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Vortex dynamics, pinning, and angle-dependent motion on moiré patterns
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We examine the pinning and dynamics of Abrikosov vortices interacting with pinning centers placed in a moiré
pattern for varied moiré lattice angles. We find a series of locking angles at which the critical current shows a
pronounced dip corresponding to lattices in which the vortices can flow along quasi-one-dimensional channels.
At these locking angles, the vortices move with a finite Hall angle. Additionally, for some lattice angles there
are peaks in the critical current produced when the substrate has a quasiperiodic character that strongly reduces
the vortex channeling. Our results should be general to a broad class of particlelike assemblies moving on moiré
patterns.

DOI: 10.1103/PhysRevB.104.024504

I. INTRODUCTION

Moiré patterns are produced by the interference effects that
occur when two identical lattices are placed on top of each
other and then one of the lattices is shifted or rotated [1,2].
In condensed matter systems, such patterns can appear in a
double layer system when one layer is rotated with respect to
the other. For certain rotation angles, large scale superlattice
ordering occurs that can strongly affect the electronic proper-
ties, as found in bilayer graphene [3–5]. Here, we present a
study of the pinning and dynamics of assemblies of particles
interacting with moiré pinning patterns. We find that, as the
moiré pattern is varied, qualitatively new transport patterns
emerge for certain locking twist angles, giving rise to en-
hanced longitudinal and transverse (Hall) particle currents.

One of the most ideal systems for studying pinning and
sliding dynamics on different types of pattered substrates is
vortices in type-II superconductors. In this system, a variety
of nanostructuring techniques can be used to realize different
pinning array geometries including square [6–12], triangular
[8,11,13], rectangular [14–16], diluted [17,18], quasicrys-
talline [19,20], frustrated [21–23], conformal crystal [24,25],
and other structures [26]. The pinning and dynamics can
be measured by examining the critical current and transport
curves or by direct imaging of the vortex configurations or
trajectories. Many of the results found for vortex pinning
and motion can also be generalized to other particlelike sys-
tems interacting with ordered substrates, such as vortices in
Bose-Einstein condensates [27], colloidal assemblies [28–31],
skyrmions [32], and frictional systems [33].

A variety of bilayer materials exist that can support super-
conducting vortices which interact with what is effectively
a moiré substrate. It would be interesting to understand if
such a system can exhibit a spontaneous Hall angle for the
vortex motion, the nature of the vortex movement, and how
the critical current might differ for different driving directions.
Several recent works have examined skyrmions on moiré pat-
terns [34–36] and these systems could exhibit depinning under

a drive. Since skyrmions and vortices have many similari-
ties, their behavior on a moiré pinning array may also show
similarities.

Moiré substrates are of interest since they permit the co-
existence of multiple length scales even though the individual
pinning sites in each layer have only a single length scale. A
variety of novel sliding states could arise due to the multiple
symmetry directions, making it possible for superconducting
vortices to flow in the direction of driving or along one of
the symmetry directions of the moiré lattice. Similar effects
could occur for any type of particle-based system driven over
a moiré substrate. It should be possible to create a variety of
different moiré patterns in superconductors using currently
existing nanostructuring techniques that have already been
employed to generate conformal, periodic, and quasiperiodic
pinning arrays. For the latter pinning geometries, predictions
from simulations and theory were confirmed in multiple ex-
periments.

In a superconducting vortex system, the pinning properties
are typically examined as a function of the magnetic field by
varying the number of vortices on a fixed number of pinning
sites. For vortices interacting with a moiré pinning array, an
additional parameter is important beyond the vortex and pin-
ning density: the angle θ between the two lattices that make
up the moiré pattern. Here, we examine vortex pinning and
motion in a system with moiré pinning composed from two
triangular pinning lattices rotated by an angle θ with respect
to each other. As a function of θ , we observe a rich variety of
pinning and vortex dynamics that are associated with dips and
peaks in the critical current. At commensurate angles where
an ordered interference pattern appears, the critical current
exhibits a series of dips, and the vortices flow in ordered quasi-
one-dimensional channels. At incommensurate angles, these
flow channels break apart. Along the commensurate angles,
the vortices develop a finite Hall angle due to the guidance or
locking of the vortex motion to the moiré pattern. We also find
that for other angles, peaks in the critical current appear when
a quasicrystalline structure forms in the pinning lattice which
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FIG. 1. The pinning array structures for two triangular lattices
where the blue lattice is kept fixed and the orange lattice is rotated
by an angle θ of (a) 5.0◦, (b) 9.4◦, (c) 13.2◦, and (d) 21.8◦.

strongly suppresses easy flow channeling of the vortices. As
a greater number of van der Waals type systems are studied,
a number of cases could arise in which depinning, friction,
flow, and pinning on a moiré substrate could arise. Our results
are of interest for understanding the flow of vortices, col-
loidal particles, skyrmions, and Wigner crystals on such moiré
substrates.

II. SIMULATION

We model a system of Nv vortices interacting with a moiré
pattern of pinning sites. The equation of motion for vortex i is
given by

η
dR
dt

= Fvv
i + Fp

i + Fd + FT
i . (1)

Here, η = 1 is the damping coefficient and the time step
is set to dt = 0.008. The repulsive vortex-vortex interaction

force has the form Fvv
i = ∑

F0K1(Ri j/λ)R̂i j , where K1 is the
modified Bessel function, Ri j is the distance between vor-
tex i and vortex j, F0 = φ2

0/2πμ0λ
3 = 8.0/λ3, and λ is the

penetration depth which we set equal to λ = 1.8. We con-
sider a system of size L × L with L = 20λ and with periodic
boundary conditions in the x and y directions. The vortex
density is nv = Nv/L2. The pinning force is given by F p

i =
−∑Np

k=1 FpRik exp(−R2
ik/r2

p)R̂i j where we fix rp = 0.6. The
pinning sites are arranged in two identical triangular lattices
with a lattice constant of 1.8, and the lattices are rotated with
respect to each other by an angle θ . We consider θ = 0 to
θ = 30◦ in increments of δθ = 0.1◦. In Fig. 1 we illustrate
some representative moiré pinning structures for varied angles
θ = 5.0◦, 9.4◦, 13.2◦, and 21.8◦ between the two lattices,
which are colored blue and orange. The pinning sites form
a superlattice with a superlattice constant that decreases as θ

increases. The thermal forces arise from Langevin kicks with
the following properties: 〈F T

i (t )〉 = 0.0 and 〈F T
i (t )F T

j (t ′)〉 =
2ηkBT δi jδ(t − t ′). The initial vortex configurations are ob-
tained by starting from a high temperature liquid state and
cooling down to 0 K in 80 intervals, where we wait 104 time
steps during each interval. After annealing we apply a drive in
the form of a Lorentz force F D = (J × ẑ)φ0d which produces
vortex motion along the x direction.

We obtain the critical current by measuring the total vortex
velocity Vx = N−1

t

∑
t

∑
i x̂ · vi, where Nt is the total number

of time steps and vi is the vortex velocity. When Vx exceeds a
threshold where nontrivial steady state vortex motion occurs,
the system is defined as being depinned. We obtain the depin-
ning force using a binary search technique. The simulations
are performed using a parallelized code, and we typically
consider 3000 configurations for each of 300 different values
of θ and ten different vortex densities. Some representative
annealed vortex configurations for varied vortex densities and
θ appear in Fig. 2 for a sample with 100 vortices at nv = 0.25,
in Fig. 3 for a sample with 300 vortices at nv = 0.75, and in
Fig. 4 for a sample with 1000 vortices at nv = 2.5.

III. RESULTS

In Fig. 5(a) we plot the critical current Fc vs θ for the
system in Fig. 1 at vortex densities of nv = 0.25–2.5 in
increments of 0.25. Here, the overall critical current decreases
with increasing vortex density and there are a series of dips

FIG. 2. Vortex configurations after annealing for a system with 100 vortices (density nv = 0.25) for (a) θ = 5◦, (b) 15◦, and (c) 25◦. Blue
dots: Pinning site centers for a hexagonal lattice. Orange dots: A second hexagonal lattice rotated by θ . Large dots: Vortices.
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FIG. 3. Vortex configurations after annealing for a system with 300 vortices (nv = 0.75) for (a) θ = 5◦, (b) 15◦, and (c) 25◦. Blue dots:
Pinning site centers for a hexagonal lattice. Orange dots: A second hexagonal lattice rotated by θ . Large dots: Vortices.

at specific angles. The initial peak in Fc at θ = 0.0◦ appears
when the pinning sites form a triangular lattice. We have also
tested these results for different system sizes and we find that
the angles at which the dips and peaks occur are insensitive to
system size, as shown in Fig. 6.

Figure 5(b) shows Fc vs θ for the samples with nv = 1.25,
where dips in Fc appear at θ = 9.4◦, 13.2◦, and 21.8◦. In a
moiré pattern formed from two triangular lattices, ordered or
commensurate structures occur at the following angles [5,37],

cos(θ ) = 3p2 + 3pq + q2/2

3p2 + 3pq + q2
, (2)

where p and q are integers. The values p = 1 and q = 1
correspond to θ = 21.786◦, p = 2 and q = 1 correspond to
θ = 13.7◦, and p = 3, q = 1 correspond to θ = 9.4◦. The dips
we observe in the critical current match these commensurate
angles. Due to the symmetry of the system, the features in
Fig. 5 repeat in the range θ = 30◦–60◦.

In Fig. 5(b), letters highlight the values of θ at which the
vortices are just able to depin, as illustrated in Fig. 7, where
the color code corresponds to different times. Figure 7(a)
shows the trajectories at θ = 9.4◦ and Fd = 1.5, where the
vortices flow in a series of quasi-one-dimensional channels
along the edges of the superlattice. In Fig. 7(b), at θ = 13.2◦
and Fd = 1.5, a similar set of trajectories form in which the
motion follows the superlattice edge. Since the superlattice
spacing decreases with increasing θ , the number of possible
quasi-one-dimensional channels for motion increases with in-

creasing θ . In Fig. 7(c), the trajectories at a noncommensurate
angle of θ = 17◦ and Fd = 2.0 are much more disordered.
At θ = 21.8◦ and Fd = 1.5 in Fig. 7(d), the vortex motion
again follows well-defined channels. In general, the flow at
incommensurate angles has reduced channeling compared to
the flow at commensurate angles.

In addition to dips at the commensurate angles, we also find
peaks in Fc in Fig. 5. The most prominent peak of this type
occurs near θ = 27.9◦ for vortex densities near nv = 1.25. In
Fig. 8(a) we illustrate the pinning site configurations at this
angle, where we find features such as fivefold ordering similar
to those observed in quasicrystals. Figure 8(b) shows that the
vortex trajectories over this substrate just above depinning
have strongly reduced channeling. For triangular moiré pat-
terns, the most incommensurate angle corresponds to θ = 30◦
[5]. In our system we generally find a small dip in the critical
current when θ = 30◦, while the peak in Fc falls at θ = 27.9◦
The downward shift of the peak location could be a result
of the finite size of the pinning sites or of the vortex-vortex
interactions which can produce a collectively moving state.

When vortex channeling occurs, we find a finite Hall effect
or transverse motion due to the fact that the easy flow channels
are at an angle to the driving direction, as shown in Fig. 7.
In Fig. 9 we plot 〈Vy〉 vs θ for the system in Fig. 5(b) at
Fd = 1.5, 2.0, 2.5, and 3.0. Peaks in the Hall velocity appear
at θ = 21.8◦ and 13.7◦, with a weaker channeling effect at
θ = 9.4◦. There is also an extended region from 12◦ < θ <

23◦ in which some biased flow in the y direction occurs as
Fd increases. The vortex flow is generally more ordered for

FIG. 4. Vortex configurations after annealing for a system with 1000 vortices (nv = 2.5) for (a) θ = 5◦, (b) 15◦, and (c) 25◦. Blue dots:
Pinning site centers for a hexagonal lattice. Orange dots: A second hexagonal lattice rotated by θ . Large dots: Vortices.
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FIG. 5. (a) The critical current Fc vs θ for the system in Fig. 1
at varied vortex densities of nv = 0.25–2.5 in increments of 0.25.
(b) Fc vs θ at nv = 1.25, showing dips at θ = 9.4◦, 13.2◦, and 21.8◦

as well as a peak near 28◦. The letters a, b, c, and d correspond to the
locations of the images in Fig. 7.

θ < 12◦ even at incommensurate angles since the vortices
follow large scale zigzag patterns, as is shown for θ = 6.6◦
in Fig. 10. Experimentally it is possible to measure transverse
vortex motion with various techniques [38,39]. Although we
find strong variations in the critical current as a function of
the angle θ , we do not observe pronounced features as a func-
tion of field. Instead, Fc generally decreases smoothly with

FIG. 6. Critical current Fc vs θ in samples of size (a) L = 16λ

and (b) L = 24λ.

FIG. 7. The vortex positions (dots) and trajectories (lines) just
above depinning for the system in Fig. 5(b) with nv = 1.25. Dif-
ferent colors indicate the motion of different individual vortices.
(a) θ = 9.4◦ and Fd = 1.5, where quasi-one-dimensional flow pat-
terns form. (b) θ = 13.2◦ and Fd = 1.5, with easy flow channeling.
(c) θ = 17◦ and Fd = 2.0, an incommensurate angle showing more
disordered channeling. (d) θ = 21.8◦ and Fd = 1.5, where there is
strong channeling.

increasing nv except for a jump down when the number of
vortices crosses from less to more than the number of pinning
sites, as shown in Fig. 11.

The presence of anisotropy and Hall transport is a direct
consequence of the geometrical moiré pattern, emerging from
the two rotated triangular lattices, which allows certain easy
flow directions to arise that do not necessary align with the
direction of drive. This effect can also occur for systems

FIG. 8. (a) The pinning site arrangement for the system in
Fig. 5(b) at θ = 27.9◦ where a peak appears in the critical current
near nv = 1.25. Here, the substrate has considerable fivefold ordering
or quasiperiodic type ordering. (b) The vortex flow pattern over
the pinning sites at FD = 2.0, showing a lack of ordered motion.
Different colors indicate the motion of different individual vortices.
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FIG. 9. The transverse velocity 〈Vy〉 vs θ for the system in
Fig. 5(b) at Fd = 1.5, 2.0, 2.5, and 3.0, from bottom to top. There
are strong transverse velocities at the commensurate angles, which
correspond to the dips in the critical current.

with only a single periodic substrate lattice, such as a tri-
angular lattice where the motion can follow the easy flow
directions of 30◦ or 60◦ [40,41]. In the case of the moiré
substrate, the locking angles serve as easy flow directions for
vortex motion. Directional locking can also be observed by
rotating the direction of drive and observing the enhanced
locking flow when the drive matches these locking angles.
Some experimental geometries that could be used to mea-
sure the transverse voltage include cross-shaped contacts of
the type used for studying vortex flow over periodic pin-
ning [38,42,43]. It is also possible that at high drives, the
driving force would overwhelm the substrate energy and
the transverse response would drop as the vortices begin to
move along the driving direction instead of along the locking
angles.

Our results could be tested using vortices on nanopatterned
arrays or for pinning sites created using multiple Bitter deco-
rations [44]. They could also be applied to colloids interacting
with optical traps, where it would be possible to change θ

FIG. 10. Vortex trajectories at θ = 6.6◦, nv = 1.25, and Fd = 3.0.

FIG. 11. Critical current Fc vs magnetic field nv for θ = 9.4◦,
13.2◦, and 21.8◦. There is a drop in Fc when Nv/Np > 2.0.

as a function of time. Additionally, there are proposals that
the insulating state in some bilayer systems consists of a
Wigner crystal that could undergo depinning transitions in
which the threshold could exhibit dips at the commensurate
angles [45,46].

IV. SUMMARY

We have examined the pinning and dynamics of vortices
interacting with a moiré pattern consisting of two triangular
pinning lattices that are rotated with respect to each other.
We find a series of dips in the critical current correspond-
ing to commensurate locking angles where the system forms
an ordered superlattice and the vortices follow easy flow
quasi-one-dimensional channels. We also find that for some
incommensurate angles, the substrate has a quasicrystalline
structure and there is a peak in the critical current due to
the suppression of vortex channeling. Dips in the critical
current are correlated with the appearance of a finite Hall
angle for the vortex motion when the channeling motion oc-
curs at an angle with respect to the driving direction. Our
results could be tested for vortices or colloids on moiré
substrates.
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