batively in nonlinearity R[u>
α (x, z) − u>

β (x, z′)] integrate out
the high-wave-vector components u>

α (r), which take support
in an infinitesimal shell �/b < q < � ≡ 1/a, with b = eδ�.
We follow this with a rescaling of lengths and the long-
wavelength part of the field,

x = b x′, (30)

z = bω z′, (31)

u<(b x′, bωz′) = u′(x′, z), (32)

so as to restore the UV cutoff back to �. Based on disor-
der correlated along z we anticipated a nontrivial anisotropy
between x and z, encoded in ω ≈ 1 + O(ε). In Eq. (32) we
made a convenient choice of a zero scaling dimension for
the real-space displacement field u(x, z). This is dictated by
the convenience of keeping the periodicity of the disorder
variance R(u) fixed at 2π/Q.

The above rescaling leads to zeroth-order RG flows of the
effective elastic constant K̃ (which represents K, μ, λ), μzx,
and disorder pinning potential R(u), which are given by

K̃ (b) = bd−3+ωK̃, (33)

μzx(b) = bd−1−ωμzx, (34)

R(u, b) = bd−1+2ωR(u), (35)

indicating that in d > 2 the effective strengths of both elastic
and pinning energies grow at long scales relative to the ther-
mal energy, T . This is a reflection that in d > 2 the physics is
controlled by the zero-temperature ground-state competition
between elastic and pinning energies, at long scales both much
larger than the thermal energy. Equivalently, to emphasize this
physics we can rescale T according to

T (b) = b−(d−3+ω)T (36)

≡ b−�T, (37)

with � ≈ d − 2 + O(ε), so as to keep the elastic energy fixed
at order 1. With this convenient rescaling convention, the
measure of the effective pinning strength grows according to

R(u, b) = b5−d R(u), (38)

modified by a factor [T (b)/T ]2 = b−2� relative to that
in Eq. (35) due to the factor of 1/T 2 in H (r)/T , (29).
Equivalently, without the rescaling of T , the dimensionless
combination that arises in the coarse-graining analysis is given
by R(u)/K̃2, and its zeroth-order flow is given by Eq. (38).

In either convention we find that for d < dlc = 5, the Gaus-
sian disorder-free fixed point is unstable, indicating that the
influence of random pinning grows at long scales relative
to the elastic energy, consistent with the scaling and Larkin
analysis above.

The statistical symmetry [17,19,41,42] of the bulk Hamil-
tonian H , (10), under an arbitrary local distortion, u(x, z) →
u(x, z) + χ (x), guarantees that the flow of K̃ (b), (33), and,
equivalently, the thermal exponent,

� = d − 3 + ω ≈ d − 2 + O(ε), (39)

are exact, i.e., do not experience any coarse-graining cor-
rections. This can equivalently be seen from the repli-
cated Hamiltonian (29), where the pinning nonlinearity,
R[uα (x, z) − uβ (x, z′)], depends only on the difference be-
tween fields at distinct z coordinates and replicas, i.e.,
independently of the “center of mass” field

∑n
α=1 uα (x).

That is, the only nonlinearity in H (r) exhibits a symmetry
of a replica- and z-independent local distortion uα (x, z) →
uα (x, z) + χ (x) and under coarse-graining can therefore only
generate terms that also exhibit this symmetry. Thus, it cannot
generate a correction to the elastic term that clearly lacks this
symmetry, implying that K̃ is not renormalized by the pinning
disorder. In contrast, as we discuss below, the shear modulus
μzx indeed is strongly renormalized by the pinning potential
under coarse-graining.

1. Pinning

An important consequence of the periodic nonlinearity
R(u) and the effective zero-temperature physics, first empha-
sized by Fisher [41], is that all monomials or (equivalently)
harmonics in the expansion of R(u) are equally relevant in
2 − O(ε) < d < dlc = 5. Thus, a functional RG analysis that
follows the coarse-graining flow of the whole function R(u, b)
is necessary. The method is by now quite standard [19,41,42]
and is straightforwardly adapted to the correlated pinning
problem [32], characterized by H (r), Eq. (29).

We limit the FRG analysis to one-loop order, performing
the momentum-shell integration over the high-wave-vector
components u>

α perturbatively in the nonlinearity Hp =
− 1

2T

∑n
α,β

∫
x,z,z′ R[uα (x, z) − uβ (x, z′)], and controlled by an

ε = 5 − d expansion. The correction to the Hamiltonian due
to the coarse-graining is given by

δH (r)[u<
α ] = 〈Hp[u<

α + u>
α ]〉> − 1

2T
〈H2

p [u<
α + u>

α ]〉c
> . . . ,

(40)

where the averages over short-scale fields u>
α above are

performed with the quadratic (elastic K̃) part of H (r). The
superscript c denotes a cumulant average, 〈H2

p 〉c = 〈H2
p 〉 −

〈Hp〉2.
Based on Eqs. (37) and (39), temperature is (danger-

ously) irrelevant for d > 2, and we thus focus on the
zero-temperature limit, in which the lowest-order contribution
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comes at a second order in R(u), given by

δH (r) ≈ − 1

16T 3

∑
α1,β1,α2,β2

∫
x1, z1, z′

1
x2, z2, z′

2

R′′[u<
α1

(x1, z1) − u<
β1

(x1, z′
1)

]
R′′[u<

α2
(x2, z2) − u<

β2
(x2, z′

2)
]
Iα2β2
α1β1

(x1, z1, z′
1; x2, z2, z′

2), (41)

where in the above, the prime indicates a partial derivative with respect to u, and

Iα2β2
α1β1

= 1
2

〈[
u>

α1
(x1, z1) − u>

β1
(x1, z′

1)big]2
[
u>

α2
(x2, z2) − u>

β2
(x2, z′

2)
]2〉c

>

= 8
[

1
2δα1α2δβ1β2 G>

T (x1 − x2, z1 − z2)G>
T (x1 − x2, z′

1 − z′
2) − δα1α2δα1β2 G>

T (x1 − x2, z1 − z2)G>
T (x1 − x2, z1 − z′

2)
]2

.

(42)

Above we kept only the most relevant two-replica thermal
terms, with a thermal (zero-disorder) momentum-shell propa-
gator, G>

T (x, z) = 〈u>(x, z)u>(0, 0)〉>0 . Using the short-range
property of this propagator and comparing to Hp, we then
obtain

δR(u) ≈ δ�g2
(

1
2 R′′(u)R′′(u) − R′′(u)R′′(0)

)
, (43)

where the constant g2 is defined by

g2 δ� = T −2
∫

δx,δz,δz′
G>

T (δx, δz)G>
T (δx, δz′)

=
∫ >

qx,qy

1

|̃(qx, qy, 0)|2

=
∫ �

�e−δ�

dd−2qx

(2π )d−2

∫ ∞

−∞

dqy

2π

1[
Kq2

y + (2μ + λ)q2
x

]2

= Cd−2�
d−5√

K (2μ + λ)3
δ�. (44)

Combining this with the rescalings Eq. (33)–(35), we ob-
tain the FRG flow equation for a dimensionless measure of
pinning disorder, R̂(u) ≡ g2R(u),

∂�R̂(u) = εR̂(u) + 1
2 R̂′′(u)R̂′′(u) − R̂′′(u)R̂′′(0). (45)

We note that aside from constant prefactors (g2) in the def-
inition of R̂(u, �) and the raised (from 4 to 5) lower-critical
dimension giving ε = 5 − d , this FRG flow is identical to that
of the uncorrelated pinning disorder [19,41,42], with the fixed
point function for the random force correlator given by

�̂∗(u) = −R̂′′
∗(u) = ε

6Q2

[
(Qu − π )2 − π2

3

]
, (46)

periodically extended with period 2π/Q.

2. Breakdown of elasticity

As noted above, elastic moduli K, μ, λ characterizing z-
independent distortions u(x, y) are protected by the x-y plane
statistical symmetry, and thus remain fixed under coarse-
graining. In contrast, it is straightforward to show that the
μzx modulus for ∂zu shear is strongly enhanced by pinning,
acquiring a correction

δμzx ≈ −g2�
′′(0)μzxδ�, (47)

that in the absence of point disorder and at zero temperature
is divergent since �(u), (46), exhibits slope discontinuity at
u = 0.

To understand the physical implications of this result
requires a careful analysis of the dangerously irrelevant
temperature and/or point disorder, neglected so far. These
smoothen the u = 0 singularity within the boundary layer that
shrinks on coarse-graining with �. Conveniently, such analysis
has been carefully done in Ref. [32] for a physically distinct
but mathematically related “toy” model of a Bose glass. The
upshot is that pinning generates a nonanalytic term,

δH = 1

2
σc

∫
x
|∂zu|, (48)

arising from the singularity �(u) ∼ −|u| + constant around
u = 0 outside the boundary layer. As discussed in Ref. [32],
this results in a finite threshold σc response to an external
shear stress σzx, with coupling σzx∂zu. This is the SmVG’s
counterpart of the “transverse Meissner effect” in the Bose
glass geometry (with field oriented along columnar defects)
[28]. However, in contrast, here it is unclear to us how to
probe this novel, effectively divergent μzx, characteristic of
the SmVG.

3. Correlation function

With this RG analysis in hand, we can now calculate the
transverse correlation function C�

xx(x), (22), that dominates
the asymptotics of vortex line distortions at scales beyond the
perturbative Larkin scale. To this end we first examine the
corresponding momentum correlation function,

C(q) ≡ 〈u(q)〉〈u(q′)〉
δd (q + q′)δ(qz )

. (49)

To compute this function we utilize the standard RG matching
analysis [19,42], that allows us to relate a correlation function
at a small wave vector qx of our interest (which is impossible
to calculate in perturbation theory due to the infrared diver-
gences) to the same correlation function at a large wave vector,
bqx, which can be straightforwardly calculated in a controlled
perturbation theory,

C(qx, qy, 0) = bd−1C(bqx, bqy, 0, K, μ, λ, R(u, b)). (50)

Choosing bqx = � for small qx, such that b is large to take
R(u, b � 1) → R∗(u) to its fixed point (46), and computing
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the right-hand side perturbatively in disorder, we find

C(qx, qy, 0) = 1

qd−1
x

�̂∗(0)�d−5/g2

[K (qy/qx )2 + (2μ + λ)]2 . (51)

In coordinate space, at long scales beyond ξL, we find (for
equal y separation)

C(x) = 1
2 〈u(x) − u(0)〉2 ≈ Q−2ηd ln(x/a), (52)

for all dimensions d in the range 2 − O(ε) < d < 5, where A
is a universal amplitude that to one-loop order is given

ηd = π2ε

9
, (53)

identical to that found in Refs. [19,32].
These translational correlations are best probed by the

structure function, a Fourier transform of the density-density
correlation function,

S(q) =
∑
r⊥

n

e−iq·r⊥
n 〈eiq·[u(r⊥

n )−u(0)]〉. (54)

For scattering along columnar defects, q = qzẑ, and using
finite uz distortions set by uz,rms, Eq. (19), we find “true”
δ-function Bragg peaks, suppressed by the thermal Debye-
Waller factor, IQz = e−Q2

z T/(Ka), as advertised in Eq. (1).
In contrast, for scattering at a wave vector q = qxx̂, trans-

verse to columnar defects and the applied field (vortex lines),
we utilize the Gaussian approximation (which amounts to
ignoring higher-order cumulants) and the ux-ux correlation
function computed above, (52). We thereby find

S(qx ) =
∑

xn

e−iqxxn e−q2
xC(xn )

≈
∑

xn

e−iqxxn
1

|xn|ηqx

∼
∑

p

1

|qx − pQx|1−p2η
, (55)

where the universal power-law exponent in 3D η = η3 ≈
2π2/9, and we utilized the Poisson summation formula to
perform xn summation. We note that if this approximate value
of η is indeed greater than 1, only cusp singularities, rather
than divergent quasi-Bragg peaks, will appear at the reciprocal
lattice vectors, Qx.

IV. DISLOCATIONS

As with other pinning problems [19–22,41,42], the above
analysis notwithstanding, a vexing problem is that of topolog-
ical defects. Namely, it is important to assess the stability of
the SmVG phase to a proliferation of dislocations. For strong
disorder, at high temperatures, and/or in the presence of point
disorder, these will undoubtedly proliferate, destroying the
topologically ordered (Bragg glass) character of the SmVG.
However, at weak disorder and low temperatures, one can
contemplate that dislocation-free Bragg glass order [19,22,42]
will persist to arbitrary scales of the SmVG state. Otherwise,
our above results will extend only out to a dislocation scale,
ξD (set by the average spacing of proliferated dislocations),

that will be long in the limit of weak disorder and low temper-
atures, thereby allowing a broad range of SmVG regime.

In addition to these generic considerations [19,22,42],
which are extremely challenging to rigorously assess, we be-
lieve considerations of SmVG are much more favorable for its
stability against dislocations. It is made so by the translational
invariance of disorder along columnar defects (z axis) and
vortices running transverse to them. This is based on the fact
that for SmVG, (i) Eq. (18) strictly gives uz = 0 in the ground
state, (ii) it gives convergent thermal uz,rms fluctuations, that
can be made arbitrarily small at low T according to (19),
and (iii) all observables are expected to be z independent in
the ground state (neglecting the possibility of spontaneous
inhomogeneous symmetry breaking along columnar defects
at strong disorder).

To examine these arguments in more detail, we note that
a potential dislocation density in SmVG is defined by a non-
single-valued displacement field,

ŷ · ∇ × ∇ui = bi(r). (56)

A key consequence of property (iii), the z independence of
vortex distortions, ui(x), is that gradients in (56), acting within
the x-z plane, immediately imply a vanishing of dislocation
density, bi(r) = 0.

In addition, we can focus on vortex line order within the x-y
planes, with vortices running along the y axis, as illustrated in
Fig. 1(a). Based on properties (i) and (ii), at low temperature
and weak disorder, we can neglect vortex distortions along
columnar defects, taking uz = 0. We then note that with these
conditions, within the x-y planes, the system reduces to an
array of “1 + 1”-dimensional systems of Fisher’s vortex glass
[15]. Based on this, it is obvious that magnetic flux conserva-
tion (vortex line continuity) immediately forbids dislocations
(partial lines) within these x-y vortex planes. This can be seen
mathematically by observing that components of the magnetic
flux are generically given by B = B0(∂yux,−∇ · u, ∂yuz ), and
for uz ≈ 0 reduce to

Bx = B0∂yux, By = −B0∂xux. (57)

Thus, the vanishing divergence of flux density (absence of
monopoles), ∇ · B = 0, reduces to

∂x∂yux − ∂y∂xux = 0, (58)

which guarantees a single-valued form of the in-plane dis-
placement ux, and thus absence of in-plane dislocations.

Based on the above discussion, we thus argue that at low
temperature and weak disorder (certainly in the absence of
point disorder, though it may even survive with weak point
disorder [22]) the SmVG phase remains a dislocation-free,
topologically ordered smectic Bragg glass [42].

V. SUMMARY AND CONCLUSIONS

Motivated by old experiments on vortex matter tilted away
from columnar defects [39], in this paper we studied a
new smectic glass state of vortex matter. We showed that it
arises for large tilt angles of the magnetic field relative to
columnar defects, at which a Bose glass undergoes a phase
transition to this SmVG. As summarized in the Introduction,
this novel state is characterized by a periodic translational
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order along the columnar defects (exhibiting true Bragg
peaks) and Bragg glass [19,22,42] logarithmically rough vor-
tex distortions transverse to columnar defects, which lead to
quasi-Bragg power-law peaks in the structure function. SmVG
is also characterized by a divergent shear modulus in the plane
transverse to the applied magnetic field, a counterpart of the
“transverse” Meissner effect predicted for the Bose vortex
glass [28,32]. We also predict that SmVG exhibits an infinite
electrical transport anisotropy with a nonzero longitudinal
resistivity transverse to columnar defects and to the applied
magnetic field and a vanishing resistivity along the columnar
defects.

In this paper, we focused on the purely transverse (tilt angle
of π/2) geometry. However, based on the effective model
and its symmetry (translational invariance along the columns),
we expect the SmVG phase to exhibit a finite range of tilt
angle stability. However, away from this purely transverse
orientation, the symmetry of the state clearly changes from

biaxial to monoclinic. We leave the analysis of a more general
geometry, as well as the nature of the Bose-to-smectic vortex
glass phase transition, to future studies.
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